
Kline and Riggle Fri, Nov 5, 9:00 - 9:25, Vanderbilt Room

A Macro Approach to Relational Database Modeling

Douglas M. Kline

Information Systems and Operations Management, UNC Wilmington

Wilmington, NC 28403-5611 USA

Charlene Riggle

Information Systems and Decision Sciences, University of South Florida

5700 North Tamiami Trail, Sarasota, FL 34243-2197

Abstract

A new data modeling process is presented that addresses some of the weaknesses of the traditional normalization-

driven modeling process. Current approaches generally begin with forms or reports for a particular system as rough

entities, then taking these entities through a normalization process, inspecting attribute functional dependencies. The

proposed approach is entity-oriented, focusing more on fully developing the data entities and their relationships than on

scrutinizing functional dependencies among attributes. We argue that this macro approach should result in more com-

municative models that are more flexible, being less specific to particular applications. We end with a discussion of

other topics that arise in relational data modeling.

Keywords: data modeling, relational model, modeling processes

1. INTRODUCTION

Relational databases are the foundation of many infor-

mation systems today. Compared to other forms of

databases such as hierarchical, network, and object-

oriented, relational databases dominate the market. The

ability to have multiple divisions or departments share

the same data is extremely powerful. Many of today’s

systems rely heavily on relational database technology

to bring together data from disparate “information silos”

and provide it as an enterprise-wide resource.

Relational database designs are fundamental to building

systems today, due to the many demands placed on data

management systems. Databases must support many

different applications, so the data must be very flexible.

Since bogus data entered by one system can cause prob-

lems in another system that uses a common database, the

data integrity must be maintained at a high level. Since

databases tend to remain as new systems are added and

existing systems are customized or replaced, the design

must be robust to unforeseen demands. In short, poor

database design can lead to brittle systems, poor access

to information, and years of effort making systems inter-

face with the poor database design.

Relational database design is a high-level skill that is

critical to building quality systems. While programming

has become a trade and is being moved off-shore, design

is likely to stay on-shore and be in demand (Coy, 2004,

and Baker & Kripalani, 2004). Despite the flowchart-

nature of traditional normalization processes, relational

modeling is not an exact science. Good designers need

to see the big picture, operating above the level of any

particular system.

Unfortunately, relational data modeling is not an exact

science, but rather an art (Frost, 1997). We cannot claim

that our proposed approach results in quantitatively

measurable better data models. We attempt to point out

the weaknesses of the normalization-based design ap-

proach, and the strengths of the proposed macro ap-

proach.

Considering the importance of relational databases in

today’s systems, the relational modeling process and

how it is taught deserve attention. In this paper, we will

identify some of the shortcomings of the traditional

normalization-oriented modeling process. First, we

review some of the goals of the relational model. Then

the traditional modeling approach is described and

shortcomings pointed out. Then we will present a

macro-level approach to data modeling that addresses

some of the shortcomings of the traditional method.

2. GOALS OF THE RELATIONAL DATABASE

MODEL

In this section, we review some of the goals of the rela-

tional database model. Surprisingly, the driving forces

that motivated the creation of the relational model still

exist today, despite technical advances.

Proc ISECON 2004, v21 (Newport): §2124 (refereed) c© 2004 EDSIG, page 1

Kline and Riggle Fri, Nov 5, 9:00 - 9:25, Vanderbilt Room

Codd’s main arguments (1970) are increasingly relevant

in today’s environment. Modern ERP systems are essen-

tially “large shared data banks”, as in Codd’s seminal

paper title. Codd’s main arguments in his first work, as

they pertain to this paper, were that 1) programs should

not depend on data representation 2) there is a preferred

data representation, i.e., normal form. Codd’s second

work (1982) stressed putting end-users in direct contact

with the information they need, and identified “commu-

nicability” as a primary motivation for relational data-

bases.

Program-data independence

One of the main goals of the relational model was to

allow for program-data independence. Traditionally,

this has meant that the programmer need not be familiar

with the physical storage mechanism and physical stor-

age model in order to write the program, i.e., the pro-

gram need not know the physical data model. Reference

of data values by table name, column name and primary

key value allowed programs to be written without

knowledge of the physical data storage details.

The program-data independence concept can be ex-

tended to the concept of decoupling the logical data

design from any particular application. Today’s systems

commonly share a database, so a database whose logical

model is convenient for one application can cause seri-

ous problems for other applications. The logical data

model needs to be flexible, and readily support new

systems or unforeseen features. In particular, the data-

base model should not impose constraints on application

designs.

