
Pangborn Sat, Nov 6, 4:00 - 4:25, Astor Room

Operations Research and the Information
Systems Curriculum

Greta Pangborn

gpangborn@smcvt.edu
Computer Science and Information Systems, Saint Michael’s College

Colchester, VT 05439

Abstract

The current boom in information technology and the corresponding wealth of data available to

management would seem to make quantitative data analysis techniques more essential than

ever. This paper includes discussion of how a number of operations research techniques

including mathematical programming, simulation, yield management, dynamic programming,

network algorithms, and statistics might be incorporated into the information systems

curriculum.

Keywords: operations research, mathematical programming, simulation, yield management,

dynamic programming, statistics, information systems curriculum

1. INTRODUCTION

The executive summary of the IS 2002

Model Curriculum and Guidelines for

Undergraduate Degree Programs in

Information Systems (Gorgone 2002) lists

strong analytical and critical thinking skills

as one of four key characteristics important

for an IS professional. The authors propose

to develop these characteristics through a

curriculum that contains embedded problem

solving as well as mathematics and statistics

prerequisites. Operations Research

techniques, namely analytical methods to

inform decision making would seem to

match the quantitative needs of IS students.

If students are going to feel comfortable

applying mathematical skills after graduation

they must gain experience using these skills

in the context of computational information

systems activities. Students must learn not

only how to organize and efficiently access

data but also how to analyze data. This can

be accomplished through assignments

related to topics such as mathematical

programming, simulation, and statistics that

emphasize problem formulation, modeling,

and the use of heuristics.

2. MATHEMATICAL PROGRAMMING

Linear programming has its roots in military

planning problems for World War II and

involves the maximization or minimization of

a linear objective function subject to a set of

linear inequalities. Integer programming

adds additional restrictions that some or all

of the variables must take on only integer

values, while nonlinear programming relaxes

the linearity restrictions. (However, it

should be noted that nonlinear programming

problems are too challenging for algorithms

to effectively handle the general case.)

Current versions of Microsoft’s Excel

spreadsheet program include a Solver add-in

with a simplex algorithm implementation for

linear programs, branch-and-bound for

integer programs, and a generalized reduced

gradient algorithm for nonlinear problems

(Microsoft Support Pages, 2004). This tool

is particularly appealing since most students

will have access to Excel in their future

positions.

A reasonable introductory IS course

assignment is to have students design a

spreadsheet that will support efficient trial

and error attempts for finding a good

solution to a small integer programming

Proc ISECON 2004, v21 (Newport): §3454 (refereed) c© 2004 EDSIG, page 1

Pangborn Sat, Nov 6, 4:00 - 4:25, Astor Room

problem. The transportation problem

attempts to minimize the cost of shipping

(identical) goods from a set of n supply

centers (each with a specified inventory) to

a set of m demand centers (each with a

specified demand level). The unit shipping

cost from each supply center to each

demand center is known, the total supply is

greater than or equal to the total demand,

and the goal is to determine the minimum

cost shipping plan that fills the demands

while respecting the supply constraints. The

students should create spreadsheets that

have all of the given information in a

separate parameter area, a clearly marked

area for the user to enter shipping numbers

in, and formulas that automatically update

the total cost and give the user an indication

of how well demand is being met and what

suppliers have left in stock.

Students should also be asked to articulate

how they arrived at their final solution.

What might constitute a good initial

solution? What improvement strategy did

they employ? This exercise leads naturally

into a demonstration of the Solver software,

since the students have completed 95% of

the required work in their creation of a

flexible spreadsheet design. The appendix

shows how Solver may be applied to such a

spreadsheet. This problem can also lead

into an exploration of sensitivity analysis;

i.e., how does the solution change when one

of the objective function coefficients is

modified or when one of the resource limits

is changed.

A more complex scheduling formulation (but

one that is still reasonably small) can be

presented to show the difficulty of some of

these problems and the limitations of the

Excel Solver software. Such an example

would be a machine scheduling problem with

approximately 3 identical machines and 10

jobs that each require some number of

contiguous minutes on any one of the

machines. The corresponding objective

function should maximize the minimum

amount of reserve time available on the

machines. Such a problem indicates the

difficulty of these problems to students since

it is unrealistically small but is still not

solved instantly by the Excel Solver.

