
Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

A Brief Tutorial in Traditional vs.
OO Programming Using Java

Richard A. Johnson

CIS Dept., Southwest Missouri State University
Springfield, MO, 65804, USA

richardjohnson@smsu.edu

Abstract

Object-orientation (OO) is a relatively recent approach to addressing problems in systems de-
velopment. However, OO is viewed by many as difficult to learn. This paper discusses how ob-
ject-oriented programming is taught at one university and directly compares, through the use
simple, straightforward examples, the traditional and OO methods of programming using the
Java language. The paper demonstrates that in many important ways, OO is definitely superior
to traditional methods, yet simple to understand.

Keywords: object-orientation, object-oriented programming, structured programming, sys-
tems development

1. INTRODUCTION

Information technology (IT) has long been
recognized as crucial for creating and sus-
taining competitive advantage in business,
and information systems development (ISD)
is a critical element of IT. However, a “soft-
ware crisis” has consistently plagued ISD
efforts (Fayad, Tsai, and Fulghum, 1996).
This crisis is fueled by user expectations for
the rapid deployment of increasingly sophis-
ticated systems of exceptional quality
(Booch, 1994). The duration of this crisis
has motivated some to rename it a “chronic
affliction” (Pressman, 1996). A relatively
recent approach to ISD, namely object-
orientation, claims to be our best chance of
successfully addressing this affliction (John-
son, 2000; Iivari, Hirschein, and Klein,
2000-2001).

A related problem currently exists in effec-
tively teaching college students the basics of
object-oriented (OO) systems development,
particularly OO programming (OOP), the
foundation of such development. These stu-
dents, typically in computer science or com-

puter information systems programs, often
enter college with little or no formal training
in programming. Some students do take a
high school course or two in computer pro-
gramming, or attempt to teach themselves
some programming, but most have virtually
no background in true OOP. Due to the on-
going software-crisis and the ever-increasing
importance of OOP for both Internet and
traditional business information systems, the
question then becomes how best to teach
such college students the important con-
cepts and skills of OOP, given their limited
backgrounds. The question is even more
critical given the consensus view that learn-
ing OO can be very difficult (Sheetz, Irwin,
Tegarden, Nelson, and Monarchi, 1997).

The purpose of this paper is to describe in
some detail how one approach may be used
to introduce the student to OO concepts and
to effectively contrast traditional structured
programming and OOP. The paper begins
with a brief explanation of how OOP is intro-
duced in the author’s courses. Following is a
concise introduction to Java syntax and how
it incorporates object technology. Finally, a

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 1

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

simple application is developed using both
traditional and OO approaches in order to
directly compare the merits of each.

2. OOP AT SOUTHWEST MISSOURI
STATE UNIVERSITY

OOP is taught at SMSU in two different de-
partments, Computer Science (CSC), which
is in the College of Applied and Natural Sci-
ences, and Computer Information Systems
(CIS), which is in the College of Business
Administration. I teach primarily three
courses in CIS: Web Application Develop-
ment for Business I and II (CIS 275/375),
and Object Technology I (CIS 260). There is
also an Object Technology II (CIS 360)
course offered. Although there is significant
application of object-oriented concepts and
techniques involved in web application de-
velopment, this paper will focus on teaching
students OOP in a beginning traditional pro-
gramming course.

CIS 260 at SMSU has a prerequisite of Pro-
gram Design and Development (CIS 202), a
course that typically uses Visual Basic to
teach introductory structured programming
concepts with simple applications. Students
who take CIS 260 almost always have also
taken Windows Programming with Develop-
ment Tools (CIS 224), which includes a
more rigorous application of Visual Basic.
So, the typical CIS 260 student has two se-
mesters of Visual Basic, all taught strictly
within the structured programming para-
digm, before studying OOP. (In the fall of
2003, CIS 202 and CIS 224 will begin using
VB.NET, which is now purely object-
oriented—this fact further emphasizes the
need for an adequate understanding of OO
concepts and techniques.)

The language currently used in CIS 260 is
Java. Since nearly all students in CIS 260
have never studied Java, it is necessary to
first teach them the basic syntax. They
should already understand the elements of
structured programming: data types, the
elementary structures (sequence, selection,
and repetition), function calls, arrays, and
data input/output. The challenge in CIS 260
is to teach the students a new language as
well as the new concepts and techniques of
the OOP paradigm.

3. UNDERSTANDING BOTH TRADI-
TIONAL PROGRAMMING AND OOP

One school of thought in teaching OOP is to
discard any reference at all to structured
programming. In fact, many feel that learn-
ing structured programming interferes with
one’s ability to learn OOP. However, I dis-
agree. I believe that students need to clearly
understand both structured programming
and OOP so that they appreciate the differ-
ences and can thereby make conscious ef-
forts to pursue one or the other more effec-
tively. To fail to understand the differences
can lead to confusion and harmful intermin-
gling of the two paradigms.

