
Rufinus and Kortsarts Fri, Nov 5, 11:30 - 11:55, Vanderbilt Room

Parallel Computing for IS Majors

J. Rufinus
rufinus@cs.widener.edu

Y. Kortsarts

yanako@cs.widener.edu

Computer Science Department, Widener University
1 University Place, Chester, PA 19013, USA

Abstract

Most introductory parallel computing courses are designed for computer science students.

With the increasing applications of parallel computing in many different areas including the

Internet and World Wide Web, it is of great advantage to introduce the concept to Information

Systems majors. In this paper we present some examples and suggestions of topics on

developing and designing a parallel computing course for Information Systems majors.

Keywords: parallel computing for IS majors, parallel computers, teaching tips

1. INTRODUCTION AND MOTIVATION

Parallel computing has been around for quite

a number of years (Gill 1958) (Holland

1959) and is getting more and more

attention for several reasons. First, the

amount of research in this area has

increased tremendously. More researchers

look to parallel computing techniques to

speedup the calculations and to obtain the

results faster. Second, parallel computing is

being considered as a standard technique to

solve problems in areas as diverse as

weather prediction, aircraft design, drug

design, and virtual reality. In fact, the

Internet, the World Wide Web, and Grid

computing are new areas in which parallel

computers are utilized. Third, at the present

time parallel computing is used not only in

educational institutions but has spread to

industries (banking, drug companies,

manufacturing, etc.)

Decades ago a course on parallel computing

was rarely offered. At present, however,

parallel computing has been integrated into

the computer science curriculum. Courses on

parallel computing are currently offered in

many computer science departments in

many universities (see, e.g., Schaller 2001)

and there are many new textbooks on

parallel computing available in the market

(Grama 2003) (Jordan 2003) (Quinn 2004)

(Wilkinson 2005.) A course on parallel

computing is usually designed for computer

science and engineering majors. What about

Information Systems (IS) students? Our own

experience demonstrates that not many IS

students choose a parallel computing course

as a technical elective. Is the subject of

parallel computing less attractive to IS

students? More data will be needed to

answer this question, but certainly a parallel

computing class specially designed for IS

students is an excellent idea. Can a specially

designed one-semester parallel computing

course be developed to attract more IS

students? If we are selective in choosing

topics of interest to IS majors for such a

course, the answer to the above question is

yes.

The IS 2002 Model Curriculum and

Guidelines for Undergraduate Degree

Proc ISECON 2004, v21 (Newport): §2225 (refereed) c© 2004 EDSIG, page 1

Rufinus and Kortsarts Fri, Nov 5, 11:30 - 11:55, Vanderbilt Room

Programs in Information Systems (Gorgone

2002) formulates several characteristics of

the IS profession that are integrated into the

curriculum. One of these characteristics is

“IS professionals must have strong analytical

and critical thinking skills.” In our opinion,

introducing parallel computing to IS students

will strengthen the above required skills. It

will also equip the students with some of the

following capabilities suggested in the IS

2002 guidelines:

• Creativity

• Application development

• Database design

• Systems infrastructure (including

design and development of multi-

tiered architectures)

Furthermore, the importance of Grid

computing in future computing infrastructure

(Foster 2004) and the role of parallel

algorithms in Grid computing should

motivate the teaching of parallel computing

techniques for IS majors.

Here we suggest some topics of interest to

IS students for faculty interested in

developing and designing a parallel

computing course specifically for IS majors.

These suggestions are based on our

experience in teaching parallel computing

courses for computer science and IS

students in our department. Since our

department covers both curricula (Computer

Science and Information Systems), many

courses are designed for both majors. This

gives the opportunity for IS majors to attend

a wide range of elective courses offered by

our department.

The parallel computing course itself was

designed for students with backgrounds in C

programming language, data structures and

algorithms. Since the parallel computing

concepts given in full lecture format are

difficult for students to grasp, we also give

hands-on exercises during the class time to

enhance the students’ conceptual

understanding. Laboratory sessions are also

integrated into the course, as well as course

projects. Laboratory sessions and course

projects are meant for the students to work

in teams (of two to three persons) and each

team is allowed to evaluate other teams. In

the past, students have worked together on

a variety of class projects, from measuring

the speedup of parallel algorithms to

developing the parallel version of a serial

algorithm.

