
Conn and Forrester Fri, Oct 7, 3:30 - 3:55, Governors E

Model Driven Architecture: A Research Review
for Information Systems Educators Teaching

Software Development

 Abstract

The increasing complexity of business systems, the accelerating pace of technological change,
and the highly competitive business environment are overwhelming software development
methodologies that have stayed essentially the same for the last fifty years. Model Driven Ar-
chitecture (MDA) is a current initiative by the Object Management Group that represents a
major evolution in the way software is developed. There is growing consensus by the informa-
tion systems community on the fundamental principals of MDA, but some critical elements are
missing in the areas of transformation and system-behavior modeling. Agreement on stan-
dards and approaches in these areas will take some time, and substantial work remains before
MDA can replace traditional, long-practiced methods and be considered a routine approach to
software development. When this happens it has the potential to significantly improve the
integration of customers into the software development lifecycle. Traditional development
methodologies and the newer agile methods strive to overcome quality and delivery problems
by emphasizing customer involvement and by attempting to move system validation activities
(e.g. those concerned with confirming that the system will meet the customer’s needs) earlier
in the development lifecycle. The adoption of an MDA approach will not change the role of cus-
tomers in the development process or the nature of their activities; it will not change what
customers do. However, it can significantly change when customers validate a system’s func-
tionality. This paper will investigate these issues through a qualitative study using an inter-
pretivist epistemology, and will form generalized conclusions about MDA.

Keywords: Model driven architecture, MDA, Customer Integration, PIM, PSM, Life Cycle De-
velopment

Samuel S. Conn
sconn@regis.edu
Regis University

Denver, Colorado 80021

Lynne Forrester
lynne_forrester@msn.com

University of Denver
Denver, Colorado 80023

Proc ISECON 2005, v22 (Columbus OH): §2534 (refereed) c© 2005 EDSIG, page 1

Conn and Forrester Fri, Oct 7, 3:30 - 3:55, Governors E

1. INTRODUCTION

The increasing complexity of business sys-
tems, the accelerating pace of technological
change, and the highly competitive business
environment are overwhelming software de-
velopment methodologies that have stayed
essentially the same for the last fifty years:
programs are hand-coded with 3rd genera-
tion languages such as C++ using informal
models and designs (Frankel, 2003; Selic,
2003). Responding to changes and to in-
creasing complexity has become very ex-
pensive. Often applications must be exten-
sively re-coded for new technology, and the
original knowledge used to develop the ap-
plication is embedded inside the source code
and not readily available or even lost.

Model Driven Architecture (MDA) is a current
initiative by the Object Management Group
that represents a fundamental evolution in
the way software is developed. With MDA,
models (which until now have been informal
artifacts of design that become obsolete
shortly after creation) will be the primary
focus of development instead of application
code; and according to Frankel (2003) they
will become persistent artifacts of develop-
ment. MDA uses a collection of models,
standardized modeling languages, and spe-
cialized tools to define system requirements
in precise and formal ways so that applica-
tion code can be automatically generated
rather than hand-coded. What characterizes
these models and makes them so different is
their platform-independence. These models
can become persistent organizational assets
that capture domain-specific knowledge from
both the organizational community and the
technical community without reflecting any
specific technologies needed to implement
their functionality. Through complex and
specialized transformation and through code
generation, these models can be automati-
cally transformed and merged to create
technology-specific models as well as com-
plete applications. As the technology
changes, new applications can be regener-
ated for the new platforms without re-
engineering them. As the business require-
ments change, the models can be changed
with full knowledge of the implications, and
the applications can be regenerated auto-
matically.

2. INTEGRATING THE CUSTOMER INTO

THE DEVELOPMENT LIFE CYCLE

Traditional software development method-
ologies and the newer Agile Methods strive
to overcome quality and delivery problems
by emphasizing customer involvement and
by attempting to move system validation
activities (e.g. those concerned with con-
firming that the system will meet the cus-
tomer’s needs) earlier in the development
lifecycle. Agile methods, such as Extreme
Programming (XP), strive to make custom-
ers a team member throughout the devel-
opment process. Some methods even
adopt a test-first approach to design. Tradi-
tional methods promote spending adequate
time early in the development cycle to en-
sure detailed specifications accurately reflect
the user requirements. Sommerville (2004)
notes that they will often use prototypes to
validate specifications before programming
begins. Both methods believe that waiting
until after an application has been developed
to validate a system’s requirements is ineffi-
cient, causes significant delays, reduces
flexibility, and results in ineffective applica-
tions and potentially failed projects.

