
Bleek, Lilienthal, and Schmolitzky Sat, Nov 6, 3:00 - 3:25, Astor Room

Weaving Experiences

from Software Engineering Training in Industry into Mass
University Education

Wolf-Gideon Bleek, Carola Lilienthal, Axel Schmolitzky

Department of Informatics, University of Hamburg
Hamburg, 22527, Germany

{bleek,lilienthal,schmolitzky@informatik.uni-hamburg.de}

Abstract
Basic software engineering education is an important part of IS education. This paper shows and critically discusses
how experiences gained from years of software engineering training in the industry can be transferred to mass univer-
sity education. The approach relies on cyclic, iterative, and problem based learning and puts equal stress on technical
skills (such as object-oriented and database programming) and on soft skills (such as presentation techniques, handling
personal conflicts and cooperating in a team).

Keywords: software engineering, programming education, concepts for teaching

1. INTRODUCTION

Basic software engineering education is an important
part of IS education. At the core of any software engi-
neering education stands a solid foundation in program-
ming, nowadays with a strong focus on object-oriented
programming. But a well-educated software engineer
should not only be a competent software developer, she
should also possess several soft-skills: presenting and
discussing software designs and architectures, cooperat-
ing in a team, managing personal conflicts etc.

The Software Engineering Group at the University of
Hamburg has gained experience in training people in
object-oriented programming and software engineering
concepts in both the industry and at the university for
quite some time. The group has been responsible for
educating undergraduate students in basics of imperative
and object-oriented programming since 1994. In addi-
tion, the same people have been training software engi-
neers in the industry for more than ten years.

While both types of training cover the same topic, the
way a training is performed is extremely different. At
university, students are instructed by a combination of
lecture (approx. 250-300 people) and tutorials (approx.
20-25 people each with no hands-on programming, just
programming homework). In the industry, our trainees
are educated by an interwoven mixture of short lectures,
small-group exercises and practical programming work.

Our impression from comparing the effectiveness of
both approaches is that company trainings work much
better, which is not surprising. In consequence, we
transfer as much of our industry training concept, vali-

dated by experience, to university education. We are
constantly trying to adapt our best practices to this dif-
ferent environment, while being aware that resources are
sparse at university.

In this paper, we will first present our experiences
gained from years of training in the industry. We will
then extract the concepts and show how they have been
transferred to the organizational structure of a mass
university with undergraduate and graduate education.
After that we outline the evaluation results of two sur-
veys performed in the years the new concept was com-
pletely installed. In the discussion we critically review
the experiences, differences, and problems observed.
These lead to improvements that will further enhance
our teaching concepts.

2. THEORETICAL BACKGROUND

The Software Engineering Group at Hamburg Univer-
sity is responsible for training students at the under-
graduate and graduate level. Its focus is on interactive
application software by adopting a human-centered
approach, emphasizing cooperation with users, evolu-
tionary development strategies, and object-oriented
software construction.

Evolutionary and cyclic development methods [14] have
proven to be suited best for developing software for
socio-technical systems, i.e. interactive software. These
methods foster communication between all relevant
participants and promote a mutual learning process.

Proc ISECON 2004, v21 (Newport): §3452 (refereed) c© 2004 EDSIG, page 1

Bleek, Lilienthal, and Schmolitzky Sat, Nov 6, 3:00 - 3:25, Astor Room

Communication and active learning play an important
role in educating software engineers (see below).

On the side of learning we follow Piaget’s idea ([16],
[17]) of acting towards a goal, collecting experiences,
and critically reflecting these experiences to build up
knowledge that can be used as the basis for new learn-
ing. This is a cyclic approach as well. The learning
environment that is provided should support these activi-
ties by providing a realistic setting on the one hand and
on the other by giving space, freedom, and skilled sup-
port at need.

To constantly reflect on and improve our work of teach-
ing people in software development, we concurrently
reflect on the teaching experience. This is methodologi-
cally founded on Action Research [2], [15]. A cycle of
action planning, taking, evaluating, specifying the learn-
ing, and diagnosing is followed. We support our obser-
vations by regular surveys and offer people to engage in
the design of the teaching situation.

3. EXPERIENCES FROM IN-HOUSE TRAINING
IN THE INDUSTRY

Before we describe our experiences with software engi-
neering training in the industry, a few words on the
background are necessary.

