
Jordan Fri, Nov 7, 4:30 - 5:00, Santa Fe 3

Considerations for Partitioning Application
Activities in a Multi-Tiered Environment

Kurt Jordan1

Computer Information Systems and Information Technology
Purdue University Calumet
Hammond, Indiana 46304

Abstract

Web services, a type of multi-tiered application, is gaining in popularity. With any type of
multi-tiered application, decisions are made concerning the partitioning of application activi-
ties. This paper describes the considerations that should be taken into account when deciding
on which tier a particular activity of a multi-tiered application should be placed.

Keywords: leading edge and emerging technologies, E-Commerce, E-Business, multi-tiered
architecture, distributed systems

1. Introduction

Web services and other types of multi-tiered
applications continue to group in popularity.
Gartner expects that J2EE, one of the more
popular development environments for Web
services, is entering into two years of growth
in use (Driver, 2003). Developing multi-
tiered applications is a complicated activity.
The developer is presented with many
choices to make during the development
process. One such choice is on which tier a
particular module of the application should
reside.

2. Multi-tiered Applications

A multi-tiered application has its activities
separated into tiers. Each tier runs on a
separate computer platform. A Multi-tiered
application can be identified by the number
of tiers it has. An application composed of
two parts each of which run on two separate
computers is called a 2-tiered application. An
application composed of three parts each of
which run on three separate computers is
called a 3-tiered application.

Each tier in a multi-tiered application is typi-
cally responsible for some aspect of the ap-
plication. The 1st tier handles presentation
activities, such as application startup and

connection functions, activity selection func-
tions, data input and data validation, and
output display and disposition. (Ben-Natan,
2002) The 1st tier also controls the flow of
information between 1st and 2nd tiers.

The 2nd tier handles general application
processing, such as data transformation and
manipulation, executing business rules, con-
trolling process flow and proper sequencing
of events. The 2nd tier also controls the flow
of information between the 2nd and 3rd
tiers. The 2nd tier typically has access to
other services not directly available to the
1st tier, such as security, communications,
encryption, process synchronization, and
access to other networked services.

The 3rd tier handles requests for data ser-
vices, usually in the form of a relational da-
tabase management system, such as DB2,
Oracle, or SQLServer. This tier handles ac-
tivities such as data queries, updates, de-
letes and insertions. It may also execute
stored procedures on the data.

3. Usual and Customary Application
Activities

The sequence of events in the execution of a
simple multi-tiered application starts with

Proc ISECON 2003, v20 (San Diego): §2524 (refereed) c© 2004 EDSIG, page 1

Jordan Fri, Nov 7, 4:30 - 5:00, Santa Fe 3

the 1st tier. Execution begins with applica-
tion startup and initial setup activities. The
user would then select the desired service to
be performed, by choosing a menu option or
clicking a hyperlink, for example.

Any necessary information or data would be
supplied and checked for validity or reason-
able values. The data is packaged in the re-
quired format and sent to the 2nd tier. The
1st tier can either wait for the results to be
returned, or continue with other activities.
When the results are ready, the 1st tier can
format and display the results, save the re-
sults to long term storage, or otherwise dis-
pose of the results as specified by the user.
The 1st tier typically runs on some kind of
desktop computer. This desktop computer is
frequently called a client.

When the 2nd tier receives the service re-
quest and data from 1st tier, it can perform
checks for validity. This may not be neces-
sary if checking occurred in the 1st tier. The
2nd tier may issue requests for any neces-
sary data to the 3rd tier. Next, the 2nd tier
executes the requested service. More data
access requests to the 3rd tier might occur
as necessary. This first or primary service
could also call other services, both locally
and on other computer systems. In this
case, any required data would be packaged
in the proper format and sent to the other,
secondary service for processing.

When the results from the secondary service
are returned, the primary service continues.
When the primary service is finished, the
results are packaged in the proper format
and either sent back to the 1st tier, or sent
to a central repository for later retrieval. The
2nd tier typically runs on a server computer
with more processing power, disk storage
and memory than a typical client. This
server computer would be configured to
handle multiple simultaneous requests for
service.

The 3rd tier is responsible for executing data
service requests and returning data to the
2nd tier. The 3rd tier can execute some ap-
plication logic on the data in the form of
stored procedures or triggers. Like the 2nd
tier, this tier typically runs on a more power-
ful server computer with the capability to
handle multiple simultaneous requests for
data service.