Because MDA development tools are focused
on models, MDA has the potential to bring
software design and development processes
closer to the realm of the customer. Plat-
form-independent models are easier for cus-
tomers to understand than are traditional
design specifications. Even though they are
developed in precise and formal ways, they
are written in the language of the customer’s
domain (and not the programmer’s). These
models abstract away the extraneous details
related to technical implementation so only
the essentials are described. MDA may
make it possible to integrate customers
more fully into agile development cycles and
provide ways to move system validation ac-
tivities to an earlier phase in traditional de-
velopment cycles. This research explores
that potential. After distilling the current
literature on MDA, a general overview of the
MDA models and processes will be pre-
sented. The potential for MDA to improve
customer integration into the software de-
velopment lifecycle is discussed. The final
section summarizes the conclusions.

Proc ISECON 2005, v22 (Columbus OH): §2534 (refereed) c© 2005 EDSIG, page 2

Conn and Forrester Fri, Oct 7, 3:30 - 3:55, Governors E

3. REVIEW OF THE LITERATURE

As a new initiative, MDA has generated,
somewhat paradoxically, too little and too
much published material. Because MDA is
comparatively new there are few works that
describe the overall vision of MDA with any
depth, and because there are still significant
disagreements and missing pieces, there are
dozens of works addressing specific issues. A
few that describe the overall potential and
promise of MDA are: a) shorter works by key
players in the MDA initiative such as high-
level summaries published in more popular
literature, on the Internet, or as marketing
pieces (e.g., Borland, 2004; Stephenson,
2003; Object Management Group, 2004;
Klasse Objecten, 2004a, 2004b, 2004c;
Frankel, 2004), b) those that cover the topic
only in the first chapters as an introduction
to a more specific discussion (e.g., Raistrick,
Francis, & Wright, 2004; Warmer & Kleppe,
2003; Arlow & Neustadt, 2004), or c) those
that describe the overall process in almost
skeletal fashion such as Mellor, Scott, Uhl,
and Weise (2004). Only Kleppe, Warmer,
and Bast (2003) describe the full vision of
MDA with any depth.

Because MDA is relatively new and because
definitive works with both breadth and depth
are few, there appears to be several differ-
ent perspectives and disagreements in the
MDA community, especially on how it should
be approached and developed. However,
there are three areas of general consensus
in the literature. The first is that MDA meth-
ods should be based on underlying consis-
tent standards and syntaxes (Brown, 2004).
By definition MDA is based on models; what
is important is that there is across-the-board
acceptance that these must be based on
standards. None of the literature reviewed
argued for using modeling languages that
were created from scratch, no matter how
formal and complete. All seemed to agree
that the foundational language should be
based whenever possible on the OMG’s Uni-
fied Modeling Language (UML) and Meta Ob-
ject Facility (MOF). This does not appear to
be because MDA is an OMG initiative, but
rather because UML is becoming the model-
ing language of choice for both software de-
velopment and system engineering in gen-
eral (Oliver, 1997).

The second area of agreement is that MDA
should enable the separation of concerns.
This commonly means business concerns
should be modeled and designed separately
from technical concerns. According to Som-
merville (2004) this has been a grounding
principle in software engineering for some
time. In MDA, this is envisioned as separate
platform-independent models (PIMs) and
platform-specific models (PSMs). This ap-
proach enables organizational and technical
experience as well as successfully used soft-
ware engineering patterns to be preserved
while limiting the influence of implementa-
tion methods and technologies (Booch,
2004). There are differences in what plat-
form-independence means, and Raistrick et
al. (2004) call for issues to be captured in
narrowly focused domains; Frankel (2003)
considers independence to be relative to a
specific model; and Frankel, Harmon,
Mukerji, Odell, Owen, Rivitt, et al. (2003)
identify a model called the computation in-
dependent model (CIM) that is even more
abstract than a PIM. The authors consis-
tently highlight separation as important and
argue it should be a fundamental part of
MDA. Hubert (2001) describes the overall
importance of platform-independence as the
separation of two lifecycles that do not be-
long together. Business-relevant architecture
models and implementation technologies
change and move with very different forces
and timescales. They are obviously related,
but coupling them in the wrong way can
cause problems. Mellor et al. (2004) de-
scribe MDA as a set of methods, standards,
and tools that strive to separate an applica-
tion’s functionality from the influences of
specific technologies, to decouple these so
that last minute implementation decisions
can be made.