Data integrity

Today’s databases often serve as the “systems integra-

tion hub”. In other words, it is where systems must

meet, sharing data across organizational divisions,

hardware and operating system platforms, and applica-

tion programs. In this context, data integrity is critical.

Erroneous or invalid data submitted from one system

can decrease the value of information produced by other

systems, and in the worst case can cause outright system

crashes. By enforcing entity integrity, referential integ-

rity, and performing common data validations centrally

(in the RDBMS), the integrity of the data is maintained.

This reduces or eliminates the well-known insert, up-

date, and delete anomalies, as well as orphan and widow

records. In short, the internal consistency of the data is

maintained.

Communicability

The relational database model is table-oriented. Be-

cause tables are easily understood by technical and non-

technical people, the relational model is more under-

standable than other forms of data models. This is im-

portant because many of the spectacular IT project fail-

ures have been caused by communication problems, not

technical problems. A clear, understandable model of

the organization’s data resources is essential to making

the best use of those resources.

3. THE TRADITIONAL MICRO APPROACH TO

DATABASE MODELING

The clear arguments of Codd and others are quite con-

vincing and not easily arguable. However, tight dead-

lines, scant resources, and a focus on the program being

developed today can lead to a myopic view that hurts

companies in the long run. Here are some typical quotes

from IT professionals:

1. “We couldn’t enter a record into the table, so

we deleted all the relationships.”

2. “We just put everything in one big table – it’s

simpler that way.”

3. “We de-normalized for speed.”

Each of the above quotes can be attributed to poor edu-

cation about the relational database model. All of the

above actions, although expedient in their current situa-

tion, will lead to dirty data, brittle systems with short

useful lifetimes, and data that cannot be managed to

create its full potential value.

Nearly every computer science and information systems

program has a course dedicated to databases. So why

are the above actions so prevalent in industry? We sug-

gest that the current process of data modeling is flawed.

Here is a typical process for traditional normalization

data modeling.

1. Specify the requirements of a system / applica-

tion / program

2. Specify the forms and reports for the system

3. Normalize the forms and reports to 3NF

The third step above involves transforming the data

model through a series of normal forms. To transform a

data model first normal form, for instance, all first nor-

mal form violations are identified and removed. Once all

first normal form violations are remedied, the model is

said to be in first normal form, and the modeler begins

seeking out second normal form violations. The model

is successively taken through the normal forms, stopping

at third normal form, as a rule-of-thumb, even though at

least five normal forms have been identified (Kent,

1983). The following sections point out the shortcom-

ings of this approach.

Database design begins with program design

Most database designs are driven from the requirements

for a single application. This inevitably leads to a data-

base design that is biased toward the project at hand.

Using a construction analogy, the house is designed

before the foundation design or site plan. When the

foundation is meant to support a single house, this is a

natural analogy. However, databases are usually meant

to support multiple systems. A more accurate analogy

Proc ISECON 2004, v21 (Newport): §2124 (refereed) c© 2004 EDSIG, page 2

Kline and Riggle Fri, Nov 5, 9:00 - 9:25, Vanderbilt Room

might be that the foundation will have to support a

house, future additions to the house, and most likely a

number of other buildings to be specified at a later time.

Budget and timeline constraints also contribute to the

single-application bias. Experienced project managers

tightly manage the scope of their project, so the database

design is constrained to the specific needs of the current

project. The system is considered to be the focus of the

project, so the database is merely a supporting technol-

ogy, which may lead to insufficient time, expertise, and

effort spent on the database design. This is ironic, since

the data will generally far outlive the system.

Database design driven from forms and reports

Many professionals and textbook authors suggest that

the forms and reports generated from a requirements

analysis are a good basis from which to develop a data

model. Certainly this is a good starting point, since the

forms and reports will generate a list of attributes that

must eventually be stored in the database. The danger

lies in considering the forms and reports to be drafts of

the final entities in the data model. To use an automo-

tive analogy, the process starts with a “Yugo” and at-

tempts to transform it into a “Cadillac”, rather than de-

signing the Cadillac from the ground up. As a result the

data model will always have some bias toward the appli-

cation that drove its design, and will thus prove prob-

lematic in supporting new features and future systems.