4. The Partitioning Dilemma

The previous descriptions are what tradition-
ally happen in each tier of a multi-tiered ap-
plication. In actual practice, the developer
has much freedom to combine activities on
the same tier, or separate activities onto
different tiers. The 2nd tier business logic
could be executed on the client along with
the 1st tier activities. In this instance, tiers 1
and 2 reside on the client and tier 3 would
reside on a separate database server com-
puter. This is an example of a 2-tiered appli-
cation with a fat client.

In another instance, the 2nd and 3rd tier
activities could be combined on the server
computer, with the 1st tier activities remain-
ing on the client. The application could do
the data editing tasks on the server com-
puter system as well (although this is con-
sidered a trivial processing task that today’s
desktop computers can handle with little
trouble). This is an example of a 2-tiered
application with a thin client.

The developer must make the decisions con-
cerning on which tier a particular activity will
reside during the design phase. IBM’s appli-
cation design guidelines indicate that sys-
tems “can fail to meet initial requirements,
such as performance, because the system
was not optimized for the chosen environ-
ment” because the placement of resources is
determined independently, instead of in an
integrated manner. (IBM, 1991) The number
of possible combinations is influenced by
several considerations. Prudent developers
will study the considerations and use them
to arrive at an optimal solution to the appli-
cation requirements.

5. Designing m-Tiered Applications

Before assigning application activities to
specific tiers, it is necessary to develop the
application at an abstract level so that par-
ticular application activities can be identified.
Then, the activities can be assigned to their
respective tiers. Prudent developers design-
ing multi-tiered applications use some sort
of methodology to design and develop the
application. This paper does not try to sup-
port or attack any design/development
methodology used to identify the activities
the application should be capable of per-

Proc ISECON 2003, v20 (San Diego): §2524 (refereed) c© 2004 EDSIG, page 2

Jordan Fri, Nov 7, 4:30 - 5:00, Santa Fe 3

forming. It is addressing only the considera-
tions that could be used to assign already-
identified modules to a particular tier.

In order to illustrate how the activities used
in the forth-coming example were arrived at,
assume the task is to develop a web-based
customer information management applica-
tion. The application will allow the addition
of new customers, the display of existing
customer information, the updating of cus-
tomer information and the removal of a cus-
tomer.

We start by making a first pass through the
application and identifying the activities the
application will perform. This is done at a
high, abstract level. Determining on which
tier an activity is placed does not require a
very high level of detail. This first pass might
result in the following list of activities:

 user logon
 user logout
 add new customer
 display customer detail
 update customer detail
 remove customer

The developer would make another pass,
this time providing slightly more detail to
identify the individual steps needed to carry
out that activity. Again, this would be done
at a high, abstract level. At this point, the
developer is starting to move toward the
detailed program design. It is helpful to
think of most computerized activities as be-
ing divided into three general steps: prepare
to perform the activity; perform the activity;
perform post-activity functions. Preparing to
perform the activity consists of functions
such as data acquisition, data error detec-
tion and correction, and packaging data into
proper format. Post-activity functions can be
reporting the results of the activity (success
or failure), and disposition of any resulting
data or reports.

For example, looking at the add new cus-
tomer activity, you would identify the indi-
vidual steps that would have to be per-
formed. Preparing to add a customer would
involve the input of new customer data and
the verification or validation of that data for
acceptable values. If the input data pass the
validation steps, the new customer is cre-
ated. Finally, the results of the creation re-

quest are displayed. The slightly more de-
tailed steps to add a new customer might
be:

add new customer
accept new customer data
verify valid data values
if data valid

insert data into database
display results of insertion request

Notice the steps still describe what will hap-
pen at an abstract level. Some or all of the
steps can still be defined in more detail.
Continue the same steps with the other high
level activities previously listed above. A
third and subsequent passes will provide
more detail until the developer identifies all
the activities the application should do.
However, the developer still wants some
level of abstraction to preserve the flexibility
to use whatever resources or languages that
might be available on a particular platform.

6. Assigning Modules to a Tier

After identifying the application activities,
the next step is to look at the activities and
organize them by tier. Any data input, data
validation, output disposition, connection
login/logout, and user customization activi-
ties are done in the 1st tier. Business proc-
esses and any compute-intensive processing
or activities requiring data access are done
on the 2nd tier. Actual database access is
done on the third tier.

Returning to the create new customer ex-
ample, the data acquisition and validation
steps would be done on the 1st tier. The
validated data would be sent to the 2nd tier,
which would be responsible for requesting
the customer data be inserted into the data-
base. The insertion activity would be carried
out on the 3rd tier, most probably using
SQL. The results of the insertion request
would be returned by the 3rd tier to the 2nd
tier and then to the 1st tier, where it would
be displayed to the user.

add new customer

1st tier: accept new customer data
1st tier: verify valid data values
1st tier: if data valid
2nd /3rd tier: insert data into database
1st tier: display results of request

Proc ISECON 2003, v20 (San Diego): §2524 (refereed) c© 2004 EDSIG, page 3

Jordan Fri, Nov 7, 4:30 - 5:00, Santa Fe 3

Each activity in the application should be
analyzed in a similar manner to identify on
which tier a specific step would be per-
formed.