The third area of agreement is that com-
puter automation to manipulate and trans-
form models and to generate code should be
a fundamental part of an MDA process.
Rapid changes in technology are overwhelm-
ing software development methodologies
that have stayed essentially the same for
the last fifty years. Both Frankel (2003) and
Selic (2003) say that even though some new
programming concepts such as structured
programming and object orientation have
been adopted, developers are still writing
the same code by hand (i.e. an IF statement

Proc ISECON 2005, v22 (Columbus OH): §2534 (refereed) c© 2005 EDSIG, page 3

Conn and Forrester Fri, Oct 7, 3:30 - 3:55, Governors E

in C++ is the same as an IF statement in
FORTRAN) and that the current practice of
millions of developers needing to learn com-
pletely new technology every two to three
years is not scalable. All the authors cover
MDA processes in some depth (e.g., Mellor
et al., 2004; Kleppe et al., 2003; Raistrick et
al., 2004; Frankel, 2003; Brown, 2004) dis-
cuss the increasing level of abstraction in
which software is developed, starting with
the early invention of machine-code compil-
ers and writing in assembly code and ending
with the transition to the more abstract 3rd
generation languages used today. They see
MDA as the next evolutionary step in the
advancement of programming languages
(i.e. as the next step up in the level of ab-
straction).

The agreement on these areas is not surpris-
ing as they are fundamental tenets of MDA;
researchers and organizations involved with
developing MDA approaches and tools have
accepted them. At a high level there is con-
sensus. However there is disagreement in
the detail. The main issue under study is
how to transform systems developed with
abstract models into working applications.
What is apparent in the literature is that
tools for generating code from PSMs are
readily available and have been used for
years, especially in real-time system devel-
opment and with earlier CASE technologies.
This part of the process is not an issue.
What does concern these researchers and
organizations is how to transform PIMs into
PSMs.

The majority of the missing pieces, key dif-
ferences, research and development efforts,
and scholarly discussions revolve around this
issue. Most of the literature on MDA, while
generally discussing MDA in the first few
chapters, is focused on discussing the specif-
ics of transformation (e.g. Starr, 2002; Mel-
lor & Balcer, 2002; Raistrick et al., 2004;
Warmer et al., 2003; Frankel, 2003). The
OMG website lists other literature that was
not reviewed but which does specifically fo-
cus on Executable UML and Object Con-
straint Language (OCL) as potential meta-
models/modeling languages for models and
transformations. Much of the current schol-
arly research is focused on this issue as well.
There are multiple sources including discus-
sions on specific meta-models (e.g.,
Haustein & Pleumann, 2004; Sunyé, Pen-

naneac'h, Ho, Le Geunnec, & Jézéquel,
2001; Akehurst, Linington, & Patrascoiu,
2003; Akehurst, 2004; Cariou, Marvie, Sein-
turier, & Duchien, 2004; Sendall & Kozac-
zynski, 2003; Baresi, Heckel, Thöne, &
Varró, 2003), evaluations of potential trans-
formation methods (e.g., Bettin, 2003;
Czarnecki & Helsen, 2003; Küster, Sendall,
& Wahler, 2004), and evaluations of propos-
als for a transformation standard that the
OMG has received (e.g., Gardner, Griffin,
Koehler, & Hauser, 2003).

There is also disagreement on the general
approaches to transformation. Czarnecki et
al. (2003) have evaluated seven of them.
However, as Welsh (2004) describes the
situation, it has come down to two ap-
proaches that are fundamentally different.
Consider those who agree with Raistrick et
al., (2004) and Mellor et al., (2002), as well
as those with Kennedy Carter (n.d.), as
translationists who create PIMs so detailed
they can be executed without first being
translated into PSMs or code. Others such
as Kleppe and Warmer (2000), Warmer et
al. (2003), and Frankel (2003) are elabora-
tionists who start with PIMs and progres-
sively add refinements to produce PSMs.

