
Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

A Solution to Mixed-Type Comparisons

in C# .NET

Robert Dollinger
rdolling@uwsp.edu

Mathematics and Computing Department

University of Wisconsin Stevens Point
Stevens Point, WI 54481, USA

Abstract

Overriding Equals() in order to provide meaningful semantics to object comparisons, turns out

to be quite a challenging task, especially when involving objects at different levels of a class

hierarchy. One need to reconcile the requirements of the equals contract with the legitimate

expectations of programmers of being able to meaningfully compare objects of different types.

Langer&Kreft (Langer, 2002b) provided an implementation of equality checks for Java class

hierarchies where they use a recursive navigation method that performs the non-trivial task of

navigating up and down in the inheritance tree in order to make sure that objects on different

levels or even on different branches of the inheritance tree are compared correctly. In this pa-

per we first present a generalized implementation of the navigation method by using reflection

and late binding techniques available in C# .NET. In this implementation navigation is still us-

ing recursion very much like the one in (Langer, 2002b). A non-recursive version of the navi-

gation method is also given; this later version is more efficient and easier to understand. The

generalized implementation of the navigation method is class independent and, as a result,

one can factor it out to the hierarchy’s root class. If it would be implemented in the very top

class of the .NET hierarchy, the Object class, this would simply make mixed-type equality

comparisons generally available by requiring classes to implement some sort of field compar-

ing method thus defining the specific equality semantics, instead of struggling to override the

Equals() method.

Keywords: Equals contract, mixed-type comparisons, reflection, late binding

1. INTRODUCTION

There are three basic things one needs to

take care of whenever a new class is defined

in C#: override the ToString() method, over-

ride the Equals() method, and override the

GetHashCode() method. Overriding

ToString() is easy, and almost everybody

seems to be comfortable with this task, as it

most often reduces to provide a string rep-

resentation of the content of an object. Im-

plementing GetHashCode() can be challeng-

ing and there are some good articles (most

of them in the Java literature where the

problems are very similar) dealing with this

topic (see for example (Davis, 2000b)). With

Equals(), things seem to be simple and

straightforward, but they are not. Most pro-

grammers tend to consider the implementa-

tion of Equals() a trivial task, overlooking

many of the subtle issues that are involved.

Simply comparing the content of two objects

to see if they are equal is just not enough

because objects are in most cases part of a

hierarchy. This results in incorrect imple-

mentations of the equality comparisons with

hard to predict implications over the code

using them. This is partly due to the fact

that object equality comparison is a very

basic operation and is silently used in so

many places (e.g. collections management).

Also, most of the textbooks fail to correctly

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 1

Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

address the problem of Equals() and provide

many erroneous and incomplete implemen-

tations for it.

There are many articles dealing with the

problem of equality comparisons (Davis,

2000a)(Langer, 2002a, 2002b) (Schaefer,

2004). These mostly end up providing rec-

ommendations of how to implement the

equality test in some given limited contexts,

rather then giving a comprehensive and

“correct” solution. The ultimate solution, if

there is one, is still not available. In our pa-

per, we deal with the equality comparison

problem in a more extended context, that is,

under the assumption that objects of differ-

ent classes in the same hierarchy can and

should be compared for equality, providing

meaningful and consistent results. Mixed

type comparisons of objects have been first

dealt with by Langer&Kreft (Langer, 2002a,

2002b). They provide a correct Java solution

to the problem in the context of a precisely

defined semantics. Their solution requires

that each class joining the hierarchy of com-

parable objects implements two methods.

The first one solves the specific task of lo-

cally comparing the fields of two objects.

The second one is a recursive navigation

method that performs the non-trivial task of

navigating up and down the inheritance tree

in order to make sure that objects on differ-

ent levels or even on different branches of

the inheritance tree are compared correctly.

Their navigation method is class specific and

each class of the hierarchy has to implement

its own navigation method. However, from a

conceptual point of view, the navigation

method has nothing to do with any particular

class. Furthermore, the burden of imple-

menting the navigation method each time

one wants to add a new class to the hierar-

chy makes this approach less appealing in

practice.

In this paper we present two versions of a

generalized implementation of the naviga-

tion method by using reflection and late

binding techniques available in C# .NET. The

first version of the navigation method is still

using recursion very much like the one in

(Langer, 2002b). The second version of the

navigation method we propose is non-

recursive, thus is more efficient and easier

to understand. The generalized navigation

method is class independent and can be fac-

tored out from the classes in the hierarchy

and implemented only in the root class. All

classes will inherit and use this method

without any change. The implementation is

provided in C#. NET, but a Java implemen-

tation is equally conceivable.

The remainder of this paper is organized as

follows: in section 2, we introduce the

equals contract, which specifies the correct-

ness criteria for all implementations of

equality comparisons, and deal with the pit-

falls of those implementations that ignore

this contract. In section 3, we bring argu-

ments that mixed typed comparisons are

unavoidable and we also give a possible se-

mantics for such kind of comparisons. Previ-

ous approaches and their limitations are

presented briefly in section 4. Section 5 pro-

vides the details of implementing mixed type

comparisons in a class independent way.

The key techniques for developing a general

navigation method are reflection and late

binding. Section 6 provides a simple, itera-

tive version of the navigation method. Sec-

tion 7 contains conclusions and some ideas

of further developments.