7. Reassigning the Modules to Other
Tiers

In a perfect world, each tier of a 3-tier appli-
cation would reside on a separate computer
system. As mentioned earlier, the 1st tier
typically runs on a client. The 2nd tier runs
on a more powerful application server com-
puter. The 3rd tier runs on a more powerful
database server computer.

In reality, it might not be possible, or desir-
able to partition the application to run on
three different computers. The number of
available server computers might be limited.
The business process logic (2nd tier) and
database management software (3rd tier)
might run on the same computer system.
The computer on which the database man-
agement software runs might not be power-
ful enough to support both the RDBMS and
the business process logic, so the business
process logic might run on the client along
with the 1st tier logic.

Three basic configurations for a multi-tiered
architecture are:

Tier 1 contains user interface and busi-
ness process logic, tier 2 contains data-
base access – 2 tier architecture

Tier 1 contains user interface logic; tier
2 contains business process logic and
database access – 2 tier architecture

Tier 1 contains user interface logic, tier 2
contains business process logic, and tier
3 contains database access – 3 tier ar-
chitecture

The first two reflect a 2-tier architecture.
The third reflects a 3-tier architecture.

The reasons why a developer would choose
one of the previous three basic configura-
tions are numerous. The next section begins
to examine some of these reasons, begin-
ning with the 1st tier.

8. Reasons to Place Business Processes
on the Client

For financial, logistical or political reasons,
there might not be an application server
computer available to host the business
processes. You might have only a handful of
clients and a centralized database on a da-
tabase server computer with which to work.
In this case, the choice is between running
the business logic on the database server
computer or on the client. If the database
server computer is not configured to handle
the extra load of the business logic as well
as the database activity, the only option is to
place the business logic on the client.

Perhaps the business logic takes minimal
processing power. You might decide that
managing customer records does not require
heavy CPU or memory resource. The com-
puting power available on the client is ade-
quate to handle the processing needs for
this application, so the business logic could
be placed on the client with little impact on
application performance. However, data will
have to move from the database server
computer to the client, potentially increasing
the load on the network, and raising security
and data integrity concerns.

Yet another consideration for placing the
business processing load on the client is the
number of potential users. The number of
users of the application might be so small
that the expense of a separate application
server computer is not justified. It might be
easier or less expensive to simply upgrade
the few clients that would use the applica-
tion so they have the processing power and
memory capacity to handle the computing
requirements.

In spite of having a very powerful application
server computer available, the load on that
server might be such that the performance
of the application is unacceptable. An appli-
cation that was initially designed as a true 3-
tier application might enjoy better perform-
ance if some of the 2nd tier activities are
moved to the client. These types of situa-
tions might not be identifiable during the
design and development phase, but should
be in the minds of the developers. Some
testing could be done to determine response
times on the application server computer
and the results extrapolated using queuing

Proc ISECON 2003, v20 (San Diego): §2524 (refereed) c© 2004 EDSIG, page 4

Jordan Fri, Nov 7, 4:30 - 5:00, Santa Fe 3

theory to get a ball-park figure of the maxi-
mum number of simultaneous processes the
proposed application server computer can
tolerate before performance degrades below
acceptable levels.

9. Reasons to Place Business Processes
on an Application Computer

If the application has strict security require-
ments or needs, you could better control
them by centralizing the secure components
of the application on an application server
computer. Application components with
minimal or no security requirements can be
safely placed on the client. In some situa-
tions, security needs are more important
than issues such as performance. For exam-
ple, even though the computing require-
ments for the application are low, meaning
they could safely be done on the client;
transporting sensitive information down to
the client for processing might not be ac-
ceptable from a security standpoint. So, the
decision might be to use an application
server computer for the added security even
though the processing load would be trivial.

Security concerns and other complicated
business rules might cause data editing and
validation activities to be placed on the sec-
ond tier. For example, suppose the applica-
tion uses a browser that contains a HTML
form with embedded JavaScript to perform
data editing and validation. A knowledgeable
user could save the page containing the
form and edit it to bypass the JavaScript
validation code and then send unvalidated
data that contains errors to the second tier
for processing. The second tier might be
written to expect validated, correct data val-
ues. One best-case scenario is bad values
are entered into the database. One worst-
case scenario is the application crashes on
the application server computer.