 4. MDA MODELS AND PROCESSES

MDA uses three sets of models: platform-
independent models (PIMs), platform-
specific models (PSMs), and transformation
models (TMs). Platform-independent models
(PIMs) capture domain-specific knowledge
from both organizational environments as
well as technical environments. These mod-
els are independent of the actual technolo-
gies needed to implement their functionality.
For example, within the organizational do-
main the entities, relationships and proc-
esses required for managing the withdrawal
and transfer of funds in a banking applica-
tion can be described without any considera-
tion that account access might be remote or
that CORBA and Oracle may be the middle-
ware and data management technologies.
Only elements such as customers, accounts,
balances, and activities are described. This
does not mean, however, that platform-
independent models are not technical in na-

Proc ISECON 2005, v22 (Columbus OH): §2534 (refereed) c© 2005 EDSIG, page 4

Conn and Forrester Fri, Oct 7, 3:30 - 3:55, Governors E

ture. Technical architectures can also be de-
scribed without consideration of the actual
technology needed to implement them.

Platform-specific models (PSMs) provide de-
scriptions of structure and functionality im-
plemented by a specific technology. For the
example above, the model of the n-tier ar-
chitecture becomes platform-specific when it
is restructured to show its elements, compo-
nents, and functionality formulated with the
constructs required by Enterprise Java Beans
(EJB) technology. Platform-independence
and platform-specific are relative concepts.
Both can be defined at different layers of
abstraction in a hierarchical way. In some
respects, PIMs and PSMs fall along a con-
tinuous scale. As Frankel (2003) observes, it
is important to specifically identify from what
a model is consider to be independent.

Transformation is the process of transform-
ing PIMs and weaving them together to cre-
ate PSMs that are precise enough, formal
enough, and detailed enough to automati-
cally generate code. Transformation models
(TMs) are used to guide the transformation
process; they describe by using mapping
functions and marks how a PIM can be
transformed into another PIM or into a PSM.
Mapping functions are “a collection of rules
or algorithms that can be used to convert
one or more input or source models into an
output or target model. Marks are used by
the mapping functions to provide specific
details and options for choosing between
rules. The transformation itself involves se-
lecting the elements in the source models to
manipulate, determining which rules in the
transformation models apply to which ele-
ment, and then applying those rules to gen-
erate a resulting target model. A model
compiler then weaves these resulting models
together and generates program code that
can use traditional code compilers (Mellor et
al., 2004).

5. MODELING LANGUAGES AND META-

MODELS

The MDA modeling environment has four
levels. At the lowest level, called M0, are
object instances. These are the actual ob-
jects with attribute values behaving or being
manipulated within a system. In the level

above, called M1, reside the models of this
system. These are the static class models
that describe attributes, methods, and asso-
ciations. These are the use case diagrams,
action diagrams, and sequence diagrams
that describe the behaviors of a system.
These are the PIMs and PSMs of the MDA
process.

All of the modeling constructs used in these
M1 models, for example a rectangle that
represents an object class or an open trian-
gle at the end of an association line that
represents an “IS-A” relationship, have very
specific semantics. These semantics are
defined by the UML standard. UML is a
meta-model; it describes models much like
meta-data describes data. It is a modeling
language (as its name reflects) used to build
models. The UML standard is the third level
of the model hierarchy (M2). What is impor-
tant is that UML itself is a model based on
an even more abstract meta-model. This
more abstract meta-model is called the
MOF; it is a meta-meta-model. It defines the
meaning of meta-model constructs. It de-
fines how to build a meta-model, how to
build a modeling language that is consistent
with standards. The MOF is the top layer of
the hierarchy (M3). It is part of MDA be-
cause UML is not only not required for MDA
it might also be inappropriate for a particular
situation. It might be necessary to build a
custom modeling language. However, this
language must still be precise and formal so
a machine can interpret it. It must still be
based on standards so the models can be
exchanged between and interpreted by dif-
ferent modeling, transformation, and code-
generation tools. The MOF provides the
guidelines for creating a properly defined
meta-model.