This specific-program-driven approach has the real pos-

sibility of leading to data models that favor an “access

path”, as described by Codd (1970).

To a large extent the classic normalization process is to

blame. It was designed as a method for improving tradi-

tional flat-file systems; the goal was improvement.

However, normalization has never guaranteed high-

quality data models, only the improvement of poor ones.

Certainly eliminating redundancy can reduce systematic

anomalies, but may not improve the model’s ability to

support new systems and features. The conventional

practitioner wisdom of “3NF is good enough” also sug-

gests that eliminating easily identifiable normal form

violations will produce a high-quality data model.

However, the lack of bad characteristics does not neces-

sarily guarantee good characteristics – the resulting data

model may or may not be high quality.

Another danger is limiting the design to supporting only

data necessary to deliver the required reports. At the

time of requirements analysis for a particular system,

only a small number of reports are known. This is only

a small subset of the future ad-hoc reports that will be

needed. So basing the data model on this small subset

of requirements will lead to a data model that does not

support additional requirements.

Attribute-oriented

The traditional normalization process operates at the

attribute level. Attribute dependencies are examined

and used to identify normal form violations to be re-

solved. This “tree rather than forest” approach can lead

to myopic designs that can have higher-level design

problems while satisfying the normal forms. In a sense,

a focus on attribute-level problems is treating the symp-

toms of a poor design, rather than addressing the overall

design. The classic symptoms are repeating groups,

multi-valued attributes, transitive dependencies, etc.

However, none of these symptoms address large issues

such as:

• Should two entities be combined?

• Should a recursive relationship be used?

• What is a good name for this entity?

• Would a many-to-many relationship increase

the flexibility of the model?

Loose Diagramming

Some academics and practitioners confuse modeling

with diagramming. In general, producing a diagram

documents a model. Diagramming languages such as

Entity-Relationship Diagramming and Unified Modeling

Language serve this purpose nicely. However, dia-

gramming languages tend to be general tools, and have

been specifically designed to be very flexible. Unfortu-

nately, these languages are equally adept at diagram-

ming good and bad designs.

Figure 1:

All the well-known normal form violations can be read-

ily diagrammed in UML or E-R Diagrams. Clearly,

knowing a diagramming notation is not equivalent to

knowing how to model data. The Crow’s Foot notation

(Watson, 2003) is typically better at enforcing well-

formed relational models. However, even this notation

is frequently loosened to allow a single relationship line

with a crow’s foot at each end. Using loose diagram-

ming notations can make spotting poor models difficult,

and can actually promote poor models.

As an example, consider the common method of repre-

senting a many-to-many relationship with a single line

with crow’s feet on each end. When modeling an In-

voice and a Product (see Figure 1) entity with an N:M

relationship, this notation hides the fact that an impor-

tant entity, Invoice Line, is missing from the model. As

a result, the Invoice Line entity may never be identified,

developed, and documented. No one denies that the

N:M diamond will eventually become a table in the

implemented database. However, the Invoice Line en-

tity becomes an implementation detail, rather than im-

portant entity that deserves developing.

Proc ISECON 2004, v21 (Newport): §2124 (refereed) c© 2004 EDSIG, page 3

Kline and Riggle Fri, Nov 5, 9:00 - 9:25, Vanderbilt Room

4. MACRO APPROACH TO DATABASE

MODELING

In this section, we present a “macro” approach to data-

base modeling that focuses on modeling the data rather

than creating a database to support an application. In

general, the approach tends to focus on entities, rather

than attributes. It should also be noted that the model-

ing process is not viewed as a supporting activity in a

particular systems development project. Rather, the data

modeling process should be an activity that is a worth-

while undertaking of itself, and meant to support multi-

ple systems.

The Process

Identify strong, independent entities: Through

standard systems analysis efforts, entities that are central

to the organization should be identified. Entities are

typically nouns that appear in documentation. Identify-

ing entities is not typically a problem – identifying the

strong ones can be a problem. Strong entitiesi are im-

portant to the organization, and will have a special im-

portance in the model. Strong entities tend to get men-

tioned over and over during conversations, and appear

repeatedly in documentation. Strong entities are, in

many cases, physical entities that are tangible in the real

world. They furthermore tend to be clear and under-

standable to laymen who do not have a great deal of

domain-specific knowledge. The strong entities will not

be exclusive to a single feature in a particular system,

but will be used across systems and features.