The company responsible for the industry training, it-
wps GmbH, is a spin-off company at the Department for
Informatics. Several staff members of the Software
Engineering Group work part-time at it-wps as well, one
professor is the CEO. The company has its main profile
in object-oriented software construction, consulting and
training.

In the following we describe the didactical aims of our
industry trainings, our experience with time constraints,
the structure that evolved over the years and finally sum
up our core principles and best practices.

Didactical Aims
Professional software development implies team work.
The technical skills of the project team members are
important, and typically lots of money are spent to in-
crease the technical knowledge of software development
teams. But several soft skills are at least equally impor-
tant for the success of a project: software engineers need
to be flexible and communicative, they must be used to
giving presentations, they need to keep the whole picture
in mind and take responsibility for the project they are
part of. These and other soft skills are much too often
forgotten when educating software engineers.

We therefore put equal emphasis on three aims when
training software engineers:

• Sound technical knowledge (e.g. programming
languages, design patterns, algorithms, databases,
web-technologies).

• Sound methodological knowledge (e.g. development
of a quality architecture and design, software devel-
opment process models).

• Improved soft skills (e.g. presentation techniques,
giving and receiving critique, a culture of continuous
feedback as part of a development process, handling
of personal and group conflicts, taking responsibil-
ity, leading and coordinating teams, learning to
learn).

Constraints
In training professionals we had various arrangements
with different companies to achieve these didactical
aims. The two main variables with all trainings were:

• Time available for the training program, and

• Skills the trainees already brought along.

If the trainees are novices in object-oriented program-
ming, a training program shorter than nine weeks will
surely not at all help them to reach the three didactical
aims. From our experience, novices need at least a
seven-month training program to really reach an appro-
priate level. Trainees who already know object-
orientation have been trained in about five weeks. In this
article, we try to transfer our experience from company
trainings to undergraduate student education. Therefore
we will from now on refer to our experience with the
training of novices.

Structure
Over the years our industry training of novices evolved
more and more to comprise of three parts. If possible
under the given time constraints, these parts are:

a) Teaching in lab (three and a half months), inter-
mixed with a high percentage of exercises.

b) A mini project (two weeks), to experience a com-
plete software development process.

c) A real in-house project (three months), performed
by the trainees as a project team.

The teaching-in-the-lab part of the program starts with
an intense classroom setting. Most of our classroom
weeks follow a 3-2-day-pattern: for 3 days the trainees
are provided with the relevant information. The trainer
presents slides and assigns small exercises ("lecture
days"). After 3 days of "information input" and small
feedback cycles, the content is deepened for 2 days with
larger assignments ("deepening days"). While the train-
ers change, depending on the topics taught, one dedi-
cated trainer serves as a permanent tutor, monitoring the
deepening days during the whole curriculum.

The mini project introduces team work and imparts a
first impression of a full project. Here we use XP [3] as
the development methodology, as it puts a clear focus on
programming, but has communication and feedback as
two of its core values at the same time. The trainer has
to play the part of the customer and to act as a coach.

Proc ISECON 2004, v21 (Newport): §3452 (refereed) c© 2004 EDSIG, page 2

Bleek, Lilienthal, and Schmolitzky Sat, Nov 6, 3:00 - 3:25, Astor Room

To prepare the real-in-house-project part of the program,
we examine all open projects in the company and choose
one that is relevant but not critical. By working in an in-
house project with real customers the trainees are able to
become project team members instead of just program-
mers. They experience typical project problems on
different levels: social, technical, organizational etc.
Even more than in the 4-month-curriculum, the soft
skills become highly important. The project allows us to
conduct several best practices and following our core
principles.

Core Principles and Best Practices
To achieve our didactical aims, we apply several princi-
ples and practices. Some of them are more important
during teaching in the lab, some are more relevant dur-
ing the in-house project. The trainers, nevertheless, have
to be aware of them during the whole program.

1. Concepts over API details.
In the first part of the program the main technical
knowledge is imparted. As technology changes
with high speed, we focus on conceptual knowl-
edge rather than on exact knowledge of every tech-
nical API. This way a technical basis can be created
and the trainees are enabled to learn technical API
details by themselves. Especially during the in-
house project, where trainees are often faced with
various backend systems, this approach normally
turns out to be most valuable.

