
Connolly Fri, Nov 5, 3:00 - 3:25, Commodore Perry

A Funny Thing Happened

on the Way to the Form:

Using Game Development and Web Services

in an Emerging Technology Course

Randy Connolly

Dept. of Computer Science & Information Systems

Mount Royal College
Calgary, AB, T3E 6K6, Canada

rconnolly@mtroyal.ca

ABSTRACT

This paper presents the results of an emerging technology course devoted to web services and

games development. The paper defines web services and service-oriented architectures in

general, covers the rationalization for the approach taken in the course, and describes the

scope and design of the game project. It also suggests how web services and/or game devel-

opment can be integrated into an upper-level emerging technology course, and analyzes the

students’ (and the instructor’s) learning experience in the course.

Keywords: emerging technology, web services, service-oriented computing, game develop-

ment, .NET Framework

Old situations

New complications …

Passions and potions

Constant commotions

Something for everyone –

A comedy tonight.

– A Funny Thing Happened On the

Way to the Forum (Sondheim, 1962).

1. INTRODUCTION

Many information systems programs offer

some type of emerging technology course.

The ACM IS 2002 Model Curriculum for in-

stance, has as one of its ten logical course

specifications, a course devoted to “design

and implementation within an emerging en-

vironment.” According to the Model Curricu-

lum, such a course should focus on “imple-

mentation in emerging distributed comput-

ing environments using traditional and con-

temporary development methodologies” and

should expect the student “to implement a

project that spans the scope of the previous

courses” (Gorgone et al, 2002). This paper

presents the recent results (Winter 2004) of

an emerging technology course that is part

of the Applied Degree in Computer Informa-

tion Systems and Business at Mount Royal

College in Calgary. In this course, students

were exposed to two separate, but combin-

able technologies: games development using

C# and Windows Forms and service-oriented

computing via SOAP-based web services.

This paper reports on the “Old situa-

tions/New complications” encountered by

the instructor and students in the course. It

provides a definition and overview of web

services and service-oriented architectures

in general, covers the rationalization for the

approach taken in the course, and describes

the scope and design of the game project. It

also suggests how games development and

web services can be integrated into an up-

per-level emerging technology course, and

offers some analysis of the students’ (and

Proc ISECON 2004, v21 (Newport): §2442 (refereed) c© 2004 EDSIG, page 1

Connolly Fri, Nov 5, 3:00 - 3:25, Commodore Perry

the instructor’s) learning experience in this

course.

2. SERVICE-ORIENTED COMPUTING

(SOC) AND WEB SERVICES

Service-oriented computing (also known as

service-oriented architectures or SOA) in

general and web services in particular, is

perhaps the hottest – or certainly the most

hyped – new technology within the software

application world. IBM (Channabasavaiah,

2004) claims that SOC is “the next evolu-

tionary step in software” and that

… after all the hype has subsided, and

all the inflated expectations have re-

turned to reality, you will find that a

SOA, at least for now, is the best

foundation upon which an IT organiza-

tion can take its existing assets into

the future as well as build its new ap-

plication systems.

What is service-oriented computing and how

does it relate to web services? SOC is the

“computing paradigm that utilities services

as fundamental elements for developing ap-

plications” (Papazoglou, 2003). The funda-

mental use of services can dramatically alter

the way one architects an application. Such

an approach results in “an application archi-

tecture within which all functions are defined

as independent services with well-defined

invokable interfaces which can be called in

defined sequences to form business proc-

esses” (Channabasavaiah, 2004). Thus SOC

is “an architectural style whose goal is to

achieve loose coupling among interacting

software agents” (He, 2003). Figure 1 illus-

trates the difference between the traditional

integrated application and the new SOC ap-

plication (adopted from Chatterjee, 2003).

The rationale behind this new design para-

digm is one that will be familiar to most

computing practitioners with some experi-

ence in the enterprise: namely, how to best

deal with the twin problems of integration

complexity and reuse. Due to corporate

mergers, longer-lived legacy applications,

and the need to integrate with the Internet,

application integration has become a major

priority of IT organizations. The principal

difficulty with application integration how-

ever is the sheer number of interfaces

Figure 1

Proc ISECON 2004, v21 (Newport): §2442 (refereed) c© 2004 EDSIG, page 2

Connolly Fri, Nov 5, 3:00 - 3:25, Commodore Perry

required. If there are n systems that need to

be directly integrated with each other, then

n*(n-1) interfaces will be necessary, and

each new system will require an additional

n*2 interfaces (Channabasavaiah, 2003). As

well, since these systems are typically not

interopable, expensive middleware systems

or complex object messaging solutions (such

as RMI, CORBA, and DCOM) are necessary

to implement these interfaces.