The goal in this step is to identify the core entities that

are important to the organization. Typically, this is a

relatively small number, perhaps six or eight. These

entities are likely to be related to many other entities,

and take on the independent role in these relationships.

Identifying these core entities will require acquiring

domain expertise and a high-level view of the organiza-

tion.

Choose a single entity to develop: From the enti-

ties identified, choose a single entity to develop. In the

beginning stages of modeling, the choice of the entity is

very important. A good choice will ease the modeling

effort, while a poor choice will make it more difficult

and confuse the modeling process.

In the beginning stages of modeling, the chosen entity

should be a strong entity that is not tied to a single fea-

ture in a single system. The entity should have a clear

understandable name, in singular form. Naming is criti-

cally important in a database model. First, SQL is ex-

clusively based on naming, so the chosen entity names

will be used for years to come. The name will either

confuse or clarify the model for all those years. Second,

changing the name of an entity later can be extremely

confusing to all involved. Finally, a good name goes a

long way towards understanding. Compare the name

“Invoice Line” to “Invoice-Product”. The name “In-

voice Line” is immediately understandable by anyone

familiar with an invoice. The nature of “Invoice-

Product” might be inferable by database professionals,

but is not necessarily clear to others.

In the later stages of modeling, weaker, more peripheral

entities will be developed. These weaker entities are

typically arrived at in a derivative manner, i.e., they are

derived from the strong, central entities. It is difficult to

derive a strong entity from a weak entity. Identifying

and developing strong entities early can ease the model-

ing effort, and help to maintain a good conceptualization

of the model.

Add attributes to the entity: To further develop

and clarify the chosen entity, attributes should be added.

This is an important step, as the name alone is not

enough to clearly understand the nature of the entity. As

an example, consider entities named Order, Sale, and

Invoice. At first glance, it may appear that these are a

single entity with various names for the entity, and

should be combined into a single entity. However, they

may actually represent different stages of a transaction,

and be very different entities. Adding attributes will

clarify the nature of the entity.

It is not uncommon at this stage to realize that a single

entity that is being developed has attributes that indicate

that the single entity is actually several entities. Using

the example above, one might start with an Order entity,

and add PaymentMethod and PurchaseOrderNumber as

attributes. Assuming that the model needs to represent

the various stages of the revenue cycle as separate enti-

ties, the data modeler should realize that the Pur-

chaseOrderNumber belongs in an entity that represents

the initiation of the purchase, i.e., Order, and the Pay-

mentMethod belongs in an entity that represents the end

of the purchase, i.e., Receipt. As with entities, the nam-

ing of attributes is very important for clarity.

Choose an identifier for the entity: Choosing an

identifier further clarifies the nature of the entity, for

both the data modeler and for developers of systems that

use the data. Many developers skip this decision by

using synthetic, or non-meaningful, identifiers for every

entity. There are arguments for and against this strategy.

Regardless of whether a synthetic identifier is used or

not, all alternate keys must be documented so that

unique indexes can be set at implementation time. It is

not uncommon to have several alternate keys for enti-

ties, and identifying them is helpful in understanding the

entity.

Explore relationships between entities in a pair-

wise manner: After the entities have been developed,

the relationships between entities can be explored. This

is a much easier task with the entities fully developed.

Exploring relationships can be quite confusing with a

cloudy understanding of the entities involved. Relation-

ships can be explored in the usual pair-wise manner. In

addition to identifying the relationship and cardinalities

of the entities involved, it is helpful to document if there

is an existence dependency.

Proc ISECON 2004, v21 (Newport): §2124 (refereed) c© 2004 EDSIG, page 4

Kline and Riggle Fri, Nov 5, 9:00 - 9:25, Vanderbilt Room

Develop any associative entities: Associate entities

may be identified from the previous step if there is a

many-to-many relationship. These associative entities

should be developed in the same manner as other enti-

ties. In fact, associative entities can sometimes be the

most important entities in a data model, in terms of un-

derstanding the nature of the data, and how business

entities relate. Associative naming should be avoided.

Instead, data modelers should strive for a clear, concise

name, as would be expected for a strong entity.