The application might have special process
synchronization requirements necessary to
ensure integrity - record locking, or special
sequences of steps that must be done as an
atomic, uninterruptible unit. The synchroni-
zation would need to be controlled on a cen-
tralized computer system. The business logic
might require communication with other ser-
vices on other computers that are not avail-
able to the clients. That communication
would require the business logic be done on

a computer that has access to the necessary
communication resources.

The use of modules in a compiled language
vs. stored procedures in a database also
might determine where business processes
execute. Compiled languages place the
processing load on the application server
computer, or on the client. You could do
some performance tuning by distributing the
load more evenly among several application
server computers, or further partitioning the
business activities between the client proc-
ess and the application server process.

As a rule of thumb, activities such as sharing
of data items among different application
modules, enforcing a required level of secu-
rity, or enforcing an ordered sequence of
events to ensure integrity are activities that
should be done on the application server
computer - in the 2nd tier.

10. Reasons to Place Business
Processes on the Database Server

Computer

Many of the same reasons for placing the
business-processing load on the client apply
to placing the load on the database server
computer. No separate application server
computer is available. Existing clients might
not be powerful enough to handle the in-
crease in processing power or memory ca-
pacity needed to carry out the business
processing logic. Upgrading the clients to
handle the load might not be feasible for
several reasons. Too many clients would
have to be upgraded. The clients might be
too old to be upgraded and would have to be
replaced.

The business logic might be in the form of
stored procedures in the database. These
stored procedures execute on the database
server computer. Many third party software
systems come with stored procedures. Cus-
tomers who purchase such third party soft-
ware have no choice where to place them.
This forces the business logic onto the data-
base computer, making a 2-tiered applica-
tion out of what might have been originally
intended as 3-tier. The application server
and client are idle while stored procedures
execute.

Proc ISECON 2003, v20 (San Diego): §2524 (refereed) c© 2004 EDSIG, page 5

Jordan Fri, Nov 7, 4:30 - 5:00, Santa Fe 3

11. Network Traffic Considerations

Compared to using typical interprocess
communication techniques, using the net-
work to communicate between application
modules is slow. The application can expect
relatively poor performance, especially with
high volume of network exchanges. The im-
pact is even more pronounced when mod-
ules communicate with physically remote
locations. The remoteness can cause signifi-
cant network delay. Control over application
response times in these situations might not
be possible.

The developer should consider re-grouping
modules that communicate often over the
network to the same tier if the number of
exchanges is significant enough to influence
response times. If the modules can’t be relo-
cated, consider re-organizing processing ac-
tivities so data can be grouped together and
sent as a bundle, instead of a few data items
at a time. The decision whether or not to do
this might be affected by other concerns
such as security or the sequential timing
aspects of when the processing of a particu-
lar set of data occurs.

12. Non-Technical Considerations

As with most computerized projects, cost
can have a big influence on how the applica-
tions are developed. One benefit of using
very powerful server computers is to share
scarce, expensive resources among many
users. The goal is to decrease costs, using a
few powerful servers instead of many pow-
erful desktop machines. The presence of an
application server computer gives the devel-
opers more flexibility in deciding on which
tier application modules will reside. The ab-
sence of an application server limits the de-
veloper’s choices.

Political issues can also influence application
development. Questions of ownership of the
computing equipment or the data can com-
plicate application development. Some won't
want to give up control over what they see
as their data or computing resources. An
unfortunate result is that the application
could be spread across multiple computing
facilities even though that is not the most
efficient design. Or the application might not
take advantage of the existence of comput-

ing equipment that would have provided
better performance.

13. Conclusion

Designing multi-tiered applications requires
special attention by the developer. Several
considerations exist for placing business
processing logic on the 1st tier, on the 2nd
tier and on the 3rd tier. Cost, performance,
processing power, network load, security,
process synchronization and political issues
can all influence the decision. Prudent devel-
opers will use these considerations to make
intelligent decisions on proper placement of
activities in a multi-tiered application.

14. References

Ben-Natan, Ben and Ori Sasson (2002), IBM
WebSphere Application Server, McGraw-
Hill, page 658-659

Driver, Mark, (May 30, 2003), Strategic

Analysis Report, Note Number R-20-
0812, Hype Cycle for Application Devel-
opment, Research and Advisory Ser-
vices, Gartner Group

IBM, (September, 1991), International

Technical Support Centers Red Book,
Client/Server Computing Application De-
sign Guidelines: A distributed Relational
Data Perspective, page 81

1 jordank@calumet.purdue.edu

Proc ISECON 2003, v20 (San Diego): §2524 (refereed) c© 2004 EDSIG, page 6

