
Harkins Fri, Oct 7, 2:30 - 2:55, Senate A

1

Using the Software Development Life Cycle as

a Curriculum Design Tool in the Development

of a "Companion Course" for Beginning

Programmers

Ronald J. Harkins
Miami University

1601 University Blvd.
Hamilton, OH 45011

513-785-3137
harkinrj@muohio.edu

ABSTRACT
The software development lifecycle method has been used widely by software engineers to

produce reliable, efficient, and user-friendly software. The lifecycle process solves problems

utilizing technology in six distinct steps…Problem Specification, Problem Analysis, Solution

Design, Solution Implementation (coding), Solution Testing, and Solution Maintenance.

Computer science educators, likewise, have used the lifecycle methodology to promote logical,

efficient problem solving, and disciplined programming behaviors in their students. This same

six step lifecycle process can be used effectively in solving curricular problems encountered by

computer science departments. Specifically, this paper will detail how the lifecycle method

was used in solving the problem of helping frustrated, anxious, and unsuccessful students in

the early weeks of a first course in computer programming by developing a short, targeted,

programming concepts "companion course" for these students. The ensuing content and

pedagogical details of this "companion course" will also be reported.

Keywords: CS0, Pre-Programming, Concepts-First Curriculum, Course Development Models

1. INTRODUCTION
Computer science educators have long found

the value in having students apply a

methodology in writing computer programs

to solve problems. The software

development lifecycle model is widely

popular, both in industry, as well as in the

computer programming classroom. This

software development lifecycle method

involves six phases: Problem Specification,

Problem Analysis, Solution Design, Solution

Implementation (coding), Program Testing,

and Program Maintenance (Koffman, 2002;

Wu, 2004). Using this methodology provides

a framework in which computer

programming students can write software

without the stress, time wasting,

desperation, and dissatisfaction of

experimental or "trial and error"

programming (Beck, 2001). Some educators

use a problem solving plan related to the

software development lifecycle that requires

programming students to develop lab

reports detailing activities for each step of

the plan (and lifecycle). These reports

accompany each programming project, and

require the students to be more disciplined

in their problem solving efforts (Hyde,

1979).

Today's computer science educators need to

be dynamic curriculum developers to devise

new courses and curricula to meet the

rapidly changing needs of both industry and

computer science students. Because the

Proc ISECON 2005, v22 (Columbus OH): §2542 (refereed) c© 2005 EDSIG, page 1

Harkins Fri, Oct 7, 2:30 - 2:55, Senate A

2

window for this dynamic, responsive

curriculum development can be short, such

development might also be done in an

experimental or "trial and error" style.

Consequently, this can result in longer

development time, additional curricular

revisions, or an inappropriate redesign of the

course. This can leave both students and

faculty feeling frustrated, overwhelmed and

dissatisfied with the process and/or its

results. Applying a methodology to

course/curriculum development can make

the process more efficient, enjoyable and

productive. This methodology can involve

setting objectives, choosing a context,

establishing a feedback process, defining the

course infrastructure, and defining the

course components (Guzdial, 2005).

Likewise, the same software development

lifecycle method that is utilized in industry

and by computer programming students to

solve problems, can also be used as a

course/curriculum development model in

'solving' a curriculum problem or issue, and

developing a new course within the

university structure.

2. METHODOLOGY
 This paper will detail how the software

development lifecycle method was used to

solve a curricular problem whose solution

involved the development of a "companion

course" for a "first course in computer

programming" at the university level. Each

step of the life cycle method (Problem

Specification, Analysis, Design,

Implementation, Testing, and Maintenance)

in the development of this new course will

be discussed.

Problem Specification
Students enrolled in a "first course in

computer programming" at our university

were having difficulty very early in these

courses, regardless of the programming

language used in the course (Java, C++,

Visual Basic). Because of significant course

content, and the required pace to cover all

of the required course topics, students

became anxious, dissatisfied, and

disinterested. Early withdrawal from these

courses became commonplace. Furthermore,

the passive nature of some introductory

programming courses can also fail to

motivate students, turning them away from

both the course, as well as the computer

science discipline (Thomas, 2002). Indeed,

"comfort level," as evidenced by class

participation, anxiety while working on

assignments, or perceived difficulty

completing assignments, was found to be

the best predictor of success in a computer

science course, followed by mathematics

preparedness of the student (Wilson, 2001).