2. EXAMPLES OF PROBLEMS USED IN

THE CLASSROOM

Almost everything in nature is done in

parallel. We could find a lot of examples

around us that could illustrate parallel

process. On the other hand, teaching parallel

computing concepts to students, both

majors and non-majors, is not an easy task

because we are more accustomed to serial

programming techniques. In most

fundamental computer science courses,

programming is usually taught as a

sequential process, a line-by-line, serial

method of programming. Thus we need to

change the students’ perspective to

understand that many problems can also be

done in parallel.

Here we provide some examples that

illustrate the process of moving from serial

to parallel algorithms.

For the first example, a worker is asked to

sum all integer numbers from 1 to 100:

1 + 2 + 3 + … + 100. (1)

The worker does not have too much choice

(anyway, the worker is alone and let us

assume the worker does not realize that

there are 50 subtotals of the integer number

101, as Gauss did) other than to add 1 and

2 to get the first subtotal, and then to add

the first subtotal and 3 to get the second

subtotal, etc. Any way the worker does this

summation (the worker can start to add 99

and 100 first, etc.) the worker still has to

serially do the computation.

If the worker turns out to know how to write

a computer program in C, then the for loop

section may look like this:

sum = 0;

for (i = 1; i <= 100; i++)

 sum = sum + i;

Now, if the worker has one or more

coworkers to work with, the task may be

much faster to finish as the worker can slice

the sum into several sub-sums. For

example, if there are ten workers altogether,

Proc ISECON 2004, v21 (Newport): §2225 (refereed) c© 2004 EDSIG, page 2

Rufinus and Kortsarts Fri, Nov 5, 11:30 - 11:55, Vanderbilt Room

the first worker can work on adding 1 to 10,

the second worker on adding 11 to 20, etc.

At the end these workers will communicate

to add the subtotals. Thus the algorithm will

simply look like this:

(1) Assign work for each worker

(2) Workers work independently to obtain

the subtotal, at the same time

(3) Add the subtotals to get the total

Yes, the serial execution of this algorithm is

still there (e.g. we cannot proceed to step

(2) before finishing step (1) and we cannot

proceed to step (3) before finishing step (2),

etc.) but step (2) itself is executed in

parallel! As a matter of fact, there is no

single algorithm that fully (100%) consists

of parallel structure.

In the above example, assume that a worker

with the help of a calculator can get the sum

(the final result) in 3 minutes. Should we

obtain the same final result in 18 seconds if

ten workers work concurrently? (assume

again that the ten workers work with the

same speed and the same efficiency). The

answer is no. The speedup that could be

achieved in a parallel program is not simply

equal to the number of workers (or

processors in the case of computers).

In fact, Amdahl’s law (Amdahl 1967) teaches

us that maximum speedup can be calculated

using the following formula:

 1

Speedup = -------------------- , (2)

 f + (1 – f) / p

where f is the fraction of a program that

must be performed serially, and p is the

number of processors. If only 80% of a

program can be parallelized, then as table 1

shows, the speedups for several different

numbers of processors. It is easy to see that

the speedup will saturate easily at a certain

number of processors (for example, the

increase of speedup from 2 to 4 processors

is about 1.5 times, but going from 16 to 32

processors only increases the speedup by

about 1.11 times)

p Speedup

1 1

2 1.67

4 2.5

8 3.33

16 4

32 4.44

Table 1. The maximum speedup achievable

by a parallel computer for different numbers

of processors (p), in a program that contains

80% of parallel operations.

It should be noted, however, that Amdahl’s

law is only one of several formulas used to

analyze the performance of a parallel

program.

As the second example, we would like to find

the minimum number in a sequence of N

numbers. If we only have one processor to

do the task we need to scan the entire

sequence. Now assume that N = 16 and

there is p = 8 number of processors. Let the

input sequence to be {2, 3, 1, -4, 3, 5, 6, 7,

10, 0, 11, 8, -1, 12, -9, 4}. In the first step

we will use all 8 processors (P1 through P8)

so that each processor will search for the

minimum among 16/8 = 2 data. For

example, P1 finds the minimum of 2 and 3,

P2 finds the minimum of 1 and –4, P3 finds

the minimum of 3 and 5, P4 finds the

minimum of 6 and 7, and so on. After the

first step is executed we will have 8 results

{2, -4, 3, 6, 0, 8, -1, -9.} In the second

step we will combine these 8 results and

split them among 4 processors. For

example, P1 finds the minimum of 2 and –4,

P3 finds the minimum of 3 and 6, and so on.

The process will continue until we find the

last minimum number (-9) that we need.

This simple algorithm can be illustrated

using a binary tree as shown in Figure 1.