The approach I take is to first teach students
the Java syntax by applying it to all the old
familiar structured programming concepts.
This firmly reinforces their knowledge of ba-
sic traditional programming. Then, I intro-
duce how Java is used to create purely ob-
ject oriented applications, starting with the
simplest examples. This approach provides a
stark contrast between structured program-
ming and OOP. Clearly understanding the
differences between the two should help
students become better OO programmers.
In fact, I complete the course by showing
examples of creating identical applications
with the two distinct methodologies. Then, I
expect the students to be able to do the
same, as demonstrated by their perform-
ance on a final exam.

4. TRADITIONAL PROGRAMMING USING

JAVA

The text I currently use is Murach’s Begin-
ning Java 2 (Steelman, 2002). While this
may not be the best choice for this approach
to teaching OOP, it performs sufficiently
well. Some of the examples I use in this pa-
per will be taken from this text. I will be us-
ing Sun’s Java SDK version 1.4 (which may
be downloaded from java.sun.com). Follow-
ing, I will give a very condensed version of
the approach that I take in teaching both
structured and OO programming using the
Java language.

Hello, World!
Of course, the simplest program ever written
is the infamous “Hello, world!” (line numbers
are added to program code only for discus-
sion purposes):

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 2

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

1 public class FirstApp{
2 public static void main(String[] args){
3 System.out.println("Hello, world!");
4 }
5 }

Figure 1—“Hello, world!” (FirstApp.java)

Students are instructed that some things
about the Java syntax may seem peculiar,
primarily because it is new. First, program
code is stored in a class (there is usually one
class in a .java file). In Figure 1, the class
name is FirstApp (line 1) and the class is
public (so that other classes may have ac-
cess to it as necessary). Everything con-
tained in the class is enclosed in {}’s (lines 1
and 5). Line 2 declares a method called
“main” (with the parameter “String[] args”),
which is also public and static, with a return
type of void. The term “static” implies that
this method has essentially nothing to do
with objects. (All this will seem strange to
most students and is explained in detail to
them later. For now, they are informed of
what is going on only at a very high level.)

Everything within the main method is en-
closed within {}’s (lines 2 and 4). Line 3
represents the basic program processing,
which is simply to print the string “Hello,
world!” It is at this time that students first
hear about OO concepts. The method
“println” is being called and belongs to the
“out” object (the monitor), which belongs to
the “System” class. Of course, this still won’t
mean much to students, although they may
grasp that a class can be used to create ob-
jects and these objects have access to
methods contained within the class. How-
ever, this can be confusing, so it is probably
best for them to understand it only as Java’s
syntax for displaying output to the monitor.
The essentials to derive from this simplest of
examples is that a Java program contains a
class, the class must be declared in the pro-
gram, the class has a main method, and this
main method contains code to perform proc-
essing. In the example of Figure 1, since the
class name is FirstApp, the file is saved as
FirstApp.java (note that Java is case sensi-
tive).

If the Java SDK has been installed on the
user’s computer (see java.sun.com), then
the program FirstApp.java (Figure 1) can be
compiled and run. This can be done using
DOS or some type of Java IDE. A simple IDE
that I use is BlueJ, available free from

www.bluej.org. The output from running
FirstApp.java in BlueJ is shown in Figure 2.

Figure 2—Output from FirstApp.java (see
Figure 1 for code)

More Basic Java Syntax
Next, the student learns many of the intri-
cate details of the Java syntax, such as how
to declare and initialize primitive data types
(int counter = 1; or double price = 14.95;),
how to perform assignment (counter =
counter + 1; or the equivalent counter++;),
or how to create a string variable (String
name = “Richard Johnson”;). There is very
little OO involved here (except for the fact
that “name” is actually an object from the
String class, which is the reason that
“String” is capitalized, but that isn’t ex-
tremely important to the student now ei-
ther). However, the student will eventually
need to learn some very rudimentary OO
concepts and terminology to understand ba-
sic String operations. For example, Figure 3
contains code that compares Strings.

1 public class NameApp{
2 public static void main(String[] args){
3 String name1 = “Johnson”;
4 String name2 = “Smith”;
5 if (name1.equals(name2))
6 System.out.println(“Same names!”);
7 else
8 System.out.println(“Different names!”);
9 }
10 }

Figure 3—Comparing Strings
(NameApp.java)

The key is line 5. In Java, one cannot write
if(name1 == name2)… when name1 and
name2 are Strings. (You can, however, write
if(a == b)… when a and b are, say, inte-
gers.) Since name1 is a String object, one
must use a method that belongs to the
String class to compare it to another String,
and the general syntax for calling a method
of a class is ClassName.methodName().

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 3

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

Again, the student gets an indication that
classes can have methods and learns how to
call a method that is coded within a another
class. However, this actually isn’t a purely
OO concept and shouldn’t be particularly
stressful to the student.

