
Guthrie Sat, Nov 8, 10:00 - 10:30, Balboa 2

Integrating Programming and Systems
Analysis Course Content: Resolving the

Chicken-or-the-Egg Dilemma in
Introductory IS Courses

Rand W. Guthrie
Computer Information Systems

California State Polytechnic University, Pomona
Pomona, CA 91768

Abstract

Most undergraduate IT programs require that students learn some computer programming as
soon as possible. We have observed however, that in the subsequent systems analysis
courses, students appear to have some difficulty in understanding how the design artifacts
they create in their systems analysis course relate to the production of real computer pro-
grams. We believe that frequent comparisons of software design artifacts to final code im-
prove students’ ability to create good software designs. We also believe that student pro-
gramming skill is directly related to software design skill. Two object-oriented systems analy-
sis and design courses were taught at an undergraduate university covering identical concepts
and content. One course however was supplemented with examples of working code that re-
lated to directly to the analysis and design examples used in the class. At the end of the two
courses, the students’ ability to integrate the design artifacts they learned about in class to
actual code designs was evaluated through an exam that required shell code writing, reverse-
engineering, and design improvement. The results indicated that students who were better
programmers scored better on the evaluation exam. Students in the course that used code
examples in class also performed significant better than students in the “traditional” course.
This implies that students should be taught programming first (with some high-level architec-
tural guidance), followed by the system analysis course. Systems analysis & design courses
would also benefit from using code examples that relate to analysis and design constructs.

Keywords: programming, systems analysis and design, learning styles, course integration

1. INTRODUCTION

Most undergraduate IT programs require
that students learn some computer pro-
gramming as soon as possible. While stu-
dents seem to learn the syntax of a com-
puter language readily enough, the quality
of these early programs in terms of logic,
robustness & maintainability is very weak.
This often leads faculty to wonder whether
we would be better off teaching students

how to design software first, before teach-
ing them to code. Conversely, we have
observed that when the systems analysis
course follows the programming course,
students appear to have some difficulty in
understanding how the design artifacts
they create in their systems analysis
course relate to the production of real
computer programs. Many systems analy-
sis texts and courses that we have investi-
gated treat the production of working com-
puter programs very lightly if at all. Even

Proc ISECON 2003, v20 (San Diego): §3211 (refereed) c© 2004 EDSIG, page 1

Guthrie Sat, Nov 8, 10:00 - 10:30, Balboa 2

texts dealing with object-oriented designs
and the UML, which were specifically cre-
ated to address the creation of object-
oriented programs, seem far removed con-
ceptually from the world of programming in
most chapters. This leaves us with a di-
lemma: which should come first, the pro-
gramming course or the design course?

In this study we attempt to shed some
light on this problem by examining student
understanding of how their systems analy-
sis artifacts relate to the production of
code. We believe that programming skill is
directly related to design skill. We also be-
lieve that early and frequent references
that relate systems analysis concepts to
final code production increase student un-
derstanding of the purpose of analysis and
design processes, re-enforce learning and
retention, and improve their ability to cre-
ate robust designs. We test these hy-
potheses by comparing two courses in ob-
ject-oriented systems analysis and design
that cover identical material using the
same textbook, but in one of the courses,
we introduce and use actual code produced
by the designs studied in class. Students
in both courses were given an exam at the
end of the course designed to test their
understanding of how designs relate to
actual code. The results clearly indicate
that students who rate themselves as good
programmers scored consistently higher
than those who admitted to being less
skilled in programming. The results also
indicate that even students who rated
themselves as being poor programmers
performed better on the exam in the
course where programming concepts were
emphasized than those in the “traditional”
course. This suggests that students should
learn a programming language before the
systems analysis and design course. Addi-
tionally, teaching strategies that use actual
code could improve learning results in sys-
tems analysis & design courses.

2. BACKGROUND

(Booth, 2001) explains that the definition
of “good learning” is evolving away from
memorizing towards the development of an
integrated set of skills including research,
analysis, questioning and collaboration.
This educational philosophy is being re-
ferred to as “Constructivism” (Gruender,

1996; Savery and Duffy 1995). In their
research on the use of CASE tools in edu-
cation, Fowler et. al. (2001) explains that
computer science students predominantly
have a learning style that is both sensory
and visual, and that 80% of all students
are active learners. This suggests that
courses taught in a traditional fact-
memorization mode may be particularly
unsuited for computer science students.