More importantly, this second example

illustrates the following concepts:

• Recursive decomposition method.

This is a method of solving a

problem by dividing it into a set of

independent subproblems and

recursively applying a similar

division into each one of these

subproblems. This is similar to the

well-known divide-and-conquer

strategy.

Proc ISECON 2004, v21 (Newport): §2225 (refereed) c© 2004 EDSIG, page 3

Rufinus and Kortsarts Fri, Nov 5, 11:30 - 11:55, Vanderbilt Room

• Task-dependency graph. This is a

directed graph in which the nodes

represent tasks while the edges

represent the dependencies amongst

the tasks. Figure 1 is actually such a

graph.

• Mapping and load balancing.

Mapping is the process of assigning

tasks to processors. Its goal is to

maximize the processor utilization,

which can be achieved when all

processors begin and end execution

at the same time. Load balancing is

an “ideal” condition where each

processor is kept busy for the

duration of the overall computation.

Our goal is to map the processes

such that we can achieve the load

balancing. In this example we see

that there are 8 processors work in

the first step, however only 4

processors (P1, P3, P5, P7) work in

the second step, etc.

Figure 1. A task-dependency graph to find the minimum in a sequence of N numbers. P1

denotes the processor number 1, P2 denotes the processor number 2, etc.

As the third and last example, we will

illustrate the use of Monte Carlo method to
estimate the value of π. Consider a unit

square and the quadrant of a circle inside it.

The radius of the circle is 1 unit and the side

of the square is also 1 unit. Next, we choose

a point randomly inside this unit square. The

probability that one point will randomly hit

the circle area is:

Area of circle π 12/4

---------------- = ------- = π/4 . (3)

Area of square 12

By repeating this experiment with many

points or samples one can get the estimated
value of π. This is the famous Monte Carlo

method to find π. To convert the above

sequential algorithm into parallel one just

need to split the number of samples among

different processors and to collect the results

at the end of computations.

The parallel algorithm will be as follows: If N

is the number of samples and p is the

number of processors, then:

(1) Each processor performs N/p samples

that include:

(a) Choose the point randomly inside

the unit square.

(b) Check if the point hit the circle.

(c) Count the number of times that the

random point hit the circle.

(2) Collect the data from p processors.

P1

P2 P3 P4 P5 P6 P7 P8

P1 P3 P5 P7

P1 P5

P1

Proc ISECON 2004, v21 (Newport): §2225 (refereed) c© 2004 EDSIG, page 4

Rufinus and Kortsarts Fri, Nov 5, 11:30 - 11:55, Vanderbilt Room

(3) Calculate the estimation of π by using

the following formula:

4 NumCircle
π = --------------- , (4)

 N

where NumCircle is number of times that

randomly chosen points hit the circle over N

samples.

In general, parallel Monte Carlo methods

have a negligible amount of interprocessor

communications – commonly known as

“embarassingly” parallel computation. Thus,

using p processors can either (1) Find an

estimate about p times faster, as we do in

the above example, or (2) Reduce the error

of the estimate by a factor of square root of

p (it is because the variance of the answer is

reduced by a factor of p.)

3. CHOICE OF HARDWARE

To support all the course activities

(homework, laboratory, class project, etc.)

requires a specific hardware problem. There

are several choices available, e.g., to use

the supercomputers at a supercomputer

center, to build a special-purpose multi-

processor computer laboratory, or to use a

cluster of computers.

Using computers at a supercomputer center

is usually done through a remote access.

Sometimes there are many users who are

simultaneously and continuously doing work

on these supercomputers, thus the

performance of a parallel program to be

tested may be affected tremendously.

The special-purpose multi-processor

computer laboratory is the second choice.

This laboratory may be equipped with a

certain tools that capable of handling

parallelization in the operating system and

compiler levels. This option, however, is

costly. It needs budget and personnel to

maintain this laboratory. Big universities

usually take this option.

In our case, we have built our own cluster of

computers, sometimes called a Beowulf

cluster (Sterling 1999), from various grants

(university and the NSF). This is a good

choice for small universities like ours since it

is not that expensive to build such a cluster.