To a lesser extent, a subset of UML elements
can be customized or extended to create a
profile that provides more specific con-
structs, constructs with very specialized se-
mantics (Mellor et al., 2004). Profiles can
reflect the requirements of a specific tech-
nology, for example CORBA, which can be
used to portray CORBA-specific PSMs. Pro-
files can also reflect the unique requirements
of a particular industry, for example aircraft
manufacturing, which can be used to build
domain-specific PIMs. The OMG’s Common
Warehouse Meta-model (CWM) is a standard
UML profile. It is a meta-model used specifi-

Proc ISECON 2005, v22 (Columbus OH): §2534 (refereed) c© 2005 EDSIG, page 5

Conn and Forrester Fri, Oct 7, 3:30 - 3:55, Governors E

cally for the design and development of data
warehouse models. There are many other
specialized profiles being defined and stan-
dardized by OMG domain task forces as well
as other organizations. Some are targeting
technologies such as CORBA and EJB; others
are more general such as the Business Se-
mantics of Business Rules (Object Manage-
ment Group, 2003).

Unlike the meta-models used for building
static models, those needed to build trans-
formation models and to model system be-
havior are currently too limited, too infor-
mal, too detailed, not standardized, or non-
existent. There are no standard meta-
models that can be used to build complete
TMs. There are several proposals. The OMG
received eight submissions in 2003 to its
proposed MOF 2.0 Query, View, and Trans-
formation (QVT) standard (subsequently
narrowed to 5). However Gardner et al.
(2003) reviewed these proposals from the
perspective of potential tool users and com-
pared them to a set of criteria they had de-
veloped. While some proposals fit some of
their criteria, none provided a complete so-
lution. All were missing a key piece, and
some were severely lacking in places. This
proposed QVT standard is still being de-
bated, and it does not appear to be close to
finalization. Another potential tool for trans-
formation modeling is the Object Constraint
Language (OCL), which is a small but vital
part of the UML standard. It has evolved
beyond its original intent to note constraints
or restrictions on UML models and is now
proposed as a fundamental part of any
eventual QVT standard. It can be used, for
example, to develop a transformation rule
that says use the string-to-string conversion
process on an attribute in the source model
to generate an attribute in the target model.
However, this is a declarative language that
can indicate when to use the string-to-string
transformation process, but it does not de-
fine the rule itself. It can indicate that a spe-
cific process should occur based on a certain
condition or must have a certain condition
when finished, but it does not define the be-
havior itself (Warmer et al., 2003; Frankel,
2003).

OCL is not useful for describing system be-
havior, and the other current UML models
meant to describe system behavior–use case
diagrams, action diagrams and sequence

diagrams–are too informal and not precise
enough for automation. Several groups
(e.g., Kennedy Carter, n.d.; Mellor et al.,
2002; Raistrick et al., 2002) are actively
promoting Action Semantics (i.e., Executable
UML or xUML) as a way to model system
behavior in machine-readable ways. This
language uses the concept of state machines
to simulate behavior and creates models
that can be executed on virtual machines
(Raistrick et al., 2002). This approach has
been used successfully in the development
of real time systems. However, Warmer et
al. (2003), Frankel (2003), and Klasse Ob-
jecten (2004a) all question the viability of
Action Semantics and state machines be-
cause the language requires the develop-
ment of low-level, detailed models; it does
not have a standard concrete syntax like
OCL, and state machines that require identi-
fication of all possible system-states, while
useful in narrowly defined systems like real-
time applications, might not be viable for
complex enterprise applications. The process
also requires the development of simulation
environments that may not be possible in
many organizations (Frankel, 2003), though
products like OptimaJ might provide some of
the capability off the shelf (Stephenson,
2003). The literature bears out that there is
still considerable disagreement in this area,
and it will be some time before transforma-
tion-modeling standards are established and
before MDA models can effectively describe
system behavior.

