Scher and Qiu Sun, Nov 7, 8:30 - 8:55, Ballroom C

FD-EXPLORER: A Pedagogical and Design Tool for
Functional Dependency Exploration

Julian M. Scher
Department of Information Systems
College of Computing Sciences
New Jersey Institute of Technology
Newark, New Jersey 07102 USA
Scher@adm.njit.edu

and

Canghui Qiu
Department of Electrical and Computer Engineering
Newark College of Engineering
New Jersey Institute of Technology
Newark, New Jersey 07102 USA
Cq2@njit.edu

Abstract

Functional dependencies are merely a type of relationship between attributes in a relation, or,
alternatively, may be viewed as constraints on attributes, but their importance in the optimal design of
databases is enormous. Normalization of a database, and the decomposition of relations, are totally
dependent upon the database designer being able to identify functional dependencies, and manipulate them.
Curricula in CS, IS and IT will almost always include a course in database design, with functional
dependencies being a key topic in such a course. FD-Explorer is a new tool we have developed which
enables both the student of database design, as well as professional database developers, to define a known
set of functional dependencies on a relation, deduce new sets of functional dependencies, compute closures
of individual attributes and the set of functional dependencies, and identify superkeys. This software tool,
which we ultimately intend to make freely available for students in database design classes in institutions of
higher learning, will provide the user with significant insight into the underlying explicit and implicit
relationships between attributes, contribute to the optimal design of database structures in applications, and
enhance the user’s understanding of the fundamental principles of functional dependencies.

KEYWORDS: Functional dependencies, database design, Armstrong’s axioms, normalization, attributes,
closure.

1. DATABASE DESIGN IN THE IS CURRIULA ACM, AIS and AITP, a course in database design is one
of ten required courses recommended for all students
majoring in Information Systems (Gorgone et. al,
2002).. The bulk of database design course material for
1S2002 is focused in the recommended course 1S2002.8
(Physical Design and Implementation with DBMS), but
also appears in 1S2002.7 (Analysis and Logical Design).
Furthermore, in the formal accreditation standards
established by the Computing Accreditation
Commission for Information Systems curricula,

The capability for an Information Systems professional
to understand, apply, and design database applications
has been a key component in the various IS curricula
recommendations issued by ACM and other professional
organizations. For instance, in "IS2002 - Model
Curriculum and Guidelines for Undergraduate Degree
Programs in Information Systems," jointly developed by

Proc ISECON 2004, v21 (Newport): §4123 (refereed) (© 2004 EDSIG, page 1

Scher and Qiu

Sun, Nov 7, 8:30 - 8:55, Ballroom C

Database Management is one of six areas required to be
in the core of every fully accredited Information
Systems curriculum (Computing Accreditation
Commission, 2004).

The Year 2001 Model Curricula for Computing (CC-
2001), created by a Joint IEEE Computer Society/ ACM
Task Force to wupdate the 1991 curricula
recommendations of the group, released the
Strawman_Report in March, 2000, detailing the
recommendations of this group. Information
Management (IM) is identified as one of the thirteen
‘knowledge areas’ for computing disciplines, and IM4,
Relational Database Design (functional dependencies,
normalization, etc.) is identified as one of the eight
components of the Information Management core. A
previous discussion of the role of Database Design in the
Computing curricula may also be found in (Mohtashami
and Scher, 2000), which also details the relevance of
Bloom’s Cognitive Domain Taxonomy in teaching
database design concepts.

Database Design is thus seen to be a key knowledge area
for the Information Systems professional, and it could be
said that the “heart” of optimal database design is
normalization, and that the “heart” of normalization is
functional dependencies. In the database design life
cycle, the design team will initially create a high level
logical model for a relational database by using an
Extended ER model, an IDEFIX data model, a semantic
object data model, or a UML style data model (Kroenke,
2004). Subsequently, the data model will be transformed
into a relational design. During the conceptual design
process, functional dependencies and keys will be
identified. The relational design process requires that the
database designer scrutinize each relation, and working
with the enterprise for which the database application is
being developed, identify the functional dependencies,
particularly those which do not involve the primary key
as a determinant. Once the functional dependencies have
been established, the normalization process may
proceed, and the database designer will seek to structure
the relations into the possible highest normal form (e.g.,
Domain Key Normal Form).