2. Objects first – reality next.
We always use the learning environment BlueJ to
introduce the concepts of object orientation [1].
Later on the actual development environment of the
company is introduced. One of the major goals in
teaching beginners is to get them in touch with the
fairly intuitive idea of objects. BlueJ permits start-
ing their education with object-oriented topics and
delaying programming language-dependent prob-
lems. All our training programs benefited from
BlueJ [8].

3. Permanent availability.
During the first part of the program one or two
trainers are attending the trainees at all times. If the
number of trainees exceeds 10 (programming in 5
pairs), two trainers are mandatory.
During the in-house project, the trainees start to
work on their own. At least once a day a trainer ob-
serves the results. The role of the trainers shifts
now to that of a consultant.

4. Learning by doing.
We use as few slides and as much exercises and
practical work as possible. This includes exercise
periods of one to several days, the software pro-
jects, moderation of discussions, and presentation
of work results [10]. The role of the teacher is - ac-
cording to constructivist learning theory [11] -
more that of a link man helping to foster a learning
process. When necessary, the trainer helps out as a

specialist [9] introducing a technology or concept.
In our experience, the learning curve increases this
way, and any problems in following the curriculum
are encountered early.

5. Iterative and incremental learning.
The typical tasks of a software engineer are prac-
ticed right from the beginning with small exercises.
The tasks are then deliberately repeated all through
the program with increased scope and complexity.
In our experience, to approach a topic cyclically,
profoundly deepens the understanding and intensi-
fies the memory.

6. Permanent reflection.
Training periods introducing new concepts are fol-
lowed by moderated plenum discussions and sum-
marizations. The trainer is enabled to monitor the
progress and to adapt the curriculum if needed. The
trainees maintain written notes on the terms
learned. The trainees improve their ability to dis-
cuss the subjects learned.

7. Intense and personal feedback.
Continuous feedback is given on several levels by
trainers and trainees. This increases the learning
curve, as problems are discovered earlier. If neces-
sary, special promotion of weaker trainees is ap-
plied.

8. Soft skills addressed explicitly.
The trainees’ soft skills are addressed directly. If
trainees present results, trainers give feedback not
only on the actual work results, but also on the
presentation style. In our experience, this approach
turns out to be very successful, particularly during
the in-house project. Normally problems with soft
skills become apparent in this phase of the training,
e.g. some trainees are unable to take on responsibil-
ity or find it difficult to compromise. If the trainers
find a way to address these problems respectfully,
the soft skills of the trainees improve noticeably.

9. Learning environment close to the future job set-
ting.
In company training, we try to choose a learning
environment that is as similar as possible to the
trainees’ future workplaces. However, we start with
classroom teaching and small exercises. The simi-
larity to the future workplaces is restricted to the
task of programming. In the in-house project, the
trainees additionally interact with in-house custom-
ers, plan project iterations and develop a software
architecture designed according to the company’s
technical strategies.

10. Pair programming
All programming in the lab and in the projects is
done in pairs. Pairs have to change at least once a
day. This XP practice [3] is related with principles
5, 6, 7 and 8, because it forces the trainees to work
together and talk about what they are doing.

Proc ISECON 2004, v21 (Newport): §3452 (refereed) c© 2004 EDSIG, page 3

Bleek, Lilienthal, and Schmolitzky Sat, Nov 6, 3:00 - 3:25, Astor Room

All core principles and best practices have helped our
trainers to reach the aims of the training programs we
have performed in the industry.

4. TRANSFERRING THE CONCEPT

With the good results experienced by applying our
industry training concepts and the growing number of
drawbacks that we observed at the university, we initi-
ated transferring the concept to the university.

Obviously, the university is a totally different environ-
ment. However, even university teaching varies between
countries, so we will first sketch the general conditions
at a German university. We will then adapt all the ele-
ments of the in-house concept to the other environment
by outlining their arrangement. After that, we take a
look at their integration and rounding off of the concept.

German University System – A Classical Teaching
Structure
At German universities, students have to spend a num-
ber of weekly “university hours” (45 minutes) for each
course. A one semester course typically spans 14 weeks.
From a student’s perspective, a lecture with 2 hours
represents 90 minutes of attendance and requires about
the same amount of time for preparation. In contrast, an
adjunct tutorial with 2 hours represents 90 minutes of
attendance and 180 minutes of preparation.