6. CUSTOMER INVOLVEMENT

POTENTIAL

Customer involvement in the software de-
velopment process is limited to activities
that are essentially outside of the devel-
oper’s realm. While business analysts, as
the primary customer representatives, can
become quite technically skilled and involved
in evaluating some aspects of a system’s
design, customers are realistically limited to
providing inputs to and evaluating outputs
from the development team. Even in tradi-
tional processes that use prototypes, cus-
tomers are still testing results from the
team; they are not directly involved with the
development activities. And in agile proc-
esses, where customers are often considered

Proc ISECON 2005, v22 (Columbus OH): §2534 (refereed) c© 2005 EDSIG, page 6

Conn and Forrester Fri, Oct 7, 3:30 - 3:55, Governors E

full team members, their involvement is still
limited to design and testing activities. In
both processes, customers rarely (if ever)
get involved in the actual programming.
The adoption of an MDA approach will not
change these customer roles or the nature of
their activities. They will continue to provide
application requirements, attempt to vali-
date some of the system design specifica-
tions, and test applications produced by the
development team. MDA will not change
what customers do. However, it will signifi-
cantly change when customers validate a
system’s functionality.

MDA impacts three areas of the development
process: design, development, and testing.
In the design area, the creation and valida-
tion of PIMs offers some potential for im-
proving the integration of customers. In the
actual development area, with its focus on
PSMs and TMs, MDA offers none. It is in the
testing area, with the validation of working
applications, where its potential is the most
significant. With automated code generation,
MDA can greatly improve the integration of
customers by integrating their system vali-
dation activities directly into the daily activi-
ties of the development team. In essence, it
can extend the Development Bubble to in-
corporate customer testing.

7. SUMMARY AND CONCLUSIONS

Model Driven Architecture represents a fun-
damental evolution in the way software is
developed. With MDA, the focus shifts from
informal modeling and manual coding to
precise and formal models and automated
code generation. The PIMs, PSMs, and TMs
will become key organizational assets that
capture domain-specific knowledge from
both the organizational and technical com-
munities. As Frankel (2003) describes, these
models will become persistent artifacts of
development rather than just informal arti-
facts of design.

The literature indicates there is growing con-
sensus in the information systems commu-
nity on these fundamental principals of MDA:
it should be based on underlying, consistent
standards and syntaxes (meta-models); en-
able the separation of business and technical
concerns, and use computer automation to

manipulate and transform models and to
generate code. However, there are some
critical pieces missing in the areas of trans-
formation and system-behavior modeling.
Agreement on standards and approaches in
these areas will take some time, and sub-
stantial work remains before MDA can re-
place traditional, long-practiced methods
and become considered a routine approach
to software development.

When this happens, MDA has the potential to
significantly improve the integration of cus-
tomers into the development lifecycle. It will
not change the roles that customers play or

the nature of their activities. They will con-
tinue to provide application requirements,
attempt to manually validate static system
designs, and test working applications using
the same requirements, use cases, and test
cases they currently use. MDA will, however,
make it possible, through the use of execu-
table models and the automatic generation
of prototypes and full systems, to incorpo-
rate customer validation activities directly
into the daily activities of the development
team. With automatic code generation, MDA
removes the delay between design and test,
and customers will be able to evaluate sys-
tem functionality regularly throughout the
development process.

 8. REFERENCES

 Akehurst, D., Linington, P., & Patrascoiu, O.
(2003). OCL 2.0: Implementing the
standard technical report. Retrieved
September 22, 2004, from University of
Kent Computer Laboratory web site:
http://www.cs.kent.ac.uk/pubs/2003/17
46/content.pdf

 Akehurst, D.H. (2004). Relations in OCL.
Paper for presentation in the work-
shop “OCL and Model Driven Architec-
ture” at the 7th International UML
2004 Conference on October 12,
2004. Retrieved October 8, 2004,
from
http://www.cs.kent.ac.uk/projects/ocl
/oclmdewsuml04/papers/9-
akehurst.pdf

Proc ISECON 2005, v22 (Columbus OH): §2534 (refereed) c© 2005 EDSIG, page 7

Conn and Forrester Fri, Oct 7, 3:30 - 3:55, Governors E

 Arlow, J., & Neustadt, I. (2004). Enterprise
patterns and MDA: building better soft-
ware with archetype patterns and UML.
Boston, MA: Addison-Wesley.

 Baresi, L., Heckel, R., Thöne, S., & Varró,
D. (2003). Modeling and analysis of ar-
chitectural styles based on graph trans-
formation. In Crnkovic, I., Schmidt, H.,
Stafford, J., & Wallnau, K. (eds.), Pro-
ceedings of the 6th ICSE Workshop on

Component-Based Software Engineer-

ing: Automated Reasoning and Predic-

tion. Carnegie Mellon University.