The problem of students being unsuccessful,

unmotivated, and dissatisfied in the early

weeks of their first programming course, and

the corresponding enrollment retention

problem in these course, required both

investigation and a curricular solution.

Problem Analysis
In analyzing the problem of student

performance, anxiety and the associated

enrollment decrease in the first month of a

semester-long "first programming course" at

our university, a number of issues and

factors were identified. Meetings and

conversations with faculty teaching "first

courses" in computer programming (C++,

Java, and VisualBasic) helped analyze the

problem in more detail. Students needed

more instruction and practice in problem

solving, and associated algorithm

development. More mathematical practice

was needed. Related data typing and

storage topics needed further discussion.

These, and other programming-related

concepts, such as program translation/

execution, selection and repetition logic, and

documentation guidelines, were confusing

and somewhat overwhelming for students in

their first programming course. Furthermore,

instructors of these courses were frustrated

in their inability to address these issues

significantly for fear of not completing all the

required topics in the curriculum for these

courses.

The curricular "solution" to this problem that

we proposed included the development of a

new, one-credit hour, "companion course" to

be taken concurrently with a student's first

programming course. This new "computer

programming concepts" course could also be

taken the semester immediately preceding

the students' "first programming course," if

their schedule prohibited concurrent

enrollment in both courses. This new course

would not be the "flowcharting course" of 30

years ago that typically accompanied the

Proc ISECON 2005, v22 (Columbus OH): §2542 (refereed) c© 2005 EDSIG, page 2

Harkins Fri, Oct 7, 2:30 - 2:55, Senate A

3

first programming course, but would focus

on the topics identified above, emphasizing

problem solving and algorithm development

(Mitchell, 2001). Some institutions

incorporate these topics into the first course

in programming (perhaps by adding a credit

hour) or restructuring a 3-credit introductory

"computer programming concepts" course as

2 hours of lecture/discussion and 1 hour of

online lab activity (McFarland, 2004). We,

however, chose to "factor out" the common

curricular problems found in each of the first

courses in programming (C++, Java, and

VisualBasic) into this new one-hour, 8-week

course that would overlap the first 8 weeks

of the students' first programming course.

Individual computer programming course

instructors agreed that adding to the already

overwhelming curriculum of their courses

was not the preferred solution to this

problem. Additionally, exposing students to

essential programming-related concepts

before introducing them to the intricacies of

a high-level programming language can

improve the comfort level of the students

(DuHadway, 2002), and hopefully decrease

their anxiety and increase their satisfaction

with computer programming.

An important distinction must be made

between this proposed stand-alone

"companion course" and the traditional CS0

course taught at many universities

(including ours). CS0 courses were intended

to provide an overview of the computer

science profession, while focusing on

programming and applications for both CS

majors and non-majors (Cook, 1997). At our

university, the CS0 course is a 3-credit hour

course in problem solving with

VisualBasic.NET. Students majoring in

computer science or business enroll in CS1

with Java as their first language, while

engineering students use C++ in their first

programming course. Consequently, this

new one-credit hour "companion course"

would have to be "language independent"

(utilizing pseudocode throughout), since it

would be populated by students using either

Java, C++, or Visual Basic in their "first

computer programming" course. Thus, as a

stand-alone course, not language specific,

not covering the computer science

profession, and without an online/hands-on

computer delivery infrastructure, this course

might resemble the "programming concepts"

component of a traditional CS0 course, but

the complete proposed "companion course"

would differ in many respects.

A similar CS0-related course, offered at

another university which was non-

programming language specific, covered the

concepts of functions, procedures, modular

program design, abstract data types, and an

introduction to object oriented design...all

without the "clutter" and "attention" of

language syntax (Dierbach, 2005). A study,

conducted at this university, found that a

"non-specific" programming language

approach to their CS0-type course had the

potential to better prepare students than an

approach involving a preparatory course that

used a specific programming language. In a

related study, it was found that a

programming course used as a first

exposure to computer science resulted in a

number of overwhelmed, discouraged

students, a low rate of successful course

completion, and poor retention in successor

courses to CS1 (Allan, 1997). This study also

found that the CS1 students who first

enrolled in their CS0 course performed at a

level of a "half-grade" higher (3.2 vs. 2.6)

when compared to their counterparts who

did not take their CS0 course prior to CS1.

Finally, this study found that CS1 students

benefited more from a CS0- type "problem

solving course" than from a previous,

additional stand-alone programming course.

