
Finkbine Sat, Nov 8, 11:00 - 11:30, Santa Fe 3

The COBOL DFA Tool

Ronald Finkbine
rfinkbin@ius.edu

Computer Science Indiana University Southeast
New Albany, Indiana 47150, USA

Abstract

Common today in Computer Information Systems (CIS) education programs are two types of
analysis for software development, top-down and object-oriented. Often overlooked is state
transition analysis. In an effort to introduce students to the concept of deterministic finite
automata, an advance programming in COBOL course completed a final project of building a
DFA tool in COBOL.

Keywords: deterministic finite automata, DFA, FA, finite state machine, FSM

1. INTRODUCTION

Most courses in Computer Information Sys-
tems (CIS) academic programs use either
top-down or object-oriented analysis as the
main technique for instructing students in
analyzing requirements and determining
software architectures. Business-related
programming textbooks generally utilize the
COBOL programming language and common
types of programming assignments such as
generating reports and updating files. This
type introduction might be realistic to appli-
cations from the real world of the past, but
current technologies such as client/server
require that CIS students be trained more
like standard CS students.

There are many names for Deterministic Fi-
nite Automata (DFA); state machines, finite
state machines, Moore machines and Mealy
machines (Samek 2002). These variations of
the DFA vary in minute characteristics but
they are essentially equivalent, which is to
specific rule-based behavior (O’Byrne 2003)
(Weeks 1992). This machine concept has
traditionally been useful for construction of
small software systems with requirements
for extremely high reliability (Harel 1997)
such as vending machines. The concept of
the DFA is to specify computational behavior
of a system by determining the acceptance
(yes or no) of an input string. A computer
program always has a state, the specific set
of values in all variables. A DFA specifies the

progression of a program through its various
states while processing an input string re-
sulting in a yes/no answer.

The high-reliability characteristic of embed-
ded systems would be a desirable quality to
add to all types of software including busi-
ness-related systems. The DFA concept
comes very close to the concept of ‘proof’ as
in “show that your program solves this prob-
lem and does nothing else”. The use of the
DFA concept allows the programmer to write
programs that are near-provable. The defini-
tion of the term near-provable depends upon
acceptance of diagrams as proofs, a current
research area in the area of applied mathe-
matics [7].

This paper discusses a DFA tool for COBOL,
written in COBOL; that was assigned to a
sophomore-level programming project in a
CIS program.

2. ASSIGNMENT

The assignment is in two parts and part one
to develop an elementary code generator

Figure 1: DFA

Proc ISECON 2003, v20 (San Diego): §3234 (handout) c© 2004 EDSIG, page 1

Finkbine Sat, Nov 8, 11:00 - 11:30, Santa Fe 3

that accepts a text file specifying the behav-
ior of a DFA. Part two is to write a DFA ma-
chine to solve a simple problem. Before dis-
cussing the specifics of the assignment the
concept of the DFA needs to be explained.

3. DFA DEFINITION

Figure 1 displays the conceptual DFA and
specifies the behavior of the computation
and these notations require explanation. A
DFA consists of a finite number of states
(circles) (Nisley 2002) and transitions (ar-
rows) (Harel 1987). The doublewide arrow
entering from the left is the start symbol and
every DFA must have a single start symbol
to denote the beginning of computation.
There are two states noted with capital let-
ters and they represent a position in the
computation. The state A can be described
as the seen-zero-or-more-letter-A-state and
the machine will stay in this state while the
input string is processed one character at a
time and each character is an a. The transi-
tions in this DFA are label by two characters
(a and b) and they are the alphabet. As the
input string is processed all letters a are
processed by the state A. When a letter b is
encountered the DFA will move to the B
state. Note that all input characters must be
in the alphabet (no letters c or d) and there
is no way to loop and accept multiple letters
b. Each acceptable string will have only one
b at the end of zero or more letters a. Ex-
amples of this type of acceptance/rejection
behavior abound. A first example is a vend-
ing machine accepts a string of one quarter
for a can of soda (a very inexpensive one!)
and would also accept a string of five nick-
els. Both of these input strings would get to
the acceptance state of seen-25-cents and
issue a can of soda. A second example would
be any type of password security system
that depends on a Personal Identification
Number.