Compared to traditional academic disci-
plines, information systems and computer
science are relatively new pedagogies.
These new disciplines are strongly-related
to practice and therefore most courses
have a high skill component. Whiddett et.
al. (2000) suggest that traditional lectures
do not develop skills in students. Con-
versely they also note that skills learned
“on-the-job” are too skill-based and do not
generalize well to other contexts. This
suggests that university courses should be
a blend of both theory and practice, rather
than strongly emphasize one approach
over another.

In a study involving PASCAL programming
students, Fleury (1993) noted that pro-
gramming students have very different
“thinking habits” and motives than those of
professional programmers. In particular,
he notes that student tend to have a short-
term perspective focused on turning in a
working assignment, as compared to pro-
fessionals who are far more concerned
about future maintainability. This differ-
ence identifies that students are either not
seeing or not being taught the larger pic-
ture in programming courses.

Perkins (1992) explains that when knowl-
edge is “organized” and placed in a con-
text, that the knowledge is easier to re-
member and more apt to be reused. Gal-
Ezer and Zeldes (2000) state that “genera-
tive knowledge” as defined by Perkins pre-
serves knowledge for a longer time, im-
proves understanding, and is used actively.

Lebow (1993) and Savery and Duffy
(1995) propose a number of teaching prin-
ciples that implement constructivist peda-
gogy. The principles that relate to this re-
search include:

Proc ISECON 2003, v20 (San Diego): §3211 (refereed) c© 2004 EDSIG, page 2

Guthrie Sat, Nov 8, 10:00 - 10:30, Balboa 2

 Provide a context for learning that
supports autonomy and related-
ness

 Embed the reasons for learning
into the learning activity itself

 Anchor all learning into a larger
task or problem

 Design an authentic task

3. RESEARCH HYPOTHESIS

Our research hypothesis is founded on the
active-learning, constructivist teaching phi-
losophies previously discussed. We believe
that the students who have more pro-
gramming experience are able to place
their systems analysis learning more easily
into a context, and are better able to con-
ceptualize the end-result of their UML de-
signs. This gives rise to our first hypothe-
sis:

H1: Students who are better pro-
grammers will have a better under-
standing of the relationship between
UML designs and final code.

Given the limited knowledge and experi-
ence of software engineering students in
introductory courses, we feel that the rea-
sons for the design (final code) should be
embedded in systems analysis course con-
tent. Based on the constructivist principles
of “Embedding the reasons for learning
into the learning activity itself” and “ an-
choring” all learning into a larger task or
problem,” it is our expectation that the use
of programming code examples in systems
analysis courses will improve learning.
This give rise to our second hypothesis:

H2: Students will create better soft-
ware designs in systems analysis
courses that use final code examples.

4. RESEARCH METHODOLOGY

Two similar introductory object-oriented
systems analysis and design courses were
taught during the same term at an under-
graduate university. The primary focus of
the course was learning the various UML
diagrams and constructs. Completion of an
introductory Java programming course was
a strictly enforced prerequisite. Both
courses had similar gender demographics
and size. Students were undergraduate

business degree majors with declared in-
formation systems emphases. Both
courses covered the same material and
used the same textbook (Larman 2002)
The instructor teaching the traditional
course was a senior member of the faculty
with extensive knowledge of the subject,
including the recent publication of a text-
book on OO Systems Analysis & Design.
The instructor teaching the integrated
course was a newer member of the faculty
with less experience and expertise, and
had initially learned the course content by
attending the senior faculty member’s
course two years previously. The two
courses had a similar syllabus in terms of
pace, exams, and projects. The instructor
of the integrated course concurrently
taught programming courses, the more
senior faculty member had little or no re-
cent programming experience either as a
practitioner or instructor. The more ex-
perienced faculty member utilized a theo-
retical approach that did not emphasize
any particular syntax rules or use code in
any form. The instructor with current pro-
gramming experience emphasized Java
programming syntax in class, variable &
method naming, and in method calls.
Code was also used to illustrate the appli-
cation of software “patterns”. Students
were shown actual code samples that re-
lated to UML interaction diagrams and
class diagrams as part of the learning.
Students were required to “reverse-
engineer” simple java programs into corre-
sponding interaction diagrams and class
diagrams. Extra credit was offered to stu-
dents who completed a simple UML design
project that produced a working program.
These uses of code appeared in lectures,
in-class activities, projects, and exams.