Service-oriented computing potentially pro-

vides a more palatable solution to these in-

tegration problems. But what is a service? A

service is simply “a unit of work done by a

service provider to achieve desired end re-

sults for a service consumer” (He, 2003). It

is a self-describing, self-contained, open in-

terface to piece of functionality (Cerami,

2002); that is, it should provide a platform-

independent interface contract that can be

dynamically located and invoked, and which

contains no state (Hashimi, 2003). Since

these services can then be offered by either

different systems within an enterprise as

well as by different enterprises, they “pro-

vide a distributed computing infrastructure

for both intra- and cross-enterprise applica-

tion integration and collaboration” (Papa-

zoglou, 2003). SOC promises then a “nir-

vana, in which discrete channels of business

logic become reusable, interchangeable

parts that can be strung together into busi-

ness processes with almost no development

cost” (Knorr, 2003).

While SOC as a concept predates the tech-

nology of web services, it was the standardi-

zation provided by web services that made

SOC viable. HTTP and XML are used both to

publish and consume a web service. The two

additional platform-independent XML-based

protocols of SOAP and WSDL constitute the

basis of web services. WSDL (Web Services

Description Language) describes the opera-

tions provided by a service; that is, it docu-

ments and describes the data types and sig-

natures of the operations. SOAP (Simple Ob-

ject Access Protocol) encodes the service

invocations and their return values within a

HTTP header (see figure 2).

3. USING THE .NET FRAMEWORK

While web services are by design platform-

independent, some platforms make it easier

to construct and consume them. Microsoft’s

.NET Framework makes it quite painless to

work with web services and for this reason

(as well as the fact that this semester’s stu-

dents had already taken ASP.NET and C#

from the same instructor in the previous

semester) was chosen as the development

environment for the course. In the first lab,

students were able to consume a language

translation web service, as well as consume

Amazon.COM’s web service (which makes all

of Amazon’s data and functionality avail-

able). Creating a web service was not much

more difficult. In the next lab, students cre-

ated a credit card validation service that

made use of data within a SQL Server data-

base. Given the relative ease of working with

web services in the .NET Framework, some-

thing else was required to fill up the fifteen

weeks of the semester!

Figure 2

Proc ISECON 2004, v21 (Newport): §2442 (refereed) c© 2004 EDSIG, page 3

Connolly Fri, Nov 5, 3:00 - 3:25, Commodore Perry

In our program, students are exposed to a

variety of application development environ-

ments. Students take two courses devoted

to creating web applications, three courses

to teach programming (from structured to

object-oriented) using Java, and three

courses teaching databases and rapid appli-

cation development using Microsoft Access

or Oracle Forms. One perceived lacuna in

the students’ education is that they never

create native Windows client applications.

For this reason, it was decided to “fill the

time up” in the emerging technology course

with Windows Forms development, which is

the .NET replacement for the C++/MFC ap-

proach to native Windows development. The

plan was to teach the basics of Windows

Forms development, move back into web

services, and then have students create

some type of desktop client for consuming

each other’s web services.

4. DEVELOPING A GAME (THE PLAN)

But a funny thing happened on the way to

the Form. The initial plan for the course pro-

ject was a typical business application, albeit

distributed via web services. All such appli-

cations tend to have a similar workflow: re-

trieve data, transform and present data,

validate changes to data, and save data. In

two previous courses, the students had al-

ready covered several typical data access

patterns and were reasonably familiar with

layering and architecting the typical business

application using classes. Since the students

were using Visual Studio, they were able to

learn the basics of creating Windows applica-

tions within two weeks. During this time, it

became quite apparent that what really cap-

tured their interest was drawing graphics

and interacting directly with the mouse and

keyboard. Seeking to maintain and use this

interest, I decided to change the course pro-

ject from a business application using web

services to a graphical game using web ser-

vices.