Method Calls
A method can be thought of as simply resid-
ing in a class. To call that method from an-
other class requires the syntax Class-
Name.methodName(). (The student should
note that class names are capitalized while
method names are not, and that, by conven-
tion, new words within an identifier are capi-
talized.) Calling methods that belong to
other classes has further application for in-
teger and double data types. For example,
suppose a user enters the number “12” into
a Java program. Java stores all user input as
a String object. If the user input was stored
in a variable called quantityString, then the
Java syntax to convert that input into an
integer variable called quantity is
int quantity = Integer.parseInt (quantityS-
tring);

Notice that the method parseInt() belongs to
the Integer class. So, the student is now
familiar with the concept that in Java, built-
in classes (such as System, String, and In-
teger) have special methods that can be
called using the syntax
ClassName.methodName() or
ClassName.objectName.methodName().

Java Packages
Another important object-oriented concept
that the beginning Java student must learn
early on is that many Java classes must be
imported to a program in order to use their
methods. Also, the student must learn that
Java classes are grouped together in pack-
ages, so one must reference the package
name when importing classes. For example,
the String and Integer classes belong to the
java.lang package, which is automatically
imported when the programmer creates his
own Java class (program). But classes
needed to provide a program with a GUI
with which the user can provide input are
not automatically imported. Figure 4 pro-
vides an example.

1 import javax.swing.JOptionPane;
2 public class EnterNameApp{
3 public static void main(String[] args){
4 String inputString =

 JOptionPane.showInputDialog(

 "Enter your first name: ");
6 String message = "Your first name is " +

 inputString;
7 JOptionPane.showMessageDialog(null,
 message);
8 }
9 }

Figure 4—Using a GUI in Java (Enter-
NameApp.java)

Line 1 imports the JOptionPane class that
belongs to the Swing package (the Swing
package contains many classes used for
GUI’s). Line 4 declares a variable called in-
putString into which the user will store a
first name. This is accomplished using the
showInputDialog() method of the
JOptionPane class. The argument of showIn-
putDialog() is a literal string, which will be
displayed to the user in the GUI. Line 6 cre-
ates a String variable (i.e., object) called
message using a literal string, a concatena-
tion operator (“+”) and the variable input-
String. Line 7 uses another method of the
JOptionPane class called showMessageDia-
log() with two arguments. The first argu-
ment (null) causes the GUI to be centered
on the screen. The second argument is the
String that the programmer wishes to dis-
play. The two windows displayed by this
program are shown in Figure 5.

Figure 5—Output from EnterNameApp.java
(see Figure 4 for code)

In summary, the student learns that Java
methods belong to classes that in turn be-
long to packages, and that to use such
methods requires the programmer to import
those packages. In fact, to import all classes

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 4

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

in the Swing package, the programmer
would begin his class with the code import
javax.swing.*;. So, the student continues to
learn a little about OO, but only as it applies
to prewritten Java classes. Again, this really
isn’t at the heart of OO systems develop-
ment (OOSD). At this point, the student is
still just learning Java syntax—the Java way
of doing things—but he hasn’t learned how
to create OO systems of his own.

Modularization
Of course, a key to creating any application,
structured or OO, is to modularize the code,
which means to organize code into smaller,
logical units (called modules, procedures,
methods, functions, etc.) that can be called
by a program when needed. Modularization
reduces complexity; it also speeds initial
development and ongoing maintenance of
applications. Modularization is even more
critical to OOSD since a class is considered
an essential module that “classifies” or de-
fines real-world objects in the system. For
example, an object-oriented bookseller ap-
plication might have classes that are used to
define real-world system objects such as
books.

User-defined Methods
In Java, the method is the most basic type
of module, and methods are contained in
classes (whether the application is OO or
not). In Java, a method that is used in a
strictly traditional sense is called a static
method (i.e., objects are not involved). The
following short non-OO program demon-
strates how Java handles methods (this is
especially important for understanding how
methods are used in OO programs later).

1 import javax.swing.*;

2 public class FutureValueApp{
3 public static void main(String[] args){

4 String paymentString =

JOptioPane.showInputDialog(
 "Enter monthly payment: ");

5 double monthlyPayment =
 double.parseDouble(paymentString);

6 String rateString =
 JOptionPane.showInputDialog(
 "Enter yearly interest rate: ");

7 double interestRate = Double.parseDouble
(rateString);

8 double monthlyInterestRate =
 interestRate/12/100;

9 String yearsString =
 JOptionPane.showInputDialog(

"Enter number of years:);
10 int years = Integer.parseInt

 (yearsString);
11 int months = years * 12;

12 double futureValue =

 calculateFutureValue(monthlyPayment,
 months,monthlyInterestRate);

13 String message = "Monthly payment: " +

monthlyPayment + "\n" +
"Yearly interest rate: " +
interestRate/100 + "\n" +
"Number of years: " + years + "\n" +
"Future value: " + futureValue;

14 OptionPane.showMessageDialog(null,
message, "Future Value", JOption
Pane.PLAIN_MESSAGE);

15 }

16 private static double calculateFutureValue(

double monthlyPayment, int months,
double interestRate){

17 int i = 1;
18 double fValue = 0;
19 while (i <= months) {
20 fValue = (fValue + monthlyPayment) *

 (1 + interestRate);
22 i++;
23 }

24 return fValue;
25 }
26 }

Figure 6—Demonstrating Java Methods (Fu-
tureValueApp.java)

Running the program in Figure 6 results in
the following output.