Our cluster is installed with Linux RedHat

(Other Linux distributions can also be used)

and consists of 16 Intel Xeon 2.4 GHz

processors. All machines are connected

through a Gigabit Ethernet. An interface is

needed to use these interconnected

machines as a cluster. There have been

several interfaces available, including

Message Passing Interface (MPI), Parallel

Virtual Machine (PVM) and Linda. Further,

there are two kinds of MPI implementation:

(1) Local Area Multicomputer (LAM) MPI

from the University of Notre Dame

(www.lam-mpi.org) and (2) MPICH (www-

unix.mcs.anl.gov/mpi/mpich). Textbooks

and reference books on MPI are also

available (Pacheco 1996) (Gropp 1999.)

Both implementations, LAM-MPI and MPICH,

are freely available and can be downloaded

through the Internet. TCP Linda is

proprietary software (Lindaspaces 2004.) We

installed LAM-MPI in our cluster and used it

in our course.

4. SUGGESTED TOPICS

In any introductory parallel computing

course, all the fundamentals of parallel

programming should be discussed

thoroughly and probably would take the

longest time to cover. These include:

(I) The basic terminologies. For example,

speedup is defined as

 sequential runtime

speedup = --------------------- , (5)

 parallel runtime

while the efficiency is defined as:

 speedup

efficiency = ----------------- . (6)

 processors used

Thus, efficiency is a measure of processor

utilization. It tells us how the processors are

being used on the actual computation. For

example, if the efficiency = 50%, the

processors are utilized half the time. The

maximum efficiency (100%) occurs when

the speedup is equal to the number of

processors.

(II) Parallelization method, which involves

the following steps:

Proc ISECON 2004, v21 (Newport): §2225 (refereed) c© 2004 EDSIG, page 5

Rufinus and Kortsarts Fri, Nov 5, 11:30 - 11:55, Vanderbilt Room

1. Identify parallelism in a problem. In this

step we study the problem carefully, and

identify whether there are portions of the

problem that could be performed

concurrently. Identifying parallelism in a

problem is crucial, since it will determine

whether parallelization will accelerate

solution of the problem.

2. Partitioning. This is a process of

dividing/decomposing the computation

and/or the data into smaller parts. Drawing

a task dependency graph may be helpful in

this process. In this step we also have to

recognize the communication pattern

between the tasks and how to organize them

into larger tasks, with the goal to lower

communication overhead.

Thus, in the above two steps (identifying

parallelism in a problem and partitioning the

problem into smaller pieces) the IS students

would really learn is how to organize data.

First, they would have to recognize which

data could be executed concurrently.

Second, these data should then be grouped

together in the decomposition step. This is

an excellent way to learn to organize data.

“Always look in parallel universes”, is a

lesson for organizational learning (Hipple

2003.) The study of parallel computing

techniques would enhance the organizational

problem solving capability of IS students.

3. Mapping the tasks into processors is the

software implementation step. We have to

consider this process because we are

executing our program in a cluster of

computer, which operating system does not

automatically map the tasks into processors.

The ultimate goals of mapping process are

to (a) utilize the processors as much as

possible, (b) minimize the communication

between processors.

(III) Performance analysis. The objective of

this analysis is to predict the performance of

a parallel program by using some well-

known formulas (e.g., Amdahl’s law.)

Timing various parallel algorithms and

measuring the speedup of those algorithms

with respect to the serial version are

integrated into the whole course content. In

the laboratory sessions, for example,

students are given varieties of programs to

test. The students then plot the speedups

with respect to the number of processors

and compare the obtained results with

theory.

The next topic to be taught relates to the

question of how the parallel algorithms

would be implemented. The mastery of C

language is enough to code a parallel

algorithm. In addition, we have to learn

another tool that will handle the

interprocessor communications. The most

popular tool to use at the present time is

MPI, an interface to administer/manage

communications among processors by

passing/sending messages. MPI consists of

many functions that can be called in a

program, even though practically speaking

not all of these functions need to be used in

writing a parallel program.

It usually takes one to two weeks to teach

the concepts of MPI to students. Simple

examples should be given in class, plus

laboratory and homework, which consist of

programming assignments.

To strengthen the students’ capability in the

field of Information Technology Hardware

and Systems Software (IS 2002.4), a one-

week topic on different parallel programming

platforms should also be added to the list of

topics of interest. Here the students will

learn about the concepts of multiprocessors,

multicomputers, and interconnection

networks.

Since most IS students have taken courses

on data structures and algorithms by their

sophomore years it is suggested that the

following topics also be discussed:

(*) A variety of parallel sorting algorithms

(*) A variety of parallel graphs algorithms

Additional topics to be covered are usually

optional and will depend on the students’

technical background (e.g., discrete

mathematics, algebra, and statistics, but not

differential equations, or higher algebra.)