Consequently, we decided to develop a

stand-alone, "companion course" for

students concurrently enrolled in a first

course in computer programming. This new

course would fill a knowledge and skill void

(especially in problem solving, algorithm

development, and program design) that

computer programming students seemed to

exhibit in the early weeks of their first

programming course.

Solution Design
The third step in the software development

lifecycle is solution design. Here, it involved

designing the content and delivery

components for this "companion course" to

be taken by students concurrently with (or

prior to) their first computer programming

course at our university. The new course,

entitled "Fundamentals of Computer

Program Design" would be a language-

independent course emphasizing problem

Proc ISECON 2005, v22 (Columbus OH): §2542 (refereed) c© 2005 EDSIG, page 3

Harkins Fri, Oct 7, 2:30 - 2:55, Senate A

4

solving, algorithm development and program

design. A set of 9 course objectives was

developed, and an accompanying course

topic list was written. Course topics included

the stored program concept, computer

capabilities and limitations, machine cycles,

program translation with compilers and

interpreters, variables, constants, data

typing/conversion, arithmetic/relational/

logical operators, problem solving strategies,

design tools (pseudocode, hierarchy charts,

etc), program style/documentation, logic

associated with sequence, selection, and

repetition structures, object oriented vs.

procedural paradigms, event-driven

environments, debugging strategies, and

decoding program error messages.

Although many of these topics are covered

in a first programming course, coverage may

be limited, inadequate, or seem "rushed" to

first-time programmers (especially in the

areas of problem solving strategies, design

tools, and algorithm development). Indeed,

algorithm development, programming style,

program debugging and documentation

techniques were reported among the ten

principles to be incorporated into an

introductory programming course

(Schneider, 1978). Others found problem

solving and computer science principles

(data types, operators, logic, algorithms,

and control structures) to be invaluable to

students in a CS0-type "problem solving

course" taken prior to a CS1 course in

computer programming (Allan, 1997 ; Cook,

1996).

In the "Solution Design" stage, an

Instructor's Guide was developed, to assist

faculty in teaching this course. This

document included pragmatic, pedagogical

suggestions for meeting each of the 9

objectives of the course. Anticipated student

questions and problematic areas (with

suggested resolutions) were also addressed

in this document. A possible textbook (Venit,

2004), was identified for use in the course.

However, since this text was not a "perfect

match" to our course's objectives and topical

content list, an extensive student notepack

was written, consisting of a number of

"incomplete" pages (problems, algorithms,

design tools, etc.), that required the student

to complete them during the class session. A

pre-programming concepts problem solving

course offered by another university used

readings, demonstrations, and pencil/paper

exercises to successfully meet its course

objectives, with positive student learning

results (Allan, 1997). Five homework

assignments were also developed for our

new course. As with another similar course

(Goldman, 2004), these assignments

consisted of textbook readings and short

written exercises. Generic pseudocode

(rather than specific programming language

syntax) was used in all instructional and

student materials for our course because, as

stated earlier, students enrolling in this

course would be using any of a number of

programming languages (C++, Java or

Visual Basic) in their complimentary "first

computer programming" course. Finally, a

set of instructional lecture slides (written in

a way to invite student questioning and

discussion) were prepared to reflect the

course's objectives and topical content list.

The instructor's slides, student notepacks,

and assignments incorporated textbook

references to encourage students to read the

textbook as the course progressed.

Solution Implementation
"Fundamentals of Computer Program

Design" was offered to a very small number

of students during it's first semester. The

small number involved might have been a

result of inadequate publicity for the course,

or students questioning the value of the

course in improving their programming

capabilities. The 8-week, one-credit hour

course was delivered by the course

developer (and author of this paper) in a

traditional lecture/discussion format.

Student participation was encouraged by a

number of in-class activities, problem

solving exercises, and open ended

questioning by the instructor. Real life

situations, sometimes using pseudocode,

were used to explain programming concepts

and structures. For example, when

discussing important looping concepts

(entry, exit, updating/testing conditions,

infinite iterations), situations such as

"playing baseball until it is dark" or "playing

baseball while it is light" were used, and

extended into a discussion of maintaining

baseball statistics for a number of innings

(to introduce counting loops). This was

similar to DuHadway's (2002) example using

the situation of "taking bites until your plate

is empty or until you are full" in discussing

Proc ISECON 2005, v22 (Columbus OH): §2542 (refereed) c© 2005 EDSIG, page 4

Harkins Fri, Oct 7, 2:30 - 2:55, Senate A

5

repetition structures in a pre-programming

computer concepts course. Other real-life

examples were used to make discussions of

selection structures, problem solving,

algorithm development, and object oriented

concepts more meaningful and relevant to

the students. Two examinations and five

written assignments comprised the

evaluation for the course.