A typical set-up is a 2-hour lecture combined with a 2-
hour tutorial. Students hear about a topic in the lecture,
go to the tutorial, get an exercise sheet on that topic and
talk about questions related to it. During the week,
students spend their time on solving the exercises, either
at home or in unattended labs. In the next week’s ses-
sion, they present their solution in the tutorial and tutors
collect their work. The new exercise sheet is dispersed.
After another week, the students get their exercises back
with comments from the tutor. Common problems are
discussed. Students are typically encouraged to work in
groups of two to four on each sheet.

Studying Informatics in Hamburg
Hamburg University is a public university, open to
anybody with a high school degree. The undergraduate
curriculum in Informatics starts every year in fall. The
number of beginners ranges from 220 to 400 each year,
depending on several external factors. With regard to
education in programming concepts, students take three
courses – P1, P2, and P3 – that currently cover the range
from logical and functional programming (P1), impera-
tive and object-oriented programming (P2), and ad-
vanced programming concepts, such as concurrent
programming, database programming, and transactions
(P3). The structure of each of these courses is a general
lecture combined with tutorials.

From the teaching perspective, each combination of
lecture and tutorials for approx. 300 students requires
staff of about 15 people. In addition to a professor, who
is responsible for the content of the whole course and

giving the lecture, another person is in charge of orga-
nizing all related formal and conceptual activities (e.g.
managing the registration, writing the certificates), and
about thirteen staff members and graduate students are
engaged as tutors in the tutorials. From the students’
perspective, the combination of lecture and tutorial
follows the general pattern sketched above.

Drawbacks of the Classical Approach
The classical teaching structure does not work well for
programming courses. One evidence is the course P2,
conducted by the Software Engineering Group.

In conducting this course, we faced the following prob-
lems:

• The old concept required repeated efforts in design-
ing exercise sheets (to counteract the students’ ac-
tivities in providing answer-sheets for the following
generations). This increased the workload of the tu-
tors, as they were traditionally integrated in this de-
sign process.

• Correcting student’s work poses a significant work-
load of approx. 6 hours per week for each tutor.

• There is a minimal relation to real-life projects in the
exercises.

• Exercises take no or little account of previous
knowledge.

• Most of the time, the tutorial time is too short.

• There is too little individual feedback, usually just in
written form on paper or per email.

• Students’ working groups tended to favor division of
labor instead of group work to get their exercises
done.

• There is too much room for cheating.

In summary, the outcome of our university course did by
far not rectify the effort we put into preparing and con-
ducting it. Moreover, many students did not demonstrate
sufficient understanding of the core concepts in oral
exams. In general, the classical approach suffers due to
the following facts:

• Learning targets that go beyond technical questions
are hard to teach in this kind of setting.

• The interrelation between analysis, design, and
construction in software development is hardly
teachable in exercises designed for weekly sessions.

• Object-oriented programming requires a lot of con-
ceptual understanding and practical experience.

• Building larger object-oriented systems implies
teamwork.

• The period of three weeks for presenting the exer-
cises, collecting students’ work, and handing out

Proc ISECON 2004, v21 (Newport): §3452 (refereed) c© 2004 EDSIG, page 4

Bleek, Lilienthal, and Schmolitzky Sat, Nov 6, 3:00 - 3:25, Astor Room

corrections if far too long to evoke a learning proc-
ess.

Mapping from Industry Training to University Edu-
cation
In the setting described above, it is apparent that we
should make use of our experience in industry training.
The question then is: How well can we map the princi-
ples and practices, working with the given resources
(personnel, training rooms etc.).

Bearing in mind the time necessary to train novices and
to meet the special conditions of the university, we have
mapped our industry training to a number of courses
spanning from undergraduate to graduate studies: one
undergraduate lecture with attended labs (P2), an under-
graduate mini-project, a graduate project, and an op-
tional industry internship.

The emphasis in these courses changes according to the
students’ maturity and the settings’ appropriateness.

With several years of IT experience, we have learned
that programming languages and APIs come and go. It is
therefore imperative to concentrate on the concepts of
programming languages and of basic APIs and apply
them by using an exemplary language. We favor Java as
our teaching language. Java is consistently used in all
courses conducted by the Software Engineering Group.