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 5

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

Figure 7—Output from FutureValueApp.java
(see Figure 6 for code)

The first three windows are used to collect
input from the user. The final output dis-
plays the parameters used in the calculation
and the resulting future value. Note that the
formatting of numbers (e.g., currency, per-
cent, decimal places) has been omitted to
keep the program simple. Special formatting
and GUI design issues can be delayed until
later in the course.

Line 1 in Figure 6 is used to import the
Swing package to provide for GUI’s. Lines 4-
11 display the GUI’s for user input and per-
form intermediate calculations to prepare for
the future value calculation. Line 12 is criti-
cal. It serves two purposes: (1) it calls the
calculateFutureValue() method with three
arguments enclosed within the ()’s. After the
method executes, the result is stored in the
variable called futureValue. Lines 13-14 dis-
play the final output. Line 16 begins the
code for the calculateFutureValue() method
where the ()’s enclose the three parameters
needed by the method. Then the method
does its processing to calculate fValue (lines
17-23). Finally, the value stored in fValue is
returned to the main() method (line 12) and
stored in the variable futureValue.

Thus, Figure 6 illustrates how a Java pro-
gram can be modularized to reduce com-
plexity. The calculateFutureValue() method
could be reused in many different financial
programs if the programmer simply realizes
that the three parameters (monthlyPayment,

months, and interestRate) must be supplied
to the method in that order. The code within
the method really never needs changing. Of
course, this kind of modularization is a cor-
nerstone of traditional structured program-
ming and is not unique to OOP. Remember,
however, that in Java a method can exist in
a separate class or file. If
calculateFutureValue() were stored in a class
named, for example, FinancialFormulas.java,
the method call in line 12 of Figure 6 would
read

double futureValue =
FinancialFormulas.calculateFutureValue
(monthlyPayment, months,
monthlyInterestRate);

Storing such reusuable methods in separate
Java classes is simply of way of becoming a
more organized programmer.

5. A COMPLETE (BUT SIMPLE)
TRADITIONAL APPLICATION

Armed with an adequate background in the
Java syntax and an abbreviated understand-
ing of how Java uses methods that are
stored in classes, the student can begin to
learn what is at the heart of OOSD and com-
pare it to traditional structured systems de-
velopment. The sample application will be a
very simple one in order to convey the most
essential points. The system under consid-
eration will be that of a bookseller who sells
books based on orders provided by custom-
ers. We will begin by creating a simple struc-
tured application using Java where the user
can view all books that are available for or-
dering and then create an order. Remember
that this application is extremely over-
simplified to facilitate a direct comparison
with OOSD.

Even when developing a traditional applica-
tion, we must at some point think and talk
about objects, whether we use the term or
not. For a bookseller application, we are
dealing ultimately with books, and books
have certain characteristics, such as a code
(id), a title, and a price. Books also have
other characteristics that might be important
for a shipping application, such as length,
width, height, and weight. We could go on
and on about the characteristics of books,
but we are only concerned about those char-
acteristics that are relevant to our book or-
dering system, so we will confine ourselves
to code, title, and price.

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 6

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

It would make sense to store information
about books in a file or database. For our
purposes, a simple text file will suffice. Fig-
ure 8 shows a text file (comma delimited)
with code, title, and price for four books.

Figure 8—Text file with Book Code, Title, and
Price (books.txt)

We will create an over-simplified structured
application using Java that will present the
user with five menu options: (1) display all
book data, (2) add a book, (3) delete a
book, (4) create a book order, and (5) quit.
This kind of processing is quite basic and
common. Figure 9 shows a simplified (no
frills, no error routines, etc.) Java class that
accomplishes this.

1 import javax.swing.*;
2 import java.io.*;
3 import java.util.*;

4 public class BookOrderApp{
5 public static void main(String[] args) throws

Exception {
6 String userInput = "";
7 int choice = 0;
8 String [][] books = readBookData();

9 while (choice != 5){
10 String menu =
11 "Enter " + "\n" +
12 " 1 to display books " + "\n" +
13 " 2 to add a book " + "\n" +
14 " 3 to delete a book " + "\n" +
15 " 4 to create an order" + "\n" +
16 " 5 to quit ";
17 userInput =

JOptionPane.showInputDialog(menu);
18 choice = Integer.parseInt(userInput);

19 switch(choice){
20 case 1:
21 displayBooks(books);
22 break;
23 case 2:
24 books = addABook(books);
25 break;
26 case 3:
27 books = deleteABook(books);