As an example, consider the entities Student and Class,

with an associative entity representing a student that is

enrolled in the class. Associative naming conventions

might suggest the entity be named Student-Class, as in

Figure 2. Does Student-Class represent that a student

has shown interest in the class? Does it represent that a a

student teacher is observing a class? Does it the entity

represent degree requirements? However, a name such

as ClassMember, as in Figure 3, is much clearer and

understandable. It means that the student is a member of

the class. Furthermore, with a clear name, the entity

appears more significant, substantial, and worthy of

further development.

Figure 2

Data modelers should further strive to find attributes that

clearly belong in the associative entity, and not in the

independent entities involved. This further clarifies the

associative entity and makes it more significant. In the

above example, an attribute such as EnrollmentDate and

Auditing (true or false) clearly belong in ClassMember,

and not in Student or Class. Suddenly, an associative

entity that is weak in relation to both Student Class be-

comes an important entity, and may actually participate

as a strong entity in other relationships, as in Figure 4.

Figure 3

If associative entities are fully developed, it is quite

common to have an associative/weak entity in one rela-

tionship become a strong/independent entity in relation-

ship to another entity. Continuing the above example, a

ClassMember might relate to an Grade entity in a one-

to-many manner, with existence dependence (an As-

signmentGrade can’t exist without a ClassMember). If

the associative entity hadn’t been fully developed and

understood, this relationship would have been more

difficult to discover, i.e., a relationship involving a rela-

tionship.

Student Class
ClassMember

EnrollmentDate

Audit

TestGrade

Figure 4

Add weak entities to support features: Once the

core entities have been developed, entities that support

peripheral system features can be added. At this point it

is a good sign if adding support for peripheral features

does not significantly change the data model. This indi-

cates that the data model is robust to added features or

new uses. By “significantly change”, we mean changing

the nature of the existing entities or relationships. Add-

ing attributes to existing entities, or adding entities does

not significantly change the existing data model.

Other helpful concepts

The above section describes an entity-oriented process

that approaches data modeling from the top down.

However, there are several other concepts to keep in

mind that are very helpful in the modeling process.

Focus: Working on a large data model that must

support many features and multiple systems for the fore-

seeable future is a daunting task. It is often overwhelm-

ing to consider all entities for a data model at once. To

deal with the complexity, it is helpful to focus on one to

several entities at a time. Focus on a single entity as the

entity is being developed, then focus on a small group of

entities as the relationships are developed.

Associative entities are entities: Associative enti-

ties are usually discovered when a many-to-many rela-

tionship between existing entities is discovered. They

are sometimes treated with less respect and attention

than entities that are discovered in other manners. As a

result, associative entities are not even considered enti-

ties, and are diagrammed in a different way than other

entities. This can lead to serious deficiencies in data

models, since the entity is not explored or modeled ex-

plicitly, but is left as an implementation detail.

A full development of associative entities almost always

results in the realization that it is a “true entity”. Asso-

Proc ISECON 2004, v21 (Newport): §2124 (refereed) c© 2004 EDSIG, page 5

Kline and Riggle Fri, Nov 5, 9:00 - 9:25, Vanderbilt Room

ciative entities almost always have multiple attributes

and clearly represent an identifiable business entity. In

many cases, these are very important to the business and

to accurately modeling the business.

Entity terminology: Because the described ap-

proach is entity-oriented, it is important to have termi-

nology that describes entities. This terminology is not

new, and has been used before, but takes on new impor-

tance in an entity-oriented approach to data modeling.

The notion of weak/strong, or dependent/independent

entities is useful on two contexts. First, when consider-

ing a pair of entities and how they relate, it is helpful to

recognize that one of the entities might be dependent on

the other. Sometimes, this is existence dependence, e.g.,

a Room cannot exist without a Building. Sometimes,

this is identity dependence, e.g., the Room primary key

has the Building primary key in it. The second context

involves considering an entity in the overall data model.

For instance, an auto-dealer’s information system re-

volves around automobiles, and thus the Automobile is

likely to be a strong, independent entity in the data

model. This manifests itself in the data model as the

Automobile entity is involved in many relationships,

typically on the “one-side”, and there may be tree, or

hierarchical, structures emanating from the Automobile

entity.

“Odd” model forms: Several model forms are not

commonly given adequate recognition in the normaliza-

tion process. Neither recursive relationships nor one-to-

one relationships are recognized at all by the normaliza-

tion process. These are sometimes presented as odd or

rare model forms that are perhaps of interest in only

academic circles. A sampling of data models (Silver-

ston, 2001) and our personal experience suggests that

these are not at all rare, and arise in nearly every data

model. Not only are these model forms common, but

they serve very important roles in data models. A one-

to-one relationship (particularly when describing sub-

types) allows for abstraction, generalization, and re-use

of source code. Subtypes are quite necessary to reduce

redundancy, resolve transitive dependencies, and for

enforcing relationships. Recursive relationships are also

quite common, and cannot be easily modeled in any

other way.