Solution Testing
The course was tested (evaluated) by the

instructor in multiple ways. An analysis of

the student evaluations for the course was

done. Meetings with instructors of the

various "first programming" courses were

conducted to discuss the performance of

their students who had enrolled in the new

"Fundamentals of Computer Program

Design" course. Self-reflection by the

instructor of this new course also contributed

to this course evaluation process. Because of

the very small enrollment in the

"Fundamentals of Computer Program

Design" course, any formal statistical

analysis of student evaluation data would be

unreliable and questionable. Although the

pace of the class was manageable, and class

attendance was good, final grades for the

course were mostly C's. This was due to a

number of factors. Students seem to lack

the commitment and discipline, probably

because they saw this as only a one-credit

hour course. Some lacked the logical

reasoning abilities so vital to algorithm

development and problem solving.

Furthermore, some students submitted

incomplete assignments that reflected

inadequate effort and time, even though

students were given a full week to complete

them. Nonetheless, students commented on

their course evaluations how the course had

helped them in their corresponding "first

computer programming" course, in which

they were also enrolled. Instructors of these

courses also confirmed these students'

comments, noting that they wished more of

their students had enrolled in "Fundamentals

of Computer Program Design." Finally,

some students questioned the textbook used

in the course, noting that it was only used

minimally in classroom activities, and its

content was somewhat incompatible with the

objectives of this course. All of the

evaluative feedback would prove invaluable

in the modification and maintenance efforts

for this new course.

Solution Maintenance
While the potential value of the

"Fundamentals of Computer Program

Design" companion course in helping "first

course" programmers in the early weeks of

their programming studies appeared to be

evident, some changes to this "solution"

were identified to improve it for subsequent

offerings. To improve enrollment, each of

the "first courses in programming" (C++,

Java, and Visual Basic), had notes in the

course schedule, advising students to

concurrently enroll in the "Fundamentals of

Computer Program Design" companion

course. Likewise, a note in the schedule for

this new "companion course" informed

students that "this course should be taken

prior to, or concurrent with a first course in

computer programming in C++, Java, or

Visual Basic." Additionally, faculty in each

section of the "first courses" in computer

programming described the content and

value of the new "companion course" in their

first class meeting of the programming

courses. As a result, enrollment had

improved, but not significantly. Another

modification that might increase enrollment

in this new course, will occur during the

2005-06 academic year, when this 8-week

companion course will delay it's start until 2

weeks into the regular semester. This will

allow students in the programming courses,

who experience difficulty with the pace or

content (especially the early topics of

algorithm development, problem solving,

and design methods) in the first few weeks,

to enroll in the companion course by its new

"delayed" start date. To encourage better,

and more thoughtful assignment

submissions in this companion course, the

instructor will discuss and question students

about the assignment in the class meeting

prior to the assignment due date. Short

quizzes might be used to help both students

and the instructor to identify content

problems in a more timely manner. A

different textbook (Messinger, 2005) will be

adopted, and better integrated into course

lectures, discussion, quizzes, and

examination. More object oriented content

would be included in the course to meet the

needs of students concurrently enrolled in

"first courses" in Java and VisualBasic.Net.

Proc ISECON 2005, v22 (Columbus OH): §2542 (refereed) c© 2005 EDSIG, page 5

Harkins Fri, Oct 7, 2:30 - 2:55, Senate A

6

Finally, and probably most important, we

will continue to monitor "early withdrawal"

rates in the first courses in computer

programming, and in particular, the

performance of students in these courses

who were also enrolled in the "Fundamentals

of Computer Program Design" companion

course.