3. DYNAMIC PROGRAMMING

The basic idea of dynamic programming is to

transform a complicated problem into a

series of simple problems using a set of

recursive equations. One particularly

famous example is the knapsack problem

where there is a bag with weight limit B and

a set of n potential items to take on the trip

(each with an associated weight and utility).

The goal is to maximize the utility of the

selected items while not exceeding the bag’s

weight limit. This problem is trivial (for bag

sizes 0…B) if there is only one item to

consider; you take the item if it will fit in the

bag and omit it if it does not. If you want to

consider a second item you then need to

decide if you are better off taking the second

item along with the best solution for the first

item at the reduced bag size or omitting the

second item and leaving all of the space for

the first item. Once you have the best

solution for bag sizes (0..B) for two items,

you would take the third item into

consideration in a similar manner, and so

on. Dynamic programming gives yet

another way to illustrate the power of

recursion in an introductory programming

class, though students are likely to find the

knapsack problem more realistic if it is

rephrased as an investment question.

There are also a number of dynamic

programming algorithms used in

bioinformatics that can interest students

because of their obvious application and the

clear challenges related to the size of the

DNA and protein sequence datasets they

must be applied to. The maximum

subsequence search starts with a sequence

and a score for each nucleotide or amino

acid that appears in the sequence. The goal

is to determine a maximum scoring

subsequence of the original sequence, where

the subsequence score is the sum of the

scores of the nucleotides or amino acids that

appear in that subsequence. Students are

quick to see a brute-force approach looking

at each possible subsequence that runs in

either O(n3) or O(n2) time depending on the

implementation. A simple dynamic program

can be used to reduce this to O(n) time.

This dynamic program relies on the fact that

the best subsequence ending at a spot j will

consist of either just that element or an

extension of the best sequence ending at

spot (j-1).

Proc ISECON 2004, v21 (Newport): §3454 (refereed) c© 2004 EDSIG, page 2

Pangborn Sat, Nov 6, 4:00 - 4:25, Astor Room

4. SIMULATION

A computer simulation is an abstraction or

imitation of a real system that is used as an

inexpensive way to model the outcomes of

potential decisions when the complexity of

the system makes analytical analysis

impractical. Simulation models generally fall

into two categories: dynamic system

simulations that capture the sequence of

interactions among parts of a system over

time and Monte Carlo simulations which are

static and repeatedly sample from a given

input distribution in order to create a

characterization of the related output

distribution.

The newsboy problem is a classic

probabilistic inventory model that could be

easily explored in an introductory

programming course Monte Carlo simulation

assignment. In the newsboy problem the

goal is to determine the appropriate number

of papers to buy from the distributor in the

morning where the known information

includes the cost of the papers, the price

each paper may be sold for, the penalty for

having too few papers to meet the demand,

and the probability distribution of the

demand. Depending on whether the

members of the class have already taken a

statistics course, the demand distribution

could be either a simple discrete distribution

given in tabular form or a more complicated

distribution. (Similarly the expectations

regarding output analysis could vary

accordingly.) Such an application could also

be appealing in a course that employed a

language such as Visual Basic, where part of

the assignment would focus on the design of

a GUI for a decision support tool. New Excel

add-ins have also made it possible to work

with Monte Carlo simulations using

spreadsheets as the computational engine

(Evans 2000).

An extremely simple system simulation that

demonstrates the impact of randomness in a

system is a manufacturing line involving n

sequential machines with identical

processing time distributions and buffer

space in front of each machine to store work

in progress (WIP). For example, during one

time unit the number of units processed by a

given machine could be a random number

between 1 and 10. The students should

examine the buildup of WIP in the buffers as

well as the amount of time machines are left

idle. This analysis may again be completed

in either a standard programming

assignment (where it may easily be

extended to a more complicated system) or

in a spreadsheet assignment (Johnson

2002).