My hope was that through a game project

the students would be more motivated to

learn. Within the field of education, there is

“an abundance of literature to support the

use of games as tools that help learners”

(Mungai, 2002). Within the context of com-

puter science, a variety of researchers have

found game assignments to be helpful for

teaching and motivating introductory pro-

gramming students (see, for instance, Be

cker, 2001; Giguette, 2003). As well, Jones

(2000) has noted that games can provide

“an extremely project-oriented, upper-

division course to exercise and enhance the

programming and problem-solving skills of

advanced students.” Another motivation for

switching to a game project was relevance.

Given that the students do not have a great

deal of real-world work experience, they

may find it difficult to appreciate the typical

integration problems that web services ad-

dress. It was hoped that a game project

would be a more familiar context to them

and hence would better communicate the

distributed nature of web services and their

integrating role. The remainder of the paper

will describe the game project, problems

(and opportunities) encountered, and how

web services were eventually integrated into

the project.

The game project was a “simple” role-

playing game. Students worked in pairs to

create a game in which a player (in the role

of a barbarian, knight, wizard, or ninja, each

with its own unique statistics) navigates a

multi-screen map and fights monsters based

on a configurable combat system. For sim-

plicity sake, students used GDI+ rather than
DirectX for drawing graphics. Various addi-

tional custom controls had to be created to

handle status messages, the character’s

state, and the character’s position in the

game world. As little game information (e.g.,

map, actors, world, etc.) as possible was

contained within the code; instead this in-

formation had to be contained in XML files.

The students were provided with a variety of

royalty-free graphical resources (figure 3

shows some samples). These included sev-

eral hundred tile files (organized into sets)

to construct maps, static and animated item

images for placement on the map, as well as

over a hundred animation strip images for

player and monster actors. Each monster or

player actor had four direction facings

(north, east, south, and west) and five

states (paused, walking, attacking, being hit,

and dying) that had to be animated.

In the course labs, students were introduced

to the following: GDI+ development, creat-
ing custom controls, parsing XML, and

Proc ISECON 2004, v21 (Newport): §2442 (refereed) c© 2004 EDSIG, page 4

Connolly Fri, Nov 5, 3:00 - 3:25, Commodore Perry

sample tile images

sample item images

sample actor animation strip image (attacking west)

sample monster animation strip image (attacking west)

Figure 3

working with timers. In one of the labs, stu-

dents constructed a simple sprite (an inde-

pendent animated object) as a means of

demonstrating how to use an event-based

timer as a first step in learning multi-

threaded programming. Upon this founda-

tion, students were to unproblematically

construct this game (early March deadline)

as a first step in the eventual web service-

enabled game. But “New complica-

tions/Constant commotions” were indeed

encountered along the way!

5. DEVELOPING A GAME (THE REALITY)

While students were very excited by the pro-

ject before they began it, as they worked on

it, they found it to be perhaps the most diffi-

cult assignment they had encountered in the

program. Students could not simply replicate

the typical business application process –

read, display, validate, and write data – and

its typical architecture (presentation layer,

business layer, data layer). Instead, stu-

dents were forced to construct their own

architecture (for the world and its maps, for

the actors, for the sprites, and for the com-

bat system) and process (e.g., when should

the map files be read, when should the im-

ages be read for the actors, should all the

images be stored in memory, etc).

In previous application development

courses, I have found it helpful to introduce

one or two of the standard Gang of Four de-

sign patterns (Gamma, 1995). In my object-

oriented development course that I also

teach, I have often struggled to find appro-

priate contexts for teaching design patterns.

This project, in contrast, was a goldmine of

potential pattern usage; it provided a con-

text that allowed many of the students to

Proc ISECON 2004, v21 (Newport): §2442 (refereed) c© 2004 EDSIG, page 5

Connolly Fri, Nov 5, 3:00 - 3:25, Commodore Perry

grasp and comprehend both the utility and

the beauty of these patterns. In the context

of the game project, I was able to demon-

strate the practical usefulness of the follow-

ing patterns: Singleton (for creating a single

repository of all images), Observer (for han-

dling the game events caused by the actors

which needed to be handled by the game

environment), Mediator (for coordination

between different user controls), Factory

(creating GDI+ images based on tile keys),
State (for handling the actor’s state), Strat-

egy (for handling the run-time configurable

combat systems), and Command (for han-

dling different user-specifiable game ac-

tions).