28 break;
29 case 4:
30 createBookOrder(books);
31 break;
32 case 5:
33 writeBookData(books);
34 } // end switch
35 } // end while
36 System.exit(0);
37 } // end main method

38 private static void displayBooks(String [][]
books) throws Exception {
39 String display =
40 "Code Title Price " + "\n" +
41 "==========================";
42 for(int i=0; i < books.length; i++){
43 String bookCode = books[i][0];
44 String bookTitle = books[i][1];
45 String priceString = books[i][2];
46 double bookPrice =

 Double.parseDouble(priceString);
47 display += "\n" + bookCode + " "

 + bookTitle + " " + bookPrice;
48 }
49 JOptionPane.showMessageDialog(null,
 display, "Book Order",
50 JOptionPane.PLAIN_MESSAGE);
51 } // end displayBooks method

52 private static String [][] addABook(String

[][] books) throws Exception {
53 String [][] newBooks = new String

[books.length+1][3];
54 System.arraycopy(books, 0, newBooks, 0,

books.length);

55 String code =

 JOptionPane.showInputDialog(
"Enter book code: ");

56 String title =
 JOptionPane.showInputDialog(

"Enter book title: ");
57 String price =

 JOptionPane.showInputDialog(
"Enter book price: ");

58 newBooks[books.length][0] = code;
59 newBooks[books.length][1] = title;
60 newBooks[books.length][2] = price;

61 return newBooks;
62 } // end addABook method

63 private static String [][] deleteABook(

String [][] books) throws Exception {
64 String code =

 JOptionPane.showInputDialog(
 "Enter book code for book to be deleted: ");

65 String [][] newBooks = new String

[books.length-1][3];
66 int j = 0;

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 7

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

67 for(int i=0; i < books.length; i++){
68 String bookCode = books[i][0];

69 if(!(code.equalsIgnoreCase(bookCode))){
70 newBooks[j][0] = books[i][0];
71 newBooks[j][1] = books[i][1];
72 newBooks[j][2] = books[i][2];
73 }
74 else {
75 i++;
76 newBooks[j][0] = books[i][0];
77 newBooks[j][1] = books[i][1];
78 newBooks[j][2] = books[i][2];
79 }
80 j++;
81 }
82 return newBooks;
83 } // end deleteABook method

84 private static void createBookOrder(

String [][] books) throws Exception {
85 String code = "", bookTitle = "Unknown",

priceString = "0";
86 double bookPrice = 0, orderTotal = 0;
87 int orderQuantity = 0;

88 code =

 JOptionPane.showInputDialog(
"Enter book code: ");

89 for(int i=0; i < books.length; i++){
90 if(code.equalsIgnoreCase(books[i][0])){
91 bookTitle = books[i][1];
92 priceString = books[i][2];
93 bookPrice =

 Double.parseDouble(priceString);
94 String orderQuantityString =

JOptionPane.showInputDialog(
"Enter order quantity: ");

95 orderQuantity =
Integer.parseInt(
orderQuantityString);

96 orderTotal =
orderQuantity * bookPrice;

97 break;
98 }
99 }

100 String orderOutput =
101 "Code: " + code + "\n" +
102 "Title: " + bookTitle + "\n" +
103 "Price: $" + priceString + "\n" +
104 "Quantity: " + orderQuantity + "\n" +
105 "Order Total: $" + orderTotal;

106 JOptionPane.showMessageDialog(

null, orderOutput, "Book Order",
107 JOptionPane.PLAIN_MESSAGE);
108 } // end createBookOrder method

109 private static String [][] readBookData()

throws Exception {
110 int numberOfRecords =

0, numberOfFields = 3;

111 String fieldValue = "";

112 File bookData = new File("books.txt");
113 BufferedReader in = new

BufferedReader(
new FileReader(bookData));

114 String line = in.readLine();

115 while(line != null){
116 numberOfRecords++;
117 line = in.readLine();
118 }
119 in.close();

120 String [] [] books = new String

[numberOfRecords] [numberOfFields];

121 bookData = new File("books.txt");
122 in = new BufferedReader(

new FileReader(bookData));
123 line = in.readLine();

124 while(line != null){
125 for(int i=0; i <

numberOfRecords; i++){
126 StringTokenizer t = new

StringTokenizer(line, ",");
127 for(int j=0; j <

numberOfFields; j++){
128 fieldValue = t.nextToken();
129 books[i][j] = fieldValue;
130 }
131 line = in.readLine();
132 }
133 }
134 in.close();
135 return books;
136 }// end readBookData method

137 private static void writeBookData(

String [][] books) throws Exception {
138 File updatedBookData = new

File("books.txt");
139 PrintWriter out = new PrintWriter(

new BufferedWriter(
new FileWriter(
updatedBookData)));

140 for(int i=0; i < books.length; i++){
141 String bookCode = books[i][0];
142 String bookTitle = books[i][1];
143 String priceString = books[i][2];
144 String outputString = bookCode + ","

+ bookTitle + "," + priceString;
145 out.println(outputString);
146 }
147 out.close();
148 }// end writeBookData method
149 } // end class