The following topics are of interest to our IS

students:

(I) Solving the linear systems. This includes

topics such as:

• Parallel matrix-vector and parallel

matrix-matrix multiplications. These

are excellent topics to illustrate

many of the concepts of MPI.

Proc ISECON 2004, v21 (Newport): §2225 (refereed) c© 2004 EDSIG, page 6

Rufinus and Kortsarts Fri, Nov 5, 11:30 - 11:55, Vanderbilt Room

• Back substitution, Gaussian

elimination, and some other

methods.

(II) Monte Carlo methods. Interestingly,

even though parallel Monte Carlo technique

is an example of “embarrassingly” parallel

computation, its applications are ample and

can be found not only in science and

engineering but also in finance (Brandimarte

2002), economics, etc.

(III) Parallel database. Database sizes have

been increasing steadily in the past decade.

It is now common to find very large

databases that can hold data of more than 1

terabytes. Queries are run to access data

warehouses with the purpose to gather

important information, decision making, etc.

Such complex queries, of course, require a

lot of time to execute. Parallel database

could help reducing the execution time.

Applications of parallel database include the

World Wide Web search engine, etc.

5. CONCLUSION

Equipping IS students with knowledge of

parallel computing will enhance their

capabilities in several areas, including

technology, organizational problem solving,

creativity, as well as algorithmic design.

6. ACKNOWLEDGEMENT

The work of JR and the cluster of computers

used in this project are partially funded by

the National Science Foundation grant

number 0304429 and Widener University

Faculty Development Grants.

7. REFERENCES

Amdahl, G., 1967, “Validity of the Single-

Processor Approach to Achieving Large-

Scale Computing Capabilities.”

Proceedings of 1967 AFIPS Conference

Vol. 30, p. 483.

Brandimarte, Paolo, 2002, “Numerical

Methods in Finance.” John Wiley.

Foster, Ian, and Carl Kesselman, Editors,

2004, “The Grid 2.” Morgan-Kauffman.

Gill, S, 1958, “Parallel Programming.”

Computer Journal Vol. 1, pp. 2-10.

Gorgone, John T., Gordon B. Davis, Joseph

S. Valacich, Heikki Topi, David L.

Feinstein, and Herbert E. Longenecker,

Jr., 2002, “IS 2002 Model Curriculum

and Guidelines for Undergraduate

Degree Programs in Information

Systems.” Association for Information

Systems.

Grama, Ananth, Anshul Gupta, George

Karypis, and Vipin Kumar, 2003,

“Introduction to Parallel Computing.”

Second Edition, Addison-Wesley.

Gropp, William, and Marc Snir, 1999, “MPI:

The Complete Reference.” MIT Press.

Hipple, Jack, 2003, “The Future of

Organizational Problem Solving.” http:

//www.innovation-triz.com/papers/

futureorganize.ppt.

Holland, J., 1959, “A Universal Computer

Capable of Executing an Arbitrary

Number of Subprograms

Simultaneously.” Proceedings of East

Joint Computer Conference Vol. 16, pp.

108-113.

Jaeckel, Peter, 2002, “Monte Carlo Methods

In Finance.” John Wiley.

Jordan, Harry F. , and Gita Alaghband, 2003,

“Fundamentals of Parallel Processing.”

Prentice-Hall.

Lindaspaces, 2004,

http://www.lindaspaces.com/

about/index.html

Pacheco, Peter, 1996, “Parallel Programming

with MPI.” Morgan-Kauffman.

Queen, Michael J., 2004, “Parallel

Programming in C with MPI and

OpenMP.” McGraw-Hill.

Schaller, N., 2001, “Nan’s Parallel

Computing Page.”

http://www.cs.rit.edu/~ncs/

parallel.htm.

Sterling, Thomas L., John Salmon, Donald J.
Becker, and Daniel F. Savarese, 1999,

“How to Build a Guide to the

Implementation and Application of PC

Clusters.” MIT Press.

Proc ISECON 2004, v21 (Newport): §2225 (refereed) c© 2004 EDSIG, page 7

Rufinus and Kortsarts Fri, Nov 5, 11:30 - 11:55, Vanderbilt Room

Wilkinson, Barry, and Michael Allen, 2005,

“Parallel Programming. Techniques and

Applications Using Networked

Workstations and Parallel Computers.”

Second Edition, Prentice-Hall.

Proc ISECON 2004, v21 (Newport): §2225 (refereed) c© 2004 EDSIG, page 8