2. PROPERTIES OF FUNCTIONAL
DEPENDENCIES

A formal definition of a functional dependency states
that if R is a relation schema, and A and B are non-
empty sets of attributes in R, then B is functionally
dependent on A iff each value of A in R has associated
with it exactly one value of B in R, and the formal
notation would be A> B, where A is referred to as the
determinant, and the attributes on the RHS are referred
to as the dependent. A-> B is formally read as “A
functionally determines B.” Functional dependencies
can also be viewed as integrity constraints, which every
instance of the database must obey.

Proc ISECON 2004, v21 (Newport): §4123 (refereed)

In identifying functional dependencies between
attributes in a relation, it is crucial that we distinguish
clearly between the values held by an attributes at a
specific point in time, and the set of all possible values
that an attribute may hold at different times. Thus, a
functional dependency is a property of a relational
schema rather than a property of a particular instance of
the schema. (Connolly and Begg, 2002).

In surveying users to obtain the necessary information
for a database, (Pratt and Adamski, 2002) recommend a
design methodology based upon a survey form, which
helps to identify entities, attributes, relationships, and
functional dependencies. It is acknowledged that users
probably will not understand what a functional
dependency is, and it is critical, then, that appropriate
questions are asked in the survey to help one identify
functional dependencies. Appropriate questions would
be very specific, such as “If you know a particular
employee number, can you establish other information,
such as the name?” If this fact is ascertained, then one
can state that the department number is functionally
dependent on the employee number. An additional
question would be “Do you know the number of the
department to which the employee is assigned?” If this
is ascertained for all employees, one can then state that
the department number is functionally dependent on the
employee number. On the other hand, if a given
employee can be assigned to more than one department,
one could then infer that the department number would
not be functionally dependent on the employee number.

The process of determining functional dependencies is
not merely a task for the database designer, but must
clearly involve key personnel in the enterprise, who
have an intimate understanding of the relationships
between the attributes that are being used in a particular
relation within the relational database design.

Given a client environment, the task of identifying valid
functional dependencies could present a formidable task
for both the student of database design, as well as the
professional. Many of the difficulties associated with
this process are discussed in the foundational work by
(Kent, 1978) and have much in common with
identifying user requirements for a database and in
various aspects of model-building. We declare
functional dependencies based upon the meaning of
attributes, but there is a risk that some meanings could
be subjective in nature. Kent focuses on the
philosophical issues on how we perceive reality and this
applies to all aspects of data modeling (which include
identifying functional dependencies), and the difficulties
in getting from reality to a data structure through a
human language. The needed information is often "too
amorphous, too ambiguous, too subjective, too slippery
and elusive, to ever be pinned down precisely..." (Kent,
1978). A functional dependency is a structural
relationship, and as (Kent, 1978) points out "Structure is
process slowed down."

(© 2004 EDSIG, page 2

Scher and Qiu

Sun, Nov 7, 8:30 - 8:55, Ballroom C

A key philosophical consideration in identifying
functional dependencies is the issue of there being a
single objective view of the social organization for a
client in our database approach. And yet the belief in the
existence of such a viewpoint is often implicit in
database design, including functional dependency
identification. In practice, the viewpoint from which a
"corporate database" is constructed is often the
viewpoint of its Information Systems people. This
viewpoint has its own history, its own process of
development. It is not merely a snap-shot of the
company information structure, it is in actuality the
product of a social process.

In the ideal, the database designer should be able to
identify every legitimate functional dependency;
however, in reality, the properties of functional
dependencies enable us to make inferences of new
functional dependencies from existing ones, which, in a
sense, simplify the task of the database designer. The
software tool we have developed, FD-Explorer,
simplifies this task even further, by guiding the user
through this inference process, and automating the
logical computation that enable the inference of new
functional dependencies from existing ones.