5. YIELD MANAGEMENT

Yield Management refers to a pricing model

in which a company charges buyers different

prices in accordance with the value they

place on the good in question. A classic

example of yield management is the airline

industry’s use of a two week window to

differentiate between early booking leisure

travelers who are generally thrifty and late

booking business travelers who are willing to

pay a premium. Yield management has had

a significant impact on the bottom line for

the airline industry and was described as the

“single most important technical

development in transportation management

since the era of airline deregulation,” by

former American Airlines CEO Robert

Crandall (Smith 1992). Characteristics that

indicate a situation where yield management

is likely to be useful include perishable

goods or services which cannot be stored,

uncertain demand, and the ability to

differentiate among customer segments.

Netessine and Shumsky provide a set of

potential examples for students to work with

(Netessine 2002). Students could also

consider applying this idea to a new arena

such as the movie theatre industry where

online ticket purchases increase the

potential for categorizing customers

(Oberwetter 2001).

6. NETWORK PROBLEMS

A wide range of problems can be modeled

using graphs consisting of a set of nodes and

a set of edges that each connects a pair of

nodes. A few examples include road

planning (where nodes correspond to cities

and edges to potential highways),

professional relationships (where nodes

correspond to people and edges correspond

to working relationships), and mechanical

systems (where nodes correspond to joints

and edges to rods or springs). In many of

these problems there is also cost information

associated with each edge (or node). Graph

problems can be an excellent tool for

Proc ISECON 2004, v21 (Newport): §3454 (refereed) c© 2004 EDSIG, page 3

Pangborn Sat, Nov 6, 4:00 - 4:25, Astor Room

demonstrating the advantages and

disadvantages of different data structures

(adjacency matrices versus linked lists) and

run-time analysis.

One classic network example is the Minimum

Spanning Tree (MST) problem which seeks

to find a minimum cost subset of the edges

that connects all of the nodes in the graph.

This problem can be solved by a pair of

greedy algorithms (Prim’s and Kruskal’s)

which are reasonable to code in an

introductory class and can be used to

highlight some of the issues mentioned

above. A typical example used to motivate

the MST problem is the question of finding

the least expensive way to connect a

network of machines. A slightly more

sophisticated case to consider would be the

storage of DNA data where the nodes

correspond to DNA sequence data and the

cost of an edge corresponds to the number

of differences between the sequences

represented by its endpoints.

The Critical Path Method (CPM) is a project

management technique that considers a

graph with nodes corresponding to each of

the tasks, directed edges between tasks

where one task must be completed before

the other can be started, and edge lengths

corresponding to task completion times.

The longest path from the starting task to

the finishing task (dummy tasks each

requiring 0 time) is the minimum amount of

time that it will take to complete the project.

This problem can be solved via a simple

dynamic programming recursion in a

programming course or using a spreadsheet

(Seal 2001).

7. PROBABILITY AND STATISTICS

It is expected that most IS students will take

a semester long course in statistics and

probability, however, it is important that

these ideas are reinforced in other courses.

One way to do this is to integrate statistical

analysis into other activities such as the

simulation exercises above. There are also

many examples from statistics and

probability classes that may be adapted for

introductory programming courses. One

such example is the game of HOG, a dice

game that was developed for the purposes

of teaching probability and statistics

(Feldman 2003). The basic rules of the

game are as follows: the players take turns

rolling the dice, in a given round the players

may roll as many dice as they would like, if a

player rolls a 1 (on any of the dice) they

receive a score of 0 for that round,

otherwise their score is the sum of all of the

dice, the first player to reach a score of 100

wins. The students need to determine what

strategy they want to employ and to defend

their strategy empirically. (Extra credit

could be given to students who also justify

their results analytically.)

8. FINAL COMMENTS

INFORMS, the Institute for Operations

Research and the Management Sciences is

currently in the midst of a campaign

promoting the tagline “The Science of

Better” (Horner 2003). They point out the

increased importance of analytical decision

making in the context of the current boom in

information technology. Our students must

be able to effectively use the large amounts

of data and computing power at their

disposal to make more informed decisions.