Yet despite of (or perhaps because of) these

helpful patterns, the student feedback was

not uniformly positive. Several complained

that the game required them “to think con-

stantly.” Other students commented that

they “had to use all the stuff [knowledge

presumably] from previous courses.” The

student experience appears to back up

Jones’s (2000) belief that the

integration of concepts and techniques

required to design and build computer

games covers many of the topics of-

fered in an undergraduate computer

science curriculum, allowing students

concrete application of much of the

theory, concepts, and skills they have

been exposed to.

The conceptual difficulty of game develop-

ment for the students was reflected in the

eventual marks. While the average was a

respectable 68%, the marks tended to be

either in the A range (small majority) or in

the D range, clearly both a victory and a

defeat from an instructor’s standpoint. The

lower marked projects tended to have non-

functioning combat systems (which required

two sets of timers and thus the management

of three execution threads). Nonetheless,

the quality of several of the student’s games

was very rewarding (see figure 4).

Figure 4

Proc ISECON 2004, v21 (Newport): §2442 (refereed) c© 2004 EDSIG, page 6

Connolly Fri, Nov 5, 3:00 - 3:25, Commodore Perry

6. WEB SERVICE INTEGRATION INTO

GAME

The original plan for web service integration

in the game project was to pull certain func-

tionalities out of the game and place them

within web services. World definition (and

their maps) would be obtained by the game

client from any of the students’ game web

services. Monster and character statistics

and all combat result calculations would also

be pulled from the web service. However,

due to the fact that a large minority of stu-

dents were unsuccessful in implementing all

the functionality of the first iteration of the

game, I felt compelled out of fairness to

provide an alternate second part of the pro-

ject (I could have provided them with my

working version of the first part, but did not

because I felt it would compromise next

year’s delivery of the course). Rather than

extending the game, the students created an

editor that could load, edit, and save XML

isometric-tile maps. The editor could load

the map from a file or from a web service.

Each student had to also create and publish

a web service which provided an XML stream

that could be consumed by the other stu-

dents’ editors. Rather than using UDDI or

DISCO for the discovery of the services (due

to security-related problems with the lab),

the students were provided with a URL of

another web service that returned a list of

available student map services and their

URLs. Figure 5 shows a screenshot of a fin-

ished sample editor (which shows a map in

the process of being defined).

Figure 5

7. VERDICT ON THE GAME AND EDITOR

Students found the graphical nature of the

editor enjoyable, and did not find it as diffi-

cult as the game. It certainly did expose

them to the creation and consumption of

web services. However, it did not really cap-

ture the typical advantages of service-

Proc ISECON 2004, v21 (Newport): §2442 (refereed) c© 2004 EDSIG, page 7

Connolly Fri, Nov 5, 3:00 - 3:25, Commodore Perry

oriented computing in general. As a result,

the game and editor project is perhaps not

the best demonstration wrapper for web

services projects.

Nonetheless the semester’s experience con-

vinced this author that game development is

very much a suitable emerging technology

topic. A key part of an emerging technology

course as specified in the IS 2002 model

curriculum is that the students “implement a

project that spans the scope of previous

courses” and which exposes students to

“contemporary development methodologies”

using an emerging environment. This game

project accomplished these goals. Using the

emerging environment of the .NET Frame-

work along with the more “advanced” tech-

nologies necessary for game development

(such as XML parsing, 2D and possibly 3D

APIs, timers, animation, and threads), stu-

dents created a project that forced them to

integrate and use knowledge and practices

from several earlier IS courses. Finally, the

game certainly succeeded in capturing the

students’ interests and efforts (students

claimed that they spent considerably more

time on this assignment than they usually

did for assignments in other courses), and

as such this is perhaps justification enough

for exposing students to game development

in an emerging technology course.

Similarly, web services is also a very suit-

able topic for an emerging technology

course. Current literature in the field

strongly suggests that service-oriented com-

puting is the emerging development para-

digm of the future. Developing web services

using the .NET Framework provides a rela-

tively painless environment for student ex-

periments with this technology.

While the complexity of this game project

made it difficult to show off the true benefits

of web services, there are many other possi-

ble student projects that could demonstrate

the power and utility of the service-oriented

paradigm (for another take on integrating

web services into an upper-level course, see

Humphrey, 2004). Some other possible as-

signment ideas for web services that could

be implemented in the confines of a semes-

ter are:

A vacation planner. Each student group

would become a vacation service provider,

such as a hotel, a car rental agency, or an

airline. They would then collaborate to de-

cide the standard interfaces for polling in-

formation from the service (e.g., availability

for specified date, cost for a service) and

then implement the web services for their

vacation provider.