The software tool we have designed and implemented,
FD-Explorer, invokes several of the well-known
properties of functional dependencies, which we shall
review.

The classic axioms regarding functional dependencies
are due to Armstrong (Armstrong, 1974). Armstrong’s
Inference Axioms tell us that if A, B and C are subsets
of attributes of a relation R, then the following axioms
will hold:
Reflexivity Rule: If B is a subset of A,
then A ----> B (this implies that A -> A will
always hold, and functional dependencies of
this type are known as trivial functional
dependencies)Augmentation Rule: If A ---->
Ba
then AC ----> BC
Transitivity Rule: If A ----> B and B ----> C,
then A--—-->C

The following rules can be derived from Armstrong’s
Axioms:
Union Rule: If A ----> B and A ----> C, then
A ---->BC
Decomposition rule:If A ----> BC, then
A--->Band A ---->C
Pseudotransitivity rule: If A ----> B and
CB ----> D, then AC ---->D

We would like to be able to explore all of the functional
dependencies implied by a specific set of functional
dependencies, and this motivates us to define the closure
of a functional dependency set. If we let F represent the
set of specified functional dependencies for some

Proc ISECON 2004, v21 (Newport): §4123 (refereed)

relation R, then we will define F* to be the closure of F,
consisting of all functional dependencies that may be
derived from the FD’s in F. By repeatedly and
exhaustively applying Armstrong’s Axioms (and the
Derived Rules), one may obtain all of the functional
dependencies in F'. Database designers and database
students have been manually doing this procedure to
obtain the closure of the attribute set, but with the advent
of our FD-Explorer software, the closure will be
determined by the program after the user has provided
the original set of functional dependencies.

Database designers are often interested in obtaining the
set of attributes of a relation R that are functionally
determined by a particular attribute A. This is referred to
as the closure of A, denoted by A”. A crucial use of the
closure of an attribute for database designers is the
identification of superkeys. (A superkey is a set of
attributes that functionally determines all of the
attributes in a relation.) So, if the database designer
computes the closure of an attribute, and this closure of
is the relation itself, then that attribute is a superkey of
the relation R.

One method for obtaining the closure of an attribute A is
to compute all of F" and then identify only those
functional dependencies in F" which have A as the
determinant, and for such functional dependencies, the
union of the set of dependents will yield the closure A™.
However, a better algorithm appeals to the very
definition of functional dependency, and is presented in
numerous database design texts (see (Ricardo, 2004)) as
follows:

Closure Algorithm for Attribute Set A
Result €A,;
While (result changes)
For each functional dependency B>C
If B is contained in Result
then Result €-Result U C;
EndWhile;
A" € Result;

We also note that this algorithm to obtain the closure of
an attribute has an alternative usage, and that is to help
up determine whether a specific functional dependency
is present in R. That is, if we have attribute sets A and
B, and need to determine whether A functionally
determines B, we merely compute the closure of A and
observe if it includes B.

3. FD-EXPLORER FUNCTIONALITY

Our System Data Flow Diagram is as follows:

. ", ot

Rehtionship OF D-Cover
Amaly e CE-Cover

nlyst PE-Cover*

© 2004 EDSIG, page 3

Scher and Qiu

Sun, Nov 7, 8:30 - 8:55, Ballroom C

*OFD-Cover (Optimized Functional Dependencies
Cover): After applying Armstrong Axioms to the user
added functional dependencies, the set of new functional
dependencies that we obtain is called the Optimized
Functional Dependencies Cover.

*CK-Cover (Candidate Key Cover): The sets of
combinations of attributes that can be uniquely used to
identify a database record without any extraneous data.

*PK-Cover (Primary Key Cover): Choose from CK.