De-normalizing: Sometimes data models that rigor-

ously enforce data consistency in a high-quality data

model are relaxed in implementation, or “de-

normalized”. The ostensible motivations are improved

performance and ease-of-use. This is regrettable, be-

cause the costs of inconsistent data and inflexible data-

bases are real, if not easily quantified. Both of the moti-

vations are questionable. Performance can be improved

in many ways before resorting to de-normalization: re-

formulating the sql, using a stored procedure, indexing,

caching, hardware solutions, etc. In most cases, the

decision to de-normalize occurs well before the system

is in production, and thus the need for de-normalizing

was never truly evaluated in production. In effect, prac-

titioners are paying in data quality and inflexibility for a

performance boost they may never get.

The second motivation for de-normalizing is ease-of-

use, i.e., the data is stored in the form the end users

want, so the data need not be processed to generate the

report. This clearly violates the program-data independ-

ence objective of the relational model, and reduces the

flexibility of the data model. A database designed in

this manner will only be useful for the system it was

designed for, and will resist any attempts to add features

or functionality. Furthermore, any current or future

representation of the data is easily generated from a

high-quality data model using SQL.

5. CONCLUSION

Relational database design is fundamentally important to

systems that share information. Because of the founda-

tional role that databases play in today’s systems, it is

vital that we teach relational database design well. The

traditional, normalization-oriented design process that is

driven from a particular application’s needs can produce

data models that are lacking in flexibility and clarity.

We presented a macro approach to data modeling that

addresses some of the weaknesses of the traditional

approach. The macro approach focuses on entities

rather than attributes, accommodates more complex

model forms, and produces models that are not tied to a

particular application. Students who learn this approach

will be learn to design databases that minimize program-

data dependence, maintain data integrity, and communi-

cate clearly the available data resources.

6. BIBLIOGRAPHY

Baker, Stephen and Manjeet Kripalani (2004) Software,

Business Week, March 1, 2004.

Codd, E. F (1970) A Relational Model of Data for Large

Shared Data Banks, Communications of the ACM,

13(6), pp. 377-387.

Codd , E.F. (1982) Relational database: A practical

foundation for productivity, Communications of the

ACM, 25(2), pp. 109-117.

Coy, Peter (2004) The Future of Work, Business Week,

March 24, 2004.

Date, C.J. (1995) An introduction to database systems,

6th Edn., Reading, MA:Addison-Wesley.

Frost, Raymond D. (1997) Teaching Design to Solve

Business Problems, Journal of Database Manage-

ment 8(3), pp. 37-38.

Kendall, Kenneth, and Julie Kendall (2001) Systems

Analysis and Design, 5th Edn., Prentice Hall, New

Jersey.

Kent, William (1983) A Simple Guide to Five Normal

Forms in Relational Database Theory, Communica-

tions of the ACM, 26(2), pp. 120-125.

Proc ISECON 2004, v21 (Newport): §2124 (refereed) c© 2004 EDSIG, page 6

Kline and Riggle Fri, Nov 5, 9:00 - 9:25, Vanderbilt Room

Kroenke, David M. (2004) Database Processing, 9th

Edn., New Jersey: Prentice Hall.

Russell, Tom, and Rob Armstrong(2002) 13 Reasons

why normalized tables help your business, Database

Administrator, April 20, 2002.

Silverston, Len (2001) The Data Model Resource Book,

Revised Edn.: Volume 1: A Library of Universal

Data Models for All Enterprises, NY:New York,

Wiley.

Watson, Richard T. (2003) Data Management: Data-

bases and Organizations, 4th edn., John Wiley &

Sons, New York.

i
 This is a loose usage of “strong”, which is some-

times defined rigorously in modeling texts. Our

usage focuses more on importance to the organiza-

tion, than strict diagramming notations. However,

the two usages commonly coincide; entities impor-

tant to an organization usually participate as strong

entities in relationships.

Proc ISECON 2004, v21 (Newport): §2124 (refereed) c© 2004 EDSIG, page 7