Lecture with attended labs. The aim of this course is to
lay a well-founded understanding of imperative and
object-oriented programming. It is therefore crucial that
students get a consistent and deepened picture of this
topic as their first impression. In classic tutorials, stu-
dents usually pay little attention and do not have the
necessary degree of involvement. To overcome these
drawbacks, we have implemented an undergraduate
course (P2) with “intense attendance” (3) by providing
weekly tutorials of 180 minutes, in which students do
actively program in attended labs. This fosters “learning
by doing” (4), as students have to finish their exercises
within the given time. In this setting, we are able to give
“intense and personal feedback” (7) that allows us to
monitor students’ progress as well as problems they
face.

By asking students to work in pairs, we provoke the
advancement of their inter-personal skills (“pair pro-
gramming” (10)). They are urged to ask questions and
answer them, they have to legitimate their actions, and
they gain respect for each other’s actions. This encour-
ages “permanent reflection” (6) on the topic.

We follow the rule “concepts over API details” (1) in
that we not only waive exercises that ask for specifics of
an API, but also foster students to acquire skills on
searching for the information with, for example, the API
documentation.

The first eight weeks (phase one of the course) are dedi-
cated to basic programming concepts. Objects First [1]
is applied as the teaching method. The last six weeks

(phase two) provide a continuous theme covered by a
more complex development activity. Here, problems in
programming that are related to complexity become
noticeable for the students.

To meet the principle “best tools for the task” (2) we
have the liberty to choose from a variety of tools avail-
able at the university. The BlueJ [8] environment was
therefore our first choice to start teaching an object-
oriented programming language. In the second phase we
introduce Eclipse [13] as a development environment to
confront students with a professional tool. To be able to
freely choose the development environment is an advan-
tage compared to industry trainings, as we usually have
to use the company-wide tool without assessing its
suitability.

Mini-Project. In the undergraduate mini-project, con-
ducted in the three-months semester break between
semester 2 and 3, we intensify programming work by
letting the students work on one single project for 5 full
days in one week. Teamwork is required because the
task is too large for individuals or pairs. 3 or 4 project
teams work on the same task independently, each con-
sisting of 10 to 14 members. Most XP practices are used
in this project and the students work with a repository
(via the CVS integration in Eclipse) for the first time.
This addresses most effects related to group dynamics.
In addition to that, we consider “soft skills as an explicit
topic” (8) by letting the teams give presentations of their
final results in front of the whole course.

The overall concept of undergraduate teaching stresses
“iterative and incremental learning” (5). The exercises
gradually build upon each other; describing one concept
requires understanding a lower lever concept (e.g. refer-
ence and polymorphism). Moreover, students are urged
to secure the necessary information on demand.

Some didactical means obviously cannot be met in the
undergraduate courses, e.g. the “learning environment
close to the future job setting” (9). To put this means
into practice, we offer projects and internships at the
graduate level with our industry partners.

Graduate project. The focus of the graduate software
engineering project is to provide a complex software
development activity, which spans two semesters. We
have discussed the concept and some of our experiences
in [7].

Industry internship. The industry internship is a volun-
tary activity that offers committed students the possibil-
ity to face real-life software developing conditions. The
specifics of that course cannot be covered in this paper.

5. EVALUATION OF THE FIRST TWO YEARS

Graduate projects based on object-orientation are a core
part of our graduate education since 1996. We have been
conducting the undergraduate mini-project following XP
practices since 2000. We applied the new concept for P2

Proc ISECON 2004, v21 (Newport): §3452 (refereed) c© 2004 EDSIG, page 5

Bleek, Lilienthal, and Schmolitzky Sat, Nov 6, 3:00 - 3:25, Astor Room

for the first time in 2003 and for the second time in
2004. So, our experience with projects is well estab-
lished and reflected ([7] and [6]), whereas the P2 con-
cept with attended labs is a fairly new experience ([4]
and [5]).

During both semester breaks after the new P2 course, we
conducted and evaluated three surveys: one for students
who had finished the course successfully (pass or bet-
ter), one for students who had not passed and one for the
instructors.

Students’ Feedback
Each year, we conducted two anonymous surveys where
the students could tick pre-formulated statements and
give individual feedback as well.