The students’ ability to integrate pro-
gramming with systems analysis & design
concepts was evaluated through a one-
hour exam given to the students of both
courses during the last week of a regular
ten-week term (three quarters per aca-
demic year). The exam was not a formal
part of the course; students were offered
extra credit for completing the exam on a
graduated scale: the better they performed
on the exam the more extra credit points
they earned. Total extra credit available
amounted to approximately ½ of 1 per-
centage point in the overall course grade.

Proc ISECON 2003, v20 (San Diego): §3211 (refereed) c© 2004 EDSIG, page 3

Guthrie Sat, Nov 8, 10:00 - 10:30, Balboa 2

The research instrument contained two
parts; a survey portion and a skills portion.
The survey portion asked a variety of
questions to determine the student’s prior
programming experience, education, and
skill level. Gender demographic data was
also collected. The skills portion consisted
of three tasks to test student’s ability to
integrate programming with UML design.
In the first task, students were required to
write a shell Java program consisting of
four classes from a sequence diagram and
a class diagram. Task two required stu-
dent to create a class diagram by reverse
engineering instructor-supplied Java source
code. Task three required students to re-
engineer a class diagram into “a better
diagram based on your knowledge of
three-tier architecture and software pat-
terns.”

The exams were evaluated by an inde-
pendent teaching assistant with three
terms of prior experience grading both sys-
tems analysis and Java course assign-
ments. A total “percent correct” score was
given to each exam with a moderate
amount of explanatory notation included.
All exams were evaluated in one session
with the first group of exams graded being
compared to the last group to control for
familiarity bias. No significant bias was
noted.

5. RESEARCH FINDINGS

A summary of the findings is shown in Ta-
ble 1.

Table 1 – Summary of Scores by Group

The average score for the entire group was
.593. Scores showed a tendency towards
a normal distribution with a marked skew
towards 100% (Figure 1). Student
performance on the evaluation exam
ranged broadly, with about half the
students (23/56) scoring above 70%

(23/56) scoring above 70% which would
be considered a “passing” grade in most
courses. This figure is surprisingly low,
given that this performance level could be
a fair predictor of how well students really
understood the material they were sup-
posed to learn.

Figure 1: Distribution of overall student
evaluation scores

0

2

4

6

8

10

12

The distribution of scores for the class
taught “traditionally” (without the use of
computer code) shows an approximate
normal distribution of grades, with 20 out
of 31 scoring between 31% - 80%. Two
students scored in the 0%-20% range, and
four students scored in the 80% - 100%
range. Twelve students received scores
less than 50%.

Figure 2: Distribution of Tradition
Methodology Group Scores

0

1

2

3

4

5

6

7

8

0-
10

%

11
-2

0%

21
-3

0%

31
-4

0%

41
-5

0%

51
-6

0%

61
-7

0%

71
-8

0%

81
-9

0%

91
-1

00
%

The distribution of scores for the class
taught with the use of computer program
code integrated with systems analysis &
design concepts are significantly skewed to
the right, with 20 out of 25 scoring be-
tween 60% and 100%. Four students re-
ceived scores less than 50%, and no stu-
dents received scores less than 20%

Proc ISECON 2003, v20 (San Diego): §3211 (refereed) c© 2004 EDSIG, page 4

Guthrie Sat, Nov 8, 10:00 - 10:30, Balboa 2

Figure 3: Distribution of Integrated
Methodology Group Scores

0

1

2

3

4

5

6

7

0-
10

%

11
-2

0%

21
-3

0%

31
-4

0%

41
-5

0%

51
-6

0%

61
-7

0%

71
-8

0%

81
-9

0%

91
-1

00
%

Figure 4: Distribution of
“Poor” Programmer Scores

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0-
10

%

11
-2

0%

21
-3

0%

31
-4

0%

41
-5

0%

51
-6

0%

61
-7

0%

71
-8

0%

81
-9

0%

91
-1

00
%

Almost half the students surveyed rated
themselves as “okay” programmers (24
out of 57). The distribution of “okay” pro-
grammers between the two courses was
even: 12/12. Eighteen students reported
themselves as either being “poor” or “not
so good”. The distribution between the two
courses was 10 in the traditional course
and 8 in the integrated course. Nine out of
the fifty-seven said they were “pretty-
good” or “excellent”, with the distribution
as 4 in the traditional course and 5 in the
integrated course. None classified them-
selves as “hackers”, and five students in
the traditional course did not answer that
question. Students who rated themselves
as “poor” or “not so good” averaged 0.501
with a normal distribution over most of the
range (Figure 4). Students who said they
were “okay” programmers averaged 0.592
with the distribution being skewed to the
right except of a group in the 20% - 30%
range (Figure 5). Students who rated
themselves as “pretty-good” or “excellent”
averaged .720 with a right bias (Figure 6).