FD-Explorer provides the user interface to guide the

user through the following steps:

. Creation of new attributes (via the New Attributes
Input screen)

. Definition of functional dependencies using the
created attributes (via the New FDs Building
screen)

d Viewing of existing functional dependencies (via
the Original FDs screen)

g Functional pendency Projpec!
Functional Dependency Praject
File Help

Allributes

Attribude Ingul

Funclional Dependancy Attibute 1;

Attribute 2:

Attribute 3

Define FI
_—

Original FOs

Result Reporl

. Viewing the final report (via the Optimized FDs
screen)

New Attributes Input screen: Figure 1.1 below is
the initial screen provided by FD-Explorer to the user
for entering the attributes associated with a relation. The
attributes need to all be specified prior to establishing
the functional dependency relationships between these
attributes.

The Attributes table in the right panel provides the user
with a full view of existing attributes (refer to Figure 1.1
below). The user can delete any attribute by first
clicking on the attribute, and then clicking on the
“Delete” button. Users can create new attributes by
typing into the “Attribute Input” textbox in the left
panel. FD-Explorer provides extensive error checking
and will alert the user to all input errors, such as null
values, and duplicate values.

Input Attributes Here

All Altributes

Alributes
GRACE |
HENRY

S
STU_ADDRESS
STU_ADVISOR
STU_HOWE
STU_ID
STU_MAJOR
STUI_MAME
STU_PARENT
[STU_TEL
STU_WORK
=TI FIP

[]

/

Dispiaying existing_ Alfributes
Figure 1.1

New FD Building screen: If the user clicks
on the “Define FD” button under the Attributes section

Selection Button

Attribute Option for Determinant

Determinant

on the extreme left panel, FD-Explorer brings the user to
the New FD Building screen of Figure 1.2.

Selaction Button
Dependent

& Functional Dependency Project ol x|
File Help
Atfribute: Flirutes: Allrigutes
TARGS o GRACE GRACE
Original F.fo o . T kaed
San Gaw
FoFr.[FOTo | |8TU_fDDRESS U_MODRESS
ETL.. BTU A |« [STU_ADVIZDR STL_ADVIZDR
Functional Dependency|cr ar 5. (75TU_HOME - - STU_HIWE
— e [5TUA. [STYID STUID
fine ST, (ST TU_MAJOR STU_KMAIOR
ks ST 5T {ISTU_MANE STU_MAME
[5TUL.. |5 |STU_PARENT STU_PARENT
Oniginal FOs 5T, | SSTU_TEL STU_TEL
GRA, STU_VORs TR
ETU.. | aTU_IP 5TU_2F
AR =TU. |
:l:j I -

e

Existing FD's Cancel Selection

/

Confirm Button Attribute Option for Dependent

Figure 1.2

Proc ISECON 2004, v21 (Newport): §4123 (refereed)

(© 2004 EDSIG, page 4

Scher and Qiu

Sun, Nov 7, 8:30 - 8:55, Ballroom C

FD-Explorer will initially display a list of all existing
functional dependencies (if any), so that the user can
view the precise set of functional dependencies already
created. The user may then start building a new
functional dependency by first choosing the appropriate
attribute(s) from the “Attributes” list on both sides;
clicking on an attribute on the LHS will initiate the
action to bring the corresponding attribute into the
determinant, while clicking on an attribute in the RHS
will initiate the action to bring the corresponding
attribute into the dependent. The corresponding “>>"

ﬁ Warning:A---=4 is not allowed! In this case:"STU_GPA'is equal to'STU_GPA®

and “<<” buttons will commit the action to add (or
delete) the corresponding attributes to the functional
dependency being constructed. When the user has
completed the building of the functional dependency,
the “ok” button is clicked, the screen will be refreshed
and the newly constructed functional dependency will be
displayed on the FD list on the left side of the panel. (If
the identical attribute appears in both the “determinant”
and the “dependent,” an error message with specific
information will be generated to so alert the user, as in
Figure 1.3)

Figure 1.3

Original FDs screen: FD-Explorer will launch the
“Original FDs screen” when the user clicks on the
“Original FDs” button in the left hand side menu (see
Figure 1.4 below). Thus, clicking on the “Original FDs”
button gives the user a list of all the original functional
dependencies the user created. The program will not
alter this original set of functional dependencies. (A list

Originag! FO 5 Deferminant

& Functional Dependency Project
Flle Help

Attributes

Original FDs Display

of optimized functional dependencies determined by
FD-Explorer can be viewed subsequently on the
“Optimized FDs” screen.)