The quantitative decision support tools

discussed in this paper may be integrated

into any number of courses currently

included in the Information Systems

curriculum. These topics could also be

combined into a quantitative decision

analysis elective that would complement the

curriculum.

9. ACKNOWLEDGEMENTS

The author wishes to thank Mike Battig for

his helpful suggestions and encouragement.

10. REFERENCES

Evans, J.R, 2000, Spreadsheets as a Tool for

Teaching Simulation, INFORMS

Transactions on Education, Vol. 1, No. 1,

http://ite.informs.org/Vol1No1/Evans/.

Feldman, L. and Morgan, F., 2003, The

Pedagogy and Probability of the Dice

Game HOG, Journal of Statistics

Education Volume 11, Number 2,

www.amstat.org/publications/jse/v11n2/

feldman.html.

Gorgone, J., Davis, G., Valacich, J., Topi, H.,

Feinstein, D. & Longenecker, H., 2002,

Proc ISECON 2004, v21 (Newport): §3454 (refereed) c© 2004 EDSIG, page 4

Pangborn Sat, Nov 6, 4:00 - 4:25, Astor Room

IS 2002: Model curriculum and

guidelines for undergraduate programs

in information systems.

http://www.acm.org/education/is2002.p

df.

Horner, P., 2003, The Science of Better,

OR/MS Today, Vol. 30, No. 6.

Johnson, A. and Drougas, 2002, A., Using

Goldblatt’s Game to Introduce

Simulation in the Introductory

Operations Management Course,

INFORMS Transactions on Education,

Vol. 3, No. 1.

Microsoft Support Pages, 2004, Solver Uses

Generalized Reduced Gradient

Algorithm,http://support.microsoft.com/

default.aspx?scid=kb;en-us;82890.

Netessine, S. and Shumsky, R., 2002,

Introduction to the Theory and Practice

of Yield Management, INFORMS

Transactions on Education, Vol. 3, No. 1,

http://ite.informs.org/Vol3No1/Netessin

eShumsky/.

Oberwetter, R., 2001, Building Blockbuster

Businesses, OR/MS Today, Vol. 28, No.3.

Seal, K.C., 2001, A Generalized PERT/CPM

Implementation in A Spreadsheet ,

INFORMS Transactions on Education,

Vol. 2, No. 1,

http://ite.informs.org/Vol2No1/Seal/.

Smith, B.C., Leimkuler, J.F., and Darrow,

R.M., 1992, Yield Management at

American Airlines, Interfaces, Vol. 27,

No. 1.

APPENDIX

The following screen snapshots indicate how

to solve an instance of the transportation

problem using the Excel Solver add-in. In

this case there are four supply centers with

respective supply quantities of 40, 70, 55,

and 35 and six demand centers with

respective demand quantities of 30, 45, 20,

15, 50, and 40. The “goods shipped” area

provides a clearly marked rectangle in which

the user can enter shipping solutions. The

totals shipped from each supply center and

to each demand center are automatically

updated. The unit shipping costs are

displayed just below, and the cost of the

current solution is automatically calculated

at the bottom.

This spreadsheet supports reasonably

efficient testing of initial solution and

improvement heuristics. This spreadsheet

structure also makes it very easy to input

the necessary information into the Excel

Solver. The Solver Parameters window

allows the user to enter the target cell (total

cost), the objective (maximization), what

values may be changed (the shipping

quantities), and the constraints. It makes

sense to introduce students to integrality

constraints, even though this is redundant in

the case of the transportation problem.

Solver Options that should be discussed

include the tolerance setting, non-negativity

requirements, and the indication that this is

a linear model.

Proc ISECON 2004, v21 (Newport): §3454 (refereed) c© 2004 EDSIG, page 5

Pangborn Sat, Nov 6, 4:00 - 4:25, Astor Room

Proc ISECON 2004, v21 (Newport): §3454 (refereed) c© 2004 EDSIG, page 6