Figure 9—Structured Java Class for Book
Orders (BookOrderApp.java)

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 8

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

It is assumed here that the reader is fairly
familiar with Java syntax, so an in-depth
discussion of BookOrderApp.java will not be
provided. Lines 1-3 import Java packages for
using GUI’s, file input/output, and various
utilities (such as working with arrays and
vectors), respectively. The “throws Excep-
tion” code (Line 5 and elsewhere) is required
by Java to handle possible error conditions.
The main method of BookOrderApp.java
(Lines 5-37) essentially calls a method to
read data from a text file into an array (Line
8). A menu is then presented (Line 17) to
the user. Based on the user’s input, various
methods are called (Lines 19-34). The dis-
playBooks method (Lines 38-51) accesses
book data stored in the array named books
and displays the available books to the user.
The addABook method (Lines 52-62) allows
the user to add a new book to the array. The
deleteABook method (Lines 63-83) allows
the user to delete an existing book from the
array. The createBookOrder method (Lines
84-108) is used to gather input from the
user to display book order information (title,
price, order total). The writeBookData
method (Lines 137-148) is called when the
user exits the program (all additions and
deletions of books are written to the text file
books.txt).

The class BookOrderApp.java is very tradi-
tional (non-OO) and structured. The text file
books.txt stores the basic book data (code,
title, and price), which is transferred to a
two-dimensional array when the program
runs. Adding, deleting, and processing data
are the basic functions of this program. Fig-
ure 10 shows some of the windows that ap-
pear when various menu options are se-
lected (note that special formatting is non-
existent to keep the code as simple as pos-
sible).

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 9

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

Figure 10—Various Windows from BookOr-
derApp.java

6. THE CORRESPONDING OO
APPLICATION

Following is a completely identical applica-
tion written using object-orientation. Again,
this is an extremely simple application de-
signed solely for highlighting the differences
between OO and non-OO development and
programming.

Although a formal analysis and design is not
necessary with such a simple application, it
should be noted that the central “object” of
this system is the book. In this application, a
book has three data attributes: code, title,
and price. In Java, a class (file) must be
created for the real-world book objects,
which identifies book attributes and also
contains a method to create books in the
system as needed. Other methods for the
book class may also be desired. In this case,
the only other methods needed are three
“get” methods designed to retrieve a book
object’s code, title, and price. The Java class
for the book in this application is presented
in Figure 11.

1 public class Book{
2 private String code;
3 private String title;
4 private double price;

5 public Book(String bookCode,

String bookTitle, double bookPrice){
6 code = bookCode;
7 title = bookTitle;
8 price = bookPrice;
9 }

10 public String getCode(){
11 return code;
12 }

13 public String getTitle(){
14 return title;
15 }

16 public double getPrice(){
17 return price;
18 }
19 }

Figure 11—The Book Class (Book.java)

The class declaration is in Line 1—this class
is public so that other classes can have ac-
cess to it. Lines 2-4 identify the attributes
(or instance variables) that all book objects
will have. They are private variables mean-
ing that other classes in the application will
not have direct access to their values (ac-
cess is only allowed through proper chan-
nels, as explained later). The book construc-
tor method (Lines 5-9) will be called by an-
other class in the application when it is nec-
essary to create a new book object in the
system. To create a book requires the input
of code, title, and price. Lines 10-18 provide
methods by which the values of book attrib-
utes may be accessed (read) when neces-
sary (such as when creating a book order).

Following is the primary application file (Fig-
ure 12). This class corresponds directly to
the traditional application file presented ear-
lier in Figure 9. The reader should be able to
directly compare each of the corresponding
methods shown in Figures 9 and 12 (such as
main(), displayBooks(), addABook(), etc.).

1 import javax.swing.*;
2 import java.io.*;
3 import java.util.*;

4 public class OOBookOrderApp{
5 public static void main(String[] args)

throws Exception {
6 String userInput = "";
7 int choice = 0;
8 Vector books = readBookData();

9 while (choice != 5){
10 String menu =
11 "Enter " + "\n" +
12 " 1 to display books " + "\n" +
13 " 2 to add a book " + "\n" +
14 " 3 to delete a book " + "\n" +
15 " 4 to create an order" + "\n" +
16 " 5 to quit ";
17 userInput =

JOptionPane.showInputDialog(menu);
18 choice = Integer.parseInt(userInput);

19 switch(choice){
20 case 1:
21 displayBooks(books);

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 10

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

22 break;
23 case 2:
24 books = addABook(books);
25 break;
26 case 3:
27 books = deleteABook(books);
28 break;
29 case 4:
30 createBookOrder(books);
31 break;
32 case 5:
33 writeBookData(books);
34 } // end switch
35 } // end while
36 System.exit(0);
37 } // end main method

38 private static void displayBooks(

Vector books) throws Exception {
39 String display =
40 "Code Title Price " + "\n" +
41 "========================";