In Figure 1, the state B is the seen-one-B-
state and is also an acceptance state due to
its dark border. In transitioning from state A
to state B one input character was read from
the input stream. Each DFA must have at
least one acceptance state and, to reach this
state, a DFA must complete its last state
change while at the same time exhausting
the input string. The set of strings (lan-
guage) accepted by this DFA is: any number
of a's followed by one b. Each transition

from state to state within the DFA must
process one character from the input
stream. The overall goal is to have the DFA
in an accepting state at the time of exhaus-
tion of the input string. Exhaustion of the
input string while in a non-accepting state
will cause the machine to produce an error.

4. COBOL DFA TOOL

This section describes a COBOL DFA genera-
tor. The input to this program is a text file
similar to Figure 2 and its output is a text
file that contains a COBOL program that is
syntactically correct and will implement the
state machine as described in the DFA text
file. This produced COBOL program will im-
plement the DFA described. Figure 2 de-
scribes a DFA whose start state is A, the
acceptance state is B, the name of the to-
be-produced program is DFA.COB, the name
of the file to be input to DFA.COB is IN.TXT,
and the name of the file to be produced by
the execution of DFA.COB is OUT.TXT.

The DFACODE section is for any additional
COBOL code that needs to be included to
complete the program such as addition data
structures or procedures. The DFASTATE
section specifies the behavior of the DFA and

Figure 2 implements the DFA from Figure 1.
Go from state A to state A when the input
character is an a and execute function / pro-
cedure / paragraph F_begin. Go from state
A to state B when the input character is a b
and execute function / procedure / para-
graph F_end.

DFACONTROL
 START A
 ACCEPT B
 OUTPUT-COBOL "DFA.COB"
 INPUT-DATA "IN.TXT"
 OUTPUT-DATA "OUT.TXT"
DFACODE
F-BEGIN.
 DISPLAY “IN F_BEGIN”
F-END.
 DISPLAY “IN F_END”
DFASTATE
 A A "a" F-Begin
 A B "b" F-End

Figure 2: Sample DFA file

Proc ISECON 2003, v20 (San Diego): §3234 (handout) c© 2004 EDSIG, page 2

Finkbine Sat, Nov 8, 11:00 - 11:30, Santa Fe 3

The produced-DFA-COBOL program will only
allow input characters of the alphabet a and
b. Any other characters input will produce an
answer of not accepted.

The produced-DFA-COBOL program will exe-
cute until the input string is exhausted. This
will cause the program to complete its input
phase and then to check the current state. If
the program is in an acceptance state then
the input string is accepted (yes) else the
input string is rejected (no). Figure 3 dis-
plays the COBOL code that is produced by
the processing of the Figure 2 DFA file. Note
the beginning code handles the start state of
the DFA. The ending code processes the ac-
ceptance state as specified in Figure 2.
There can be more than one acceptance
states. The code for both the input and out-
put files is straightforward and omitted from
Figure 3. The main perform loop executes
until the end of the input is reached and in-
side the loop must be an if-then execution

path for every state-transition combination
from the DFA file.

Appendix A of this paper includes the DFA
and a detailed explanation for the fox,
chicken and grain problem.

5. SUMMARY

The results of this project were very good in
that all of the students were able to com-
plete the group project and were able to an-
swer simple questions regarding the concept
of the DFA on the final exam. A small num-
ber of assignments were completed (in class
and take home) using the state transition
method such as: the fox, chicken and grain
problem; the vending machine design prob-
lem; and the infix to postfix notation conver-
sion problem.

This tool shows to the CIS student that there
are alternatives to the top-down and object-
oriented methods of system analysis. The

F-BEGIN.
 DISPLAY ‘IN F-BEGIN’
F-END.
 DISPLAY ‘IN F-END’
MAIN-PARAGRAPH.
 MOVE ‘A’ TO CURRENT-STATE
 MOVE ‘NO ‘ TO INPUT-EMPTY
 READ INPUT-CHAR AT END MOVE ‘YES’ TO INPUT-EMPTY
 PERFORM UNTIL INPUT-EMPTY = ‘YES’
 IF CURRENT-STATE = ‘A’ AND INPUT-CHAR = ‘a’ THEN
 MOVE ‘A’ TO CURRENT-STATE
 PERFORM F-BEGIN
 ELSE IF CURRENT-STATE = ‘A’ AND INPUT-CHAR = ‘b’ THEN
 MOVE ‘B’ TO CURRENT-STATE
 PERFORM F-END
 ELSE IF NOT ((INPUT-CHAR = ‘a’) OR (INPUT-CHAR = ‘b’)) THEN
 MOVE ‘ERROR’ TO CURRENT-STATE
 DISPLAY “BAD INPUT CHARACTER”
 ELSE
 MOVE ‘ERROR’ TO CURRENT-STATE
 DISPLAY “UNSPECIFIED STATE/TRANSITION”
 ENDIF
 READ INPUT-CHAR AT END MOVE ‘YES’ TO INPUT-EMPTY
 END-PERFORM
 IF CURRENT-STATE = ‘B’ THEN
 DISPLAY ‘ACCEPTED’
 ELSE
 DISPLAY ‘REJECTED’
 ENDIF