An enterprise integration application.

Each student group would be assigned a

particular set of business data – accounting,

inventory, sales, customer relations, human

resource management, etc. Each group

would then collaborate to define interfaces

for their services. Each group would then

create Windows or Web client application

(such as front-to-back sales system) that

integrates all this information.

8. CONCLUSION

Despite the difficulties encountered along

the way this semester, I feel that both

games development and web services can

be an important part of an information sys-

tems education. The higher-order thinking

and programming creativity required for

games development can certainly be useful

for non-games development. As well, web

services are here to stay. Exposing students

to this new paradigm will be beneficial for

the students’ future in the service-oriented

computing enterprise of the present and

near future.

9. ACKNOWLEDGEMENTS

An earlier version of this paper was pre-

sented at the Western Canadian Conference

on Computing Education on May 7, 2004 at

Okanagan University College, Kelowna, BC.

10. REFERENCES

Becker, Katrin, 2001, “Teaching With

Games: The Minesweeper and Asteroids

Experience.” The Journal of Computing in

Small Colleges, Vol. 17, No. 2.

Cerami, Ethan, 2002, Web Services Essen-

tials. Sebastopol, CA: O’Reilly & Associ-

ates, Inc.

Proc ISECON 2004, v21 (Newport): §2442 (refereed) c© 2004 EDSIG, page 8

Connolly Fri, Nov 5, 3:00 - 3:25, Commodore Perry

Channabasavaiah, Kishore, Kerrie Holley,

and Edward M. Tuggle Jr., 2004, “Migrat-

ing to a service-oriented architecture,

Part 1.” Available: http://www-

106.ibm.com/developerworks/webservice

s/library/ws-migratesoa.

Chatterjee, Sandeep and James Webber,

2003, Developing Enterprise Web Ser-

vices: An Architect's Guide. New York,

Prentice Hall.

Gamma, Erich, Richard Helm, Ralph John-

son, and John Vlissides, 1995, Design

Patterns. Reading, MA, Addison-Wesley.

Giguette, Ray, 2003, “Pre-Games: Games

Designed to Introduce CS1 and CS2 Pro-

gramming Assignments.” Proceedings of

the 34th SIGCSE Technical Symposium

on Computer Science Education, Vol. 35

No. 1.

Gorgone, J. T., G. B. Davis, J. S. Valacich,

H. Heikki, D. L Feinstein, H. E. Longe-

necker, Jr., 2002, Model Curriculum and

Guidelines for Undergraduate Degree

Programs in Information Systems, ACM,

AIS, and AITP. Available:

http://www.is2002.org.

Hashimi, Sayed, 2003, “Service-Oriented

Architectures Explained.” Available:

http://www.ondotnet.com/pub/a/dotnet/

2003/08/18/soa_explained.html.

He, Hao, 2003, “What is a service-oriented

architecture?” Available:

http://webservices.xml.com/pub/a/ws/20

03/09/30/soa.html.

Humphrey, Marty, 2004, “Web Services as

the Foundation for Learning Complex

Software System Development.” Proceed-

ings of the 35th SIGCSE Technical Sym-

posium on Computer Science Education,

Vol. 36 No. 1.

Jones, Randolph M., 2000, “Design and Im-

plementation of Computer Games: A

Capstone Course for Undergraduate

Computer Science Education.” Proceed-

ings of the 31st SIGCSE Technical Sym-

posium on Computer Science Education,

Vol. 32 No. 1.

Knorr, Eric , 2003, “Blueprint for Web Ser-

vices.” InfoWorld, Vol. 25, No. 47.

Mungai, Diana, Dianne Jones and Lorna

Wong, 2002, “Games to Teach By.” Pro-

ceedings of the 18th Annual Conference

on Distance Teaching and Learning,

Madison, Wisconson.

Papazoglou, M. P. and D. Georgakopoulos,

2003, “Service-Oriented Computing.”

Communications of the ACM Vol. 46, No.

10.

Sondheim, Stephen, 1962, “Comedy To-

night,” A Funny Thing Happened On The

Way To The Forum. New York, Applause

Theatre Books.

Proc ISECON 2004, v21 (Newport): §2442 (refereed) c© 2004 EDSIG, page 9