42 for(int i=0; i < books.size(); i++){
43 Book book = (Book) books.get(i);
44 display += "\n" + book.getCode() + "

 " + book.getTitle() + " " +
 book.getPrice();

45 }
46 JOptionPane.showMessageDialog(

 null, display, "Book Order",
47 JOptionPane.PLAIN_MESSAGE);
48 } // end displayBooks method

49 private static Vector addABook(

Vector books) throws Exception {
50 String bookCode =

JOptionPane.showInputDialog(
"Enter book code: ");

51 String bookTitle =
JOptionPane.showInputDialog(
"Enter book title: ");

52 String bookPriceString =
JOptionPane.showInputDialog(
"Enter book price: ");

53 double bookPrice =
Double.parseDouble(bookPriceString);

54 books.add(new Book(

bookCode, bookTitle, bookPrice));
55 return books;
56 } // end addABook method

57 private static Vector deleteABook(

Vector books) throws Exception {
58 String code =

JOptionPane.showInputDialog(
"Enter book code for book to be deleted:

");

59 for(int i=0; i < books.size(); i++){
60 Book book = (Book) books.get(i);
61 String bookCode = book.getCode();
62 if((code.equalsIgnoreCase(

bookCode))){
63 books.remove(i);
64 break;
65 }
66 }
67 return books;
68 } // end deleteABook method

69 private static void createBookOrder(

Vector books) throws Exception {
70 String code = "", bookTitle = "Unknown";
71 double bookPrice = 0, orderTotal = 0;
72 int orderQuantity = 0;

73 code =

JOptionPane.showInputDialog(
"Enter book code: ");

74
75 for(int i=0; i < books.size(); i++){
76 Book book = (Book) books.get(i);
77 if(code.equalsIgnoreCase(

book.getCode())){
78 String orderQuantityString =

JOptionPane.showInputDialog(
79 "Enter order quantity: ");
80 orderQuantity =

Integer.parseInt(orderQuantityString);
81 bookTitle = book.getTitle();
82 bookPrice = book.getPrice();
83 orderTotal = orderQuantity

 *bookPrice;
84 }
85 }

86 String orderOutput =
87 "Code: " + code + "\n" +
88 "Title: " + bookTitle + "\n" +
89 "Price: $" + bookPrice + "\n" +
90 "Quantity: " + orderQuantity + "\n" +
91 "Order Total: $" + orderTotal;

92 JOptionPane.showMessageDialog(

null, orderOutput, "Book Order",
93 JOptionPane.PLAIN_MESSAGE);
94 } // end createBookOrder method

95 private static Vector readBookData()

throws Exception {
96 int numberOfRecords = 0,

 numberOfFields = 3;
97 String bookCode = "", bookTitle = "",

 bookPriceString = "";
98 double bookPrice = 0;
99 Vector books = new Vector();

100 File bookData = new File("books.txt");
101 BufferedReader in = new

BufferedReader(
new FileReader(bookData));

102 String line = in.readLine();

103 while(line != null){
104 numberOfRecords++;
105 line = in.readLine();

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 11

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

106 }
107 in.close();

108 bookData = new File("books.txt");
109 in = new BufferedReader(

 new FileReader(bookData));
110 line = in.readLine();

111 while(line != null){
112 for(int i=0; i <

 numberOfRecords; i++){
113 StringTokenizer t = new

 StringTokenizer(line, ",");
114 bookCode = t.nextToken();
115 bookTitle = t.nextToken();
116 bookPriceString = t.nextToken();
117 bookPrice =

 Double.parseDouble(
 bookPriceString);

118 Book book = new Book(
 bookCode, bookTitle, bookPrice);

119 books.add(book);
120 line = in.readLine();
121 }
122 }
123 in.close();

124 return books;
125 }// end readBookData method

126 private static void writeBookData(

Vector books) throws Exception {
127 File updatedBookData = new

 File("books.txt");
128 PrintWriter out = new PrintWriter(

 new BufferedWriter(new
 FileWriter(updatedBookData)));

129 for(int i=0; i < books.size(); i++){
130 Book book = (Book) books.get(i);
131 String bookCode = book.getCode();
132 String bookTitle = book.getTitle();
133 double bookPrice = book.getPrice();
134 String priceString =

 Double.toString(bookPrice);
135 String outputString = bookCode + ","

 + bookTitle + "," + priceString;
136 out.println(outputString);
137 }
138 out.close();
139 }// end writeBooks method
140 } // end class

Figure 12—OO Java Class for Book Orders
(OOBookOrderApp.java)

7. COMPARING TRADITIONAL AND
OO APPLICATIONS

When one first compares the code in Figure
9 (traditional application) and Figure 12 (OO
application), it appears that the OO applica-
tion has nine fewer lines of code. Of course,
the OO application won’t work unless both
its classes are present (Book.java and OO-

BookOrderApp.java), so there are actually a
total of ten more lines of code in the com-
plete OO application. However, the lines of
code are less important than the actual
complexity of each type of application.