3. CONCLUSION
The 6-step software development lifecycle

methodology is not only a valuable problem

solving procedure for software engineers,

but also a beneficial process to guide

"curricular problem solving" in higher

education. The lifecycle method was used to

solve the problem of unsuccessful,

unsatisfied students (and their associated

withdrawal patterns) during the first few

weeks of the students' first course in

computer programming. The "solution"

involved the development and delivery of a

"companion course" focused on important

computer programming concepts, problem

solving and algorithm development. These

important topics, covered insufficiently in a

"first course" in computer programming,

were essential to the students' performance,

understanding, and satisfaction in their

computer programming efforts. The software

development lifecycle paradigm provided a

progressive template for devising,

implementing, and maintaining a solution to

the problem of early withdrawal and

undesirable student performance during the

early weeks of their first course in

programming. The lifecycle approach to

curriculum/course problem solving in higher

education provides a programmatic,

thorough, and reflective technique for

curriculum development, especially in

dynamic disciplines like computer science,

where new technologies present new

challenges and new "curricular problems"

that need to be solved quickly and

efficiently to meet the ever-changing needs

of today's students and tomorrow's

technological workplace.

REFERENCES
Allan,V.H. and M.V. Kollesar (1997)

"Teaching Computer Science: A Problem

Solving Approach That Works," ACM

SIGCUE Outlook, January. Vol. 25, pp. 2-

9.

Buck, D. and D.J. Stucki (2001)

"JkarelRobot: A Case Study in

Supporting Levels of Cognitive

Development in the Computer Science

Curriculum," Proceedings of SIGCSE

Symposium, pp. 16-20.

Cook, C.R. (1997) "CS0 : Computer Science

Orientation Course," Proceedings of

SIGCSE Symposium, March, Vol. 29, pp.

87-91.

Cook,C.R. (1996) "A Computer Science

Freshman Orientation Course,"

Proceedings of SIGCSE Symposium,

June, Vol. 28, pp. 49-55.

Dierbach, C., B. Taylor , H. Zhou , and I.

Zimand (2005) "Experiences With a CS0

Course Targeted For CS1 Success,"

Proceedings of SIGCSE Symposium,

February, Vol. 37, pp. 317-320.

DuHadway L., S. Clyde,. and M. Recker

(2002) "A Concepts-First Approach for

an Introductory Computer Science

Course," Journal of Computing Sciences

in Colleges, December, Vol. 18, pp. 6-

16.

Goldman, K. (2004) "A Concepts-First

Introduction to Computer Science,"

Proceedings of SIGCSE Symposium,

March, Vol. 36, pp. 432-436.

Guzdial, M. and A. Forte (2005) "Design

Process for a Non-Majors Computing

Course," Proceedings of SIGCSE

Symposium, February, Vol. 1, pp. 361-

365.

Hyde, D., B. Gay, and D. Utter, (1979) "The

Integration of a Problem Solving Process

in the First Course," Proceedings of

SIGCSE Symposium, January, Vol. 11,

pp. 54-59.

Koffman, E. and U. Wolz (2002) "Problem

Solving with Java," 2nd ed., Addison

Wesley, Boston, MA, pp. 21-24.

McFarland, R. (2004) "Development of a CS0

Course at Western New Mexico

University," Journal of Computing

Sciences in Colleges, October, Vol. 20,

pp. 308-313.

Messinger, L. (2005) "Logic and Design of

Computer Programs," Scott Jones, El

Granada, CA,.

Mitchell, W. (2001) "Another Look at CS0,"

Journal of Computing Sciences in

Colleges, October, Vol. 17, pp. 194-205.

Schneider, G. (1978) "The Introductory

Programming Course in Computer

Science—Ten Principles," Proceedings of

Proc ISECON 2005, v22 (Columbus OH): §2542 (refereed) c© 2005 EDSIG, page 6

Harkins Fri, Oct 7, 2:30 - 2:55, Senate A

7

SIGCSE Symposium, February, Vol 10.,

pp. 107-114.

Thomas, L., M. Ratcliffe, J. Woodbury, and

E. Jarman, (2002) "Learning Styles and

Performance in the Introductory

Programming Sequence," Proceedings of

SIGCSE Symposium, February, pp. 33-

37.

Venit, S. (2004) "Concise Prelude to

Programming: Concepts and Design," 2nd

ed., Scott Jones, Los Angeles, CA.

Wilson, B.C., and S. Shrock (2001)

"Contributing to Success in an

Introductory Computer Science Course :

A Study of Twelve Factors," Proceedings

of SIGCSE Symposium, February, Vol.

33, pp. 184-188.

Wu,C. (2004) "An Introduction to Object-

Oriented Programming with Java," 3rd

ed., McGraw Hill, New York, NY, pp. 25-

26.

Proc ISECON 2005, v22 (Columbus OH): §2542 (refereed) c© 2005 EDSIG, page 7