 Bettin, J. (2003). Ideas for a concrete visual
syntax for model-to-model transforma-

tions. Retrieved September 18, 2004,
from
http://www.softmetaware.com/oopsla20
03/bettin.pdf

 Booch, G. (2004, August). MDA: A moti-
vated manifesto? Software Develop-
ment. Retrieved September 24, 2004,
from
http://www.sdmagazine.com/documents
/s=7206/sdm0408a/

 Borland. (2004). Keeping your business
relevant with Model Driven Architecture

(MDA). Retrieved September 22, 2004,
from
http://www.borland.com/products/white
_papers/pdf/
tgr_keeping_your_business_relevant_wit
h_model_driven_architecture.pdf

Brown, A.W. (2004, February). An introduc-
tion to model driven architecture -- part
I: MDA and today's systems. The Ra-
tional Edge. Retrieved September 24,
2004, from
http://www-
106.ibm.com/developerworks/rational/li
brary/content/RationalEdge/feb04/3100.
pdf

 Cariou, E., Marvie, R., Seinturier, L., &
Duchien, L. (2004). OCL for the specifi-
cation of model transformation con-

tracts. Paper for presentation in the
workshop “OCL and Model Driven Archi-
tecture” at the 7th International UML
2004 Conference on October 12, 2004.
Retrieved October 8, 2004, from
http://www.cs.kent.ac.uk/projects/ocl/o
clmdewsuml04/papers/2-
cariou_marvie_seinturier_duchien.pdf

. Czarnecki, K., & Helsen, S. (2003). Classi-
fication of model transformation ap-

proaches. Presented at the OOPSLA’03
workshop “Generative Techniques in the
Context of Model-Driven Architecture” on
October 27, 2003. Retrieved September
24, 2004, from
http://www.softmetaware.com/oopsla20
03/czarnecki.pdf

 Frankel, D. (2003). Model driven architec-
ture: applying MDA to enterprise com-
puting. Indianapolis: Wiley and Sons,
Inc.

 Frankel, D.S., Harmon, P., Mukerji, J.,
Odell, J., Owen, M., Rivitt, P., et al.
(2003, September). The Zachman

Framework and the OMG's Model Driven

Architecture. Business Process Trends
Whitepaper. Retrieved September 29,
2004, from
http://www.omg.org/mda/mda_files/09-
03-
WP_Mapping_MDA_to_Zachman_Frame
work1.pdf

 Frankel, D. (2004, March 2). MDA Journal:
The MDA Marketing Message and the

MDA Reality. Retrieved October 15,
2004, from BPTrends.com web site:
http://www.bptrends.com/publicationfile
s/03%2D04
%20COL%20Marketing%20Message%20
%2D%20Reality%20Frankel1%2Epdf

Proc ISECON 2005, v22 (Columbus OH): §2534 (refereed) c© 2005 EDSIG, page 8

Conn and Forrester Fri, Oct 7, 3:30 - 3:55, Governors E

 Gardner, T., Griffin, C., Koehler, J., &
Hauser, R. (2003, July 21). A review of
OMG MOF 2.0

Query/Views/Transformations submis-

sions and recommendations towards the

final standard. Retrieved October 8,
2004, from
http://www.omg.org/docs/ad/03-08-
02.pdf

 Haustein, S., & Pleumann, J. (2004). OCL
as expression language in an action se-

mantics surface language. Paper for
presentation in the workshop “OCL and
Model Driven Architecture” at the 7th In-
ternational UML 2004 Conference on Oc-
tober 12, 2004. Retrieved October 8,
2004, from
http://www.cs.kent.ac.uk/projects/ocl/o
clmdewsuml04/papers/4-
haustein_pleumann.pdf

 Hubert, R. (2001). Convergent architecture:
building model-driven J2EE systems with
UML. New York, NY: Wiley and Sons,
Inc.