If the user wishes to delete any one of the functional
dependencies, just select it, and then click the “Delete”
button at the bottom of the screen.

Jriging! FDs Dependent
=20 x]

o |

Determinant

I i Dependent

§ ETU_ID [STU_ADVISOR, STU_DPT, 5TU_GPA, STU_INT, STU_TAME
Funetismal Oapandency|-r, ~ |STU_PARENT, STU_PROGRAM, STU_SCHOOL, STU_SEX
ETU_ID |5TU_8EX
Define FO |STU_NAME. 5TU_SEX |STU_DFT
TU_DPT |STU_ADVISOR
STU_GPA |STU_SCORE
Original FOs. STU_SCORE, STU_INT |STU_PARENT
Result Report
| poete |

Deleie Selected Record
Figure 1.4

The Optimized FDs screen: This is the most
crucial component of FD-Explorer. Clicking on the
“Result Report” button will trigger a sequence of seven
analysis steps, as follows:

Proc ISECON 2004, v21 (Newport): §4123 (refereed)

1. Alphabetic Coding: Attribute names are internally
coded to optimize performance.

2. Apply Armstrong's Union Rule: In this step, we
determine if Armstrong's Union Rule will result in any
elimination of redundant functional dependencies. For

© 2004 EDSIG, page 5

Scher and Qiu

Sun, Nov 7, 8:30 - 8:55, Ballroom C

instance, if the user has defined A->B, A->C, A->D,
then Armstrong's Union Rule provides a new functional
dependency A->BCD, which means that the three
original functional dependencies are redundant and may
be deleted

3. Transitive Rule and Reorder, eliminate the same
attribute algorithm:

For instance, if A->BCD, BC->DE, then the result will
be as follows::

A->BCDDE and BC->DE yields A->BCDE and
BC->DE

4. Apply the Pseudotransitivity Rule to see if any new
functional dependencies can be implied. For instance, X-
>Y, WY->Z implies WX->Z

Opfimized FOs Deferminant

& Functional Dependency Praje.t

Flle Help

Attributes

Oplimized Fundional Dependency Matehing F

Dieeatiina
STU_ID
Funclional Dependency| o "1 aE ST SEX
- ETuOPT
Define FD STU_GPA
STU_SGORE, BTU_INT
STU_GFA, STU_INT
Original FO5
Rasult Report

/é

nmary keys: Stu_ID
andidate : Sih_ID

5. Eliminate similar alphabetic code algorithm - in order
to eliminate equivalent functional dependencies, this
algorithm is applied. For instance: ABC->D, BC->D can
be replaced by ABC->D, and thus BC->D can be deleted.

6. Sort code by alphabetic order algorithm: After a
sequence of analysis and combination steps, the result
will contain some duplicate values, so those
combinations of alphabetic codes will be re-ordered and
identical values eliminated.

7. Compute the candidate keys of the given relation R,
by first determining all the superkeys (a superkey of
relation R is a set of attributes which functionally
determines all the attributes in R). A superkey will be a
candidate key if it is minimal and contains no “extra”
attributes (i.e., it has no proper subset which is also a
superkey of the relation R).

Opdimized FDs Dependent

~oix|

—-=Tn

Dependent]
STU_ADVISOR, STU_DPT, STU_GPA, STU_INT, STU_NAM...
STU_DPT, ETU_ADVISOR
STU_ADVISOR
STU_SCORE
STU_FARENT
STU_FARENT

P
Primary Key

™~

Candidafe Key

Figure 1.5

FD-Explorer also maintains a Log file (in ASCII text
format), which records the detailed intermediate steps of
analysis and derivation based upon the functional
dependencies obtained from the initial “Define FD”
phase. This Log file, which is user-accessible from FD-
Explorer, provides the user with a (transparent) inner

I Log - Notepad
Fle Edk Fomat View Help

analysis perspective of how Armstrong's Union Rule,
Transitivity Rule and Pseudotransitivity Rule are applied
to derive additional functional dependencies. In Figure
1.6 below, we present a partial view of the Log File for a
user interaction, which depicts the application of
Armstrong’s axioms and the derived rules.