Figure 5: Distribution of
“Okay” Programmer Scores

0

1

2

3

4

5

6

0-
10

%

11
-2

0%

21
-3

0%

31
-4

0%

41
-5

0%

51
-6

0%

61
-7

0%

71
-8

0%

81
-9

0%

91
-1

00
%

Figure 6: Distribution of

“Good” Programmer Scores

0

0.5

1

1.5

2

2.5

3

3.5

0-
10

%

11
-2

0%

21
-3

0%

31
-4

0%

41
-5

0%

51
-6

0%

61
-7

0%

71
-8

0%

81
-9

0%

91
-1

00
%

6. DISCUSSION OF RESULTS

Both hypotheses were supported by the
research findings. It is clear that students
who reported being better at programming
performed better as a group on the evalua-
tion than those who reported being less
skilled in programming. It is interesting to
note that students in general tended to be
modest in evaluating their programming
ability. Since the identity of those taking
the survey and their scores are known, in
the future we would like to compare self-
report performance to student grades in
prior coursework. It is also clear that
those students who attended the “inte-
grated” course that used code examples
scored higher as a group. This implies that
students integrate software engineering
principles better when the relationship be-
tween the results of their designs are em-
phasized throughout the course. We be-
lieve that these results support widely used
“folk pedagogies” (Booth 2001) that intro-
duce students to software engineering with

Proc ISECON 2003, v20 (San Diego): §3211 (refereed) c© 2004 EDSIG, page 5

Guthrie Sat, Nov 8, 10:00 - 10:30, Balboa 2

a programming course followed by a de-
sign course. Given that program design
has a huge impact on robustness and
maintainability, we do not suggest how-
ever, that introductory programming
courses should ignore teaching the basics
of good design. Concepts such as three-
tier architecture, separation of concerns,
and iterative development are basic ideas
that students can readily understand, yet
provide a foundation of good design prac-
tice right from the start. This study sug-
gests therefore that the “chicken” should
indeed come before the egg, but with
proper course content, the chickens will be
matured and ready to be productive “egg-
layers” in the follow-on systems analysis
and design courses.

7. REFERENCES

Booth, S. (2001). "Learning Computer Sci-
ence and Engineering in Context."
Computer Science Education, 11(3),
169-188.

Fleury, A. E. (1993). "Students' beliefs

about Pascal Programming." Journal of
Educational Computing Research, 9(3),
355-371.

Fowler, L.. J. Armarego, and M. Allen

(2001). "CASE Tools: Constructivism
and its Application to Learning and Us-
ability of Software Engineering Tools."
Computer Science Education, 11(3),
261-272.

Gal-Ezer, J and A. Zeldes (2000). "Teach-

ing Software Designing Skill." Com-
puter Science Education, 10(1), 25-38.

Gruender, C. D. (1996). "Constructivism

and learning: A philosophical ap-
praisal." Educational Technology, 36,
21-29.

Larman, C. (2002). Applying UML and Pat-

terns (2nd ed.). Upper Saddle River:
Prentice-Hall.

Lebow, D. (1993). "Constructivist values

for instructional systems design: Five
principles toward a new mindset." Edu-
cational Technology Research and De-
velopment, 41, 4-16.

Perkins, D. N. (1992). Smart schools: from
training memories to educating minds.
New York: Free Press.

Savery, J. R. and T.M. Duffy (1995). "Prob-

lem Based Learning: An Instructional
Model and Its Constructivist Frame-
work. Educational Technology, 35(5),
31-38.

Whiddett, R.J., B.X. Jackson, and J.A.

Handy (2000). "Teaching Information
Systems Management Skills: Using In-
tegrated Projects and Case Studies."
Computer Science Education, 10(2),
165-177.

Proc ISECON 2003, v20 (San Diego): §3211 (refereed) c© 2004 EDSIG, page 6