Note first of all that the main methods of the
traditional application and the OO application
(Lines 5-37 in both) are virtually identical
(with the only exception of Line 8 in each).
The major differences in the two applications
begin with the readBookData() methods of
both applications (Lines 109-136 in Figure 9
and Lines 95-125 in Figure 12). In the tradi-
tional application, data from the text file are
loaded in an array called books. In the OO
application, a vector (basically an array of
objects) called books is declared in Line 99
and data from the text file are used to cre-
ate book objects (Line 118), one object for
each record of data. In Line 119, the book
object is added to the books vector. We will
find that the handling of book objects stored
in vectors is much more straightforward
than the handling of book data stored in ar-
rays, a major advantage of OOP.

Comparing the displayBooks() methods of
each application (beginning with Line 38 in
each), note that the traditional application
uses basic array processing while the OO
application retrieves each book from the
vector of books and uses the get methods
for each book object to retrieve the data and
display it. Thus, there are actually fewer
lines of code in the OO application. More im-
portantly, if the data to be stored for books
change (e.g., a field called numberOfPages
is added), it is very likely that the OO code
will be easier to modify (using objects and
vectors) than the traditional code (using ar-
rays).

A similar situation exists with the add-
ABook() method (Line 52 in Figure 9, Line
49 in Figure 12). To add a new book to the
vector in the OO application (Line 54) re-
quires a simple command: books.add(). To
do so with an array in the traditional applica-
tion requires more complicated array proc-
essing. The differences are even more pro-
nounced with the deleteABook() method
(Line 63 in Figure 9, Line 57 in Figure 12) .
The OO application uses a simple
books.remove() command, but the tradi-
tional application requires fairly complex ar-
ray manipulation. The createBookOrder()
methods for both types of applications are
very similar. Again, the OO application sim-

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 12

Johnson Sat, Nov 8, 4:30 - 5:00, Rio Vista A

ply needs to call the get methods for each
book object in the vector to display book
data while the traditional application uses
array processing. Finally, the writeBook-
Data() methods are very similar with the OO
application using book objects and the tradi-
tional application using arrays.

A major consideration here is that object
processing is just inherently less complex
than array processing. A major advantage of
OOP is that many built-in Java methods exist
to manipulate data stored in objects while
such code doesn’t exist (it must be written
by the programmer) to manipulate data
stored in arrays. Of course, the vector vs.
array comparison is only the tip of the ice-
berg when it comes to evaluating the bene-
fits of object-oriented analysis, design, and
programming vis-à-vis traditional, structured
analysis, design, and programming.

8. CONCLUSION

This paper has endeavored to present the
basic OO features of the Java language and
to briefly compare how a simple application
would be created using traditional program-
ming and OOP. The author is not aware of
any papers or texts that directly compare
OO with traditional applications as is done
here. Even with the simple application used
in this paper, it is apparent that handling
data using OO can be much easier than han-
dling data in a non-OO fashion (essentially
storing data in objects rather than traditional
arrays). The added simplicity of OO vs. tra-
ditional in the sample application is due pri-
marily to the availability of built-in Java
methods designed to manipulate objects in
an easy, efficient manner. Organizing appli-
cations using objects simply reduces much
of the programming overhead. It is also ob-
vious from the example that the mainte-
nance of OO applications can be easier. This
was illustrated by considering the changes
required in the sample application if just a
single data field were added to a data re-
cord. While the differences in the examples
presented here may seen somewhat trivial,
many would argue that the OO approach
becomes tremendously more advantageous
as applications grow in size and complexity.

9. References

Booch, G. Object-oriented analysis and de-

sign with applications, 2nd ed., Redwood
City, CA: Benjamin/Cummings, 1994.

Fayad, M., W. Tsai, and M. Fulghum, “Tran-
sition to object-oriented software devel-
opment,” Communications of the ACM,
vol. 39, pp. 108-121, 1996.

Iivari, J., R. Hirschein, and H. Klein, “A dy-

namic framework for classifying informa-
tion systems development methodolo-
gies and approaches,” Journal of Man-
agement Information Systems, vol. 17,
no.3, pp. 179-218, 2000-2001.

Johnson, R., “The ups and downs of object-

oriented systems development,” Com-
munications of the ACM, vol. 43, pp. 69-
73, 2000.

Steelman, A., Murach’s Beginning Java 2,

Fresno, CA: Mike Murach & Associates,
2002.

Pressman, R., Software Engineering--A Prac-

titioner’s Approach. 4th edition. New
York, NY: McGraw-Hill, 1996.

Sheetz, S., G. Irwin, D. Tegarden, H. Nel-

son, and D. Monarchi, “Exploring the dif-
ficulties of learning object-oriented tech-
niques,” Journal of Management Infor-
mation Systems, vol. 14, pp. 103-131,
1997.

Proc ISECON 2003, v20 (San Diego): §3522 (handout) c© 2003 EDSIG, page 13