 Kennedy Carter (n.d.). Supporting MDA
with executable UML. Retrieved Septem-
ber 24, 2004, from
http://www.kc.com/MDA/xuml.html

 Klasse Objecten (2004, February 27). MDA
frequently asked questions. Retrieved
September 22, 2004, from
http://www.klasse.nl/english/mda/mda-
faq.html Klasse Objecten (2004, Feb-
ruary 27). The current status of the
MDA. Retrieved September 22, 2004,
from
http://www.klasse.nl/english/mda/mda-
status.html

 Klasse Objecten (2004, February 27). What
is the Model Driven Architecture? Re-
trieved September 22, 2004, from
http://www.klasse.nl/english/mda/mda-
introduction.html

 Kleppe, A., & Warmer, J. (2000). Extend-
ing OCL to include actions. In A. Evans,
S. Kent, & B. Selic (Eds.), Proceedings of
the 3rd International Conference UML

2000, (pp. 440-450). Lecture Notes in
Computer Science, volume 1939. Berlin,
Springer.

 Kleppe, A., Warmer, J., & Bast, W.
(2003). MDA explained: The model
driven architecture: Practice and prom-

ise. Boston, MA: Addison-Wesley.

 Küster, J.M., Sendall, S., & Wahler, M.
(2004). Comparing two model transfor-
mation approaches. Paper for presenta-
tion in the workshop “OCL and Model
Driven Architecture” at the 7th Interna-
tional UML 2004 Conference on October
12, 2004. Retrieved October 8, 2004,
from
http://www.cs.kent.ac.uk/projects/ocl/
oclmdewsuml04/papers/6-
kuster_sendall_wahler.pdf

 Mellor, S.J., & Balcer, M.J. (2002). Execu-
table UML: a foundation for model-

driven architecture. Boston, MA: Addi-
son-Wesley.

 Mellor, S.J., Scott, K., Uhl, A., & Weise, D.
(2004). MDA distilled: Principles of
model-driven architecture. Boston, MA:
Addison-Wesley.

 Object Management Group (2003). Busi-
ness semantics of business rules: Re-

quest for proposal. Retrieved October
10, 2004, from the OMG web site:
http://www.omg.org/docs/br/03-06-
03.pdf

 Object Management Group (2004). Execu-
tive Overview. Retrieved September 24,
2004, from OMG web site:
http://www.omg.org/mda/executive_ove
rview.htm

 Oliver, D.W. (1997). Engineering complex
systems with models and objects. New
York, NY: McGraw-Hill.

Proc ISECON 2005, v22 (Columbus OH): §2534 (refereed) c© 2005 EDSIG, page 9

Conn and Forrester Fri, Oct 7, 3:30 - 3:55, Governors E

 Raistrick, C., Francis, P., & Wright, J.
(2004). Model Driven Architecture with
Executable UML. Cambridge, UK: Cam-
bridge University Press.

 Selic, B. (2003, September/October). The
pragmatics of model-driven development
[Electronic version]. IEEE Software,
20(5), 19-25.

 Sendall, S., & Kozaczynski, W. (2003).
Model transformation: the heart and soul
of model-driven software development
[Electronic version]. IEEE Software,
20(5), 42-45.

 Sommerville, I. (2004). Software Engi-
neering (7th ed.). Boston, MA: Addison-
Wesley.

 Starr, L. (2002). Executable UML: how to
build class models. Upper Saddle River,
NJ: Prentice Hall.

 Stephenson, J. (2003, August). Model
Driven Architecture and governance. Re-
trieved September 22, 2004, from ITPa-
pers.com web site:
http://www.compuware.com/dl/cbdimda
.pdf

 Sunyé, G., Pennaneac'h, F., Ho, W., Le
Geunnec, A., & Jézéquel, J. (2001). Us-
ing UML action semantics for executable
modeling and beyond. In K.R. Dittrich,
A. Geppert, & M.C. Norrie (Eds.), Ad-
vanced information systems engineer-

ing: 13th international conference,

CAiSE 2001 proceedings (pp. 433-447).
Lecture Notes in Computer Science, vol-
ume 2068. Berlin, Springer.

 Warmer, J., & Kleppe, A. (2003). The ob-
ject constraint language: getting your

models ready for MDA. Boston, MA: Ad-
dison-Wesley.

 Welsh, T. (2004, September/October).
MDA at the tipping point. Application
Development Advisor. Retrieved October
13, 2004, from
http://www.appdevadvisor.co.uk/feature
s/

Proc ISECON 2005, v22 (Columbus OH): §2534 (refereed) c© 2005 EDSIG, page 10