Figure 3: Sample Generated COBOL Program

Proc ISECON 2003, v20 (San Diego): §3234 (handout) c© 2004 EDSIG, page 3

Finkbine Sat, Nov 8, 11:00 - 11:30, Santa Fe 3

most challenging concept to convey to the
student is a COBOL source file is just data
that another executable program (the com-
piler) can read, transform and execute.

Work is continuing on this tool with the in-
tent to make it available to the educational
community. Related research is ongoing in
an effort to determine the computability of
transforming non-DFA-based programs into
DFA programs.

6. REFERENCES

Anderson, Michael, (2003), “Diagrammatic

Reasoning Website,” http://
zeus.cs.hartford.edu/~anderson/

Harel, David, (1987), Statecharts: A Visual

Formalism for Complex Systems, Sci-
ence of Computer Programming, North-
Holland.

Harel, David and Eran Gery, (1997), Execu-

table Object Modeling with Statecharts,
IEEE Computer , July.

Nisley, Ed, (2002), State of the Machine, Dr.

Dobb’s Journal, December.

O’Byrne, Brian, (2003), State Machines and

User Interfaces, Dr. Dobbs Journal,
January.

Samek, Miro, (2002), Practical Statecharts in

C/C++, CMP Books, 1-57820-110-1.

Weeks, Kevin, (1992), States and the Art,

PC Techniques, Oct/Nov.

APPENDIX A
This appendix details the fox, chicken and
grain problem mentioned in the text of this
paper and is stated in Figure 4. A DFA to
solve this problem is displayed in Figure 5
with state-1 as the start state and state-8
and state-error as accepting states (bold
border).

Each legal, reachable, safe state is num-
bered 1 through 10. Reading the notation on
state-1 shows the man, fox, chicken and
grain on the left side of the river (see leg-
end) and this is a safe state since the man is
there with the remainder of the items.

The transitions between states show the
necessary inputs to solve the problem. The
setup is: you are to write a computer pro-
gram that will read an input string from a
file or the keyboard that will propose a se-
quence of moves, your program with either
accept or reject this string.

To read Figure 5, the DFA can transition
from state-1 to state-2 if the man takes the
chicken across the river. Both state-1 and
state-2 are safe states because the fox is
never alone with the chicken (the man is on
the same side of the river) and the chicken
is never alone with the grain.

Note that the man can move the chicken
from state-2 to state-1, back across the
river and still remain in a safe state. The
man is not always required to make pro-
gress in solving the problem for the DFA to
remain in a safe state.

From state-2 to state-3 the man leaves the
chicken on the other side of the river and
rows back alone.

A man is crossing a river on the way to
market with a chicken, a bag of grain
and a fox. If left unattended the fox will
eat the chicken, and the chicken will eat
the grain. The boat will only hold the
man and one of these at a time. Your
task is to work out a sequence of cross-
ings that will affect a safe transfer of
the man, the fox, the chicken and the
grain safely across the river.

Figure 4: Text of Fox, Chicken and
Grain Problem

Proc ISECON 2003, v20 (San Diego): §3234 (handout) c© 2004 EDSIG, page 4

Finkbine Sat, Nov 8, 11:00 - 11:30, Santa Fe 3

From state-1, the DFA allows transitions for
either an illegal character or a legal charac-
ter that will put the DFA into an unsafe state
into the error-state. This same transition
should be on every other state (numbered 2
to 10) but is not actually put on the DFA fig-
ure in an effort to not clutter the picture.

If you use the letter e to represent the trip
across the river when the man takes nothing
with him, a legal input string to solve the
problem would be: CeFCGeC.

Translating into English, the input string
represents:

1. man and chicken cross river
2. man returns with empty boat
3. man and fox cross river
4. man returns with chicken
5. man and grain cross river
6. man returns with empty boat
7. main and chicken cross river

This is one of the two shortest strings that
will be accepted by this DFA.

Figure 5: DFA for Fox, Chicken and Grain Problem

Proc ISECON 2003, v20 (San Diego): §3234 (handout) c© 2004 EDSIG, page 5