=1oix|

Created By Grace QIU

04 21,2004 8:18:58 AM GMT
STU_ID --> STU_GPA, STU_DPT
STU_ID --> STU_Program

It implies:

04 21,2004 10:23:13 AM GMT
[STU_NAME, STU_Sex-->STU_DPT
STU_DPT->STU_ADVISOR

It implies:

STU_DPT->STU_ADVOSOR

04 21,2004 5:21:37 PM GMT
STU_GPA->STU_SCORE
STU_SCORE, STU_INT=>STU_PARENT

STU_GPA->STU_SCORE
STU_SCORE, STU_INT->STU_PARENT

K|

STU_ID-->STU_GPA, STU_DPT, STU_Program

STU_NAME, STU_SEX->STU_DPT, STU_ADVISOR

>

Figure 1.6

Proc ISECON 2004, v21 (Newport): §4123 (refereed)

© 2004 EDSIG, page 6

Scher and Qiu

Sun, Nov 7, 8:30 - 8:55, Ballroom C

4. CONCLUSIONS

Identifying functional dependencies constitutes an
integral part of the database design process, and yet,
like many information design problems in the real
world, represents a particular challenge to the user,
whether the user be a database designer, or a student
of database design. Deducing new functional
dependencies from an existing set of functional
dependencies is a well-understood process with known
theoretical and procedural methodologies to assist us,
though for a significant number of attributes, this
deduction process could become burdensome. We
have designed a software tool, FD-Explorer, which
focuses on this process of exploring functional
dependencies, and applying known theoretical
procedures and rules which will both assist and
instruct users. There is still work remaining in terms of
usability studies of this tool with both students of
database design as well as professionals, and we hope
use the evaluation instrument to fine tune the tool for
the future.

5. REFERENCES

Armstrong, W.W., 1974, "Dependency Structures of
Data Base Relationships," Information
Processing 74, J. L. Rosenfeld, Editor, pp. 580-
583, Stockholm, Sweden, August 5-10, 1974.
North-Holland, ISBN 0-7204-2803-3.

Computing Accreditation Commission, 2003, "Criteria
for Accrediting Computing Programs - Effective
for Evaluations During the 2004-2005
Accreditation Cycle," ABET-CAC, Inc.,
Baltimore, MD.

Proc ISECON 2004, v21 (Newport): §4123 (refereed)

Connolly, T. and Begg, C., 2002, Database Systems:
A Practical Approach to Design,
Implementation and Management, Third
Edition. Addison-Wesley, Essex.

Gorgone, J., Davis. G., Valacich, J., Topi, H.,
Feinstein, D., Longenecker, H., 2002, "Model
Curriculum and Guidelines for Undergraduate
Degree Programs in Information Systems,"
Association for Information Systems.

Kent, William, 1978, Data and Reality, North Holland,
Amsterdam

Kroenke, D., 2004, Database Processing:
Fundamentals, Design and Implementation,
Ninth Edition, Prentice-Hall, Upper Saddle
River, NJ.

Mohtashami, M and Scher, J., 2000, "Application of
Bloom's Cognitive Domain Taxonomy to
Database Design," The Proceedings of the
ISECON 2000 Conference, v 17 (Philadelphia):
§918.

Pratt, P., and Adamski, J., 2002, Concepts of Database
Management, Fourth Edition, Thompson

Course Technology, Boston, Mass.

Ricardo, C., 2004, Databases Illuminated, Jones and
Bartlett Publishers, Sudbury, Mass.

© 2004 EDSIG, page 7