The feedback of the students who passed was very
positive. 92% did NOT tick the statement “I would have
preferred a traditional course with tutorials and home-
work”. 82% ticked the statement “The lab classes were a
lot of fun”. Only 38% ticked “The lab classes were hard
work”. The students had a very good impression of the
instructors: 93% ticked the statement “My instructors
were well qualified for their job”. In the free-text an-
swers most students claimed that there was not enough
time for individual feedback and that the instruc-
tor/student ratio should be higher.

The feedback of the students who have not passed
showed that the new concept had little impact on failure.
Only 16% (3 out of 19) blamed it directly for their fail-
ure, while most claimed personal problems or external
pressure. One even had passed the year before, was just
curious about the new concept and claimed that he liked
it better than the old concept.

Instructors’ Feedback
We asked several questions in an anonymous survey
both years. We were especially interested in the instruc-
tors’ workload due to the new concept. The majority (6
out of 11) replied that the new concept consumed less or
the same amount of time than the old concept, 3 ab-
stained. Most (8 out of 11) said that their personal stress
level during contact hours was ok or even less than
before, 3 found the new concept more strenuous.

In the first year, most instructors criticized the instruc-
tor/student ratio as too low. Quite often time ran out
towards the end of a lab session, when many students
wanted their work to be assessed.

7 out of 11 instructors saw the new concept as a substan-
tial improvement, 4 abstained, none saw it as a draw-
back.

General Observations
Most of the (few) problems of the first year could be
avoided in the second year:

• The exercise sheets just had to be polished in the
second year, which relieved the instructors substan-
tially.

• The faculty granted more instructors, leading to an
improved instructor/student ratio.

One of our observations with the old concept, that the
interrelation between analysis, design, and construction
in software development is hardly teachable in exercises
designed for weekly sessions, still applies to the new
concept. Students get in contact with this issue for the
first time in the mini project, but at that time already
within a group of collaborators. There is something
missing in between, where individuals experience how a
concrete, real-life problem can be solved by software
that is designed and implemented after an analysis of the
problem.

We observed that instructors from outside the Software
Engineering Group that had no experience with industry
training did not cope well with the intensity of the lab
work. Presence in two 3-hour lab sessions is stressful for
most of them; four 3-hour lab sessions are almost bor-
derline. In contrast, staff members that are used to full-
day teaching in the industry were less affected by this.

Instructors in an attended lab obviously need to have
comprehensive programming experience, in our setting
especially with imperative and object-oriented pro-
gramming. As experience within these paradigms can
still not be taken for granted, instructors have to be
selected carefully. Some graduate student instructors are
better suited for the job than some of the university staff
members that grew up programming in a different para-
digm.

6. DISCUSSION

Overall, we claim that so far our experience in industry
training could be well transferred to university educa-
tion. But there are still some points that need to be ad-
dressed:

• Soft skills in presenting small designs.

• Sometimes high discrepancy in skills of pair mem-
bers.

• Instructors’ skills are not necessarily specialized on
the topic taught.

• Organizational drawbacks (tutors and students have
problems in attending courses with atypical time-
frames, holdup on reviewing exercises at the end of
a session).

The focus of the P2 course is on core programming
practices; almost no soft skills (beside feedback within
programming pairs) are addressed. In the old concept,
students had to present their solutions in the tutorials in
front of around 20 people. We sacrificed this for the
sake of improved programming skills, but we are aware
that in future settings oral presentations should be on the
agenda again.

Proc ISECON 2004, v21 (Newport): §3452 (refereed) c© 2004 EDSIG, page 6

Bleek, Lilienthal, and Schmolitzky Sat, Nov 6, 3:00 - 3:25, Astor Room

In the near future the Informatics faculty in Hamburg
has to switch to a new structure that is much closer to a
Bachelor education in the Anglo-Saxon parts of the
world. The current plan includes the abolishment of
functional and logic programming in the first year and
its replacement with more imperative and object-
oriented basics. We appreciate this shift in focus, as it
allows us to elaborate on some important points that so
far could not be covered due to time constraints.

7. CONCLUSION

In this paper we have tried to present our experience
with transferring successful training in the industry to
university education. For the first time we did this not
just for one course, but tried to present the big picture,
ranging from first-year programming to graduate pro-
jects and industry internships. We think that in any
computer-related education, may it be computer science,
software engineering or information systems, object-
oriented analysis, design and programming together with
the soft skills to present and explain the resulting soft-
ware artifacts, should play a major role. We think that
industry training can be the major source for innovation
in university education, if the staff can gain experience
in both worlds.

8. ACKNOWLEDGMENTS

We thank Heinz Züllighoven for the freedom and sup-
port he gave us in designing the courses. Additional
thanks go to Petra Becker-Pechau for her active partici-
pation and work to implement these courses.

9. REFERENCES

[1] Barnes, D.J., M. Kölling: Objects First with Java
– A Practical Introduction using BlueJ, 2nd Ed.,
Prentice Hall / Pearson Education, New York,
2004.

[2] Baskerville, R. L. Investigating Information
Systems with Action Research. Communications
of the Association for Information Systems.
Volume 2, 19, October 1999

[3] Beck, K. eXtreme Programming - Embrace
Change. Addison-Wesley, Boston, MA, 2000.

[4] Becker-Pechau, P.; Bleek, W.-G.; Lilienthal, C.;
Schmolitzky, A., “Educating Non-Programmers
to Flexible, Communicative Software Engineers
in a 10 Month Training Program”, 17th Confer-
ence on Software Engineering Education and
Training (CSEE&T 2004), Norfolk, Virginia,
2004

[5] Becker-Pechau, P.; Bleek, W.-G.; Schmolitzky,
A.; Züllighoven, H., „Integration agiler Prozesse
in die Softwaretechnik-Ausbildung im
Informatik-Grundstudium“, Software

Engineering im Unterricht der Hochschulen
(SEUH) 2003, Berlin; In: dpunkt-Verlag, 2003

[6] Becker-Pechau, P.; H. Breitling; M. Lippert; A.
Schmolitzky, “Teaching Team Work: An Ex-
treme Week for First-Year Programmers”, In:
Michele Marchesi, Giancarlo Succi (Eds.), Ex-
treme Programming and Agile Processes in
Software Engineering, Proceedings of 4th Inter-
national Conference XP 2003, Genova, Italy,
May 2003, Springer, LNCS 2675, pp. 386-393.,
2003.

[7] Bleek, W.-G., G. Gryczan, C. Lilienthal, M.
Lippert, S. Roock, H. Wolf, H. Züllighoven
„Von anwendungsorientierter
Softwareentwicklung zu anwendungsorientierten
Lehrveranstaltungen - der Werkzeug &
Material-Ansatz in der Lehre“, Software
Engineering im Unterricht der Hochschulen
(SEUH) 99, Berichte 52, B. Dreher/Ch.
Schulz/D. Weber-Wulff (Hrsg.), Workshop des
German Chapter of the ACM und der
Gesellschaft für Informatik (GI), pp. 9-20, 1999

[8] BlueJ. www.bluej.org (last visited June 30 2004)

[9] Brown, A. L., Ash, D., Rutherford, M., Naka-
gawa, K., Gordon, A., Campione., J. C. Distrib-
uted Expertise in the Classroom. In Salomon, G.
(publ.): Distributed cognitions: psychological
and educational considerations. Cambridge Uni-
versity Press, UK, 1993, pp. 188–228.

[10] Clark, H. H., Brennan, S. E., Grounding in
Communication. In Resnick, L., Levine, J. M.,
Teasley, S. D. (eds.): Perspectives on Socially
Shared Cognition. Washington, USA, 1991.

[11] Cockburn, A., Agile Software Development,
Addison-Wesley, Boston, 2002.

[12] Dewey, J. (1933) How We Think: A Restate-
ment of the Relation of Reflective Thinking to
the Educative Process. Chicago, USA.

[13] Eclipse. www.eclipse.org (last visited June 30
2004)

[14] Floyd, C., F.-M. Reisin, and G. Schmidt. Steps to
software development with users. In C. Ghezzi
and J.A. McDermid, editors, ESEC89, number
387 in Lecture Notes in Computer Science,
pages 48–64. Springer-Verlag, Berlin, 1989.

[15] Johnson, B. Teacher-As-Researcher. ERIC Digest.
ERIC Clearinghouse on Teacher Education
Washington DC. ED355205. 1993

[16] Piaget's theory. In P. Mussen (ed) Handbook of
child psychology, Vol.1. New York: Wiley,
1983.

[17] Studies in reflecting abstraction. Hove: Psychology
Press, 2000.

Proc ISECON 2004, v21 (Newport): §3452 (refereed) c© 2004 EDSIG, page 7