2. CHALENGES OF “Equals”

The Equals() method is intended for content

based comparison of objects. For this rea-

son, it is common for new classes to over-

ride Equals() in order to capture class spe-

cific semantics, usually based on the values

of data members. The minimal requirements

users have to satisfy when overriding

Equals() are specified in what is known both

in the Java and .NET documentations as the

equals contract. According to this contract,

the equals methods we are expected to im-

plement are supposed to behave like any

equivalence relation among the objects we

compare. This means that Equals() should

be: Reflexive (i.e. x.Equals(x) returns

true.), Symmetric (i.e. x.Equals(y) returns

the same value as y.Equals(x).), and Transi-

tive (i.e. if (x.Equals(y) && y.Equals(z)) re-

turns true then x.Equals(z) returns true.).

In addition to these, the equals contract

specifies that successive calls of x.Equals(y)

return the same value as long as the objects

referenced by x and y are not modified, and

x.Equals(null) always returns false.

Failure to comply with any of the rules pro-

duces incorrect implementations of Equals(),

no matter how “correct” they may seem,

and results in subtle bugs which are hard to

fix.

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 2

Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

Pitfalls in Implementing Equals()

In spite of most expectations and in spite of

the apparent simplicity of the rules in the

equals contract, providing correct implemen-

tations of Equals() is far from simple. This

has caused quite a bit of disagreement in

the programming community and, triggered

a fair amount of debate. (Davis,

2000a)(Langer, 2002a, 2002b)(Schaefer,

2004) Everything is fine and looks simple as

long as we deal with objects that belong to

the same class. The first problems show up

in the presence of inheritance.

To exemplify let us take a class A and its

subclass B. If a is an instance of class A and

b is an instance of class B having all com-

mon fields set to equal values, then in most

usual implementations the expression

a.Equals(b)will evaluate to true, while

b.Equals(a) would evaluate to false, thus

violating the symmetry rule of the equals

contract. The reason is that, in the first case

we are using the Equals() from class A,

which will succeed because it compares ob-

jects a and b as instances of class A. This is

called a slice comparison, since only the slice

of object b that is inherited from class A gets

compared (e.g. a person object compared

with a student object as person may evalu-

ate to true if both represent the same per-

son). The second test, b.Equals(a) will usu-

ally attempt to compare the two objects as

instances of class B and if so it will fail

(comparing a person and a student as if

there would be two students simply does not

work!) . In order to fix this problem, let us

agree to compare objects as class A objects

whenever one of them is an instance of class

A, which means we will ignore fields defined

in class B. For this we only need to add an

additional test as the first line of Equals() in

class B:

//test after reversing operands

if(other is A) return other.Equals(this);

With this adjustment, now both expressions

b.Equals(a) and a.Equals(b) evaluate to

true.

With such a modification the implementation

of Equals() is symmetric, but is still incor-

rect. As we already mentioned, the equals

contract is not easy to comply with and, as

we are going to show, we may still violate

the transitivity rule. To illustrate this let us

take three objects a, b1 and b2 with the fol-

lowing properties:

- a is an instance of class A;

- b1 and b2 are instances of class B;

- a, b1 and b2 have the same values for

their common fields (which are the fields

of class A);

- there is at least one field defined in

class B for which b1 and b2 have differ-

ent values.

Based on the above properties, it’s easy to

see that object b1 and b2 are not equal, and

the expression b1.Equals(b2) will correctly

evaluate to false. On the other hand, the

expressions b1.Equals(a) and a.Equals(b2)

will both evaluate to true because they per-

form slice comparisons comparing object as

instances of class A. Now, by transitivity we

should have b1.Equals(b2) evaluate to true

as if objects b1 and b2 would be equal,

which contradicts our previous assertion

(e.g. this may correspond to the case of the

same person being enrolled as student at

two different universities; it will be the same

person, but with two different student IDs

and GPAs – equal as persons, but still differ-

ent as students).

The point of this entire discussion is that

after several so called “fixes”, we still do not

have a correct implementation of Equals().

Fixing the transitivity problem is not easy,

and it involves trade-offs on which there is

still much disagreement in the programmers’

community. In fact, let us observe that even

our solution for the symmetry problem is

incomplete. It works, indeed, if one of the

objects is the ancestor of the other one, but

what if they are instances of classes located

on different branches of the class hierarchy?

3. MIXED TYPE COMPARISONS

All the problems illustrated in section 2

would disappear if we eliminate the possibil-

ity of comparing objects of type A with ob-

jects of type B that is, if we forbid mixed

type comparisons. By allowing equality com-

parisons only between objects that are pre-

cisely of the same type, both the symmetry

and transitivity problems disappear, and it

becomes relatively easy to provide imple-

mentations of Equals() which, as such, are

correct by the terms of the equals contract.

This is the approach most people would take

in their applications for various reasons,

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 3

Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

from ignorance to assuming mixed types will

not be compared to each other, and in most

cases ends up causing problems that are

subtle enough and show up late in the de-

velopment cycle making their fix costly and

painful.

Mixed Type Comparisons as the Norm

Most of the articles about equality compari-

sons end up with the easy approach of disal-

lowing mixed type comparisons in order to

avoid the conceptual problems that come

with the development of a more general, yet

correct, solution. Some would permit mixed

type comparisons in some particular cases,

while alternative approaches are proposed

for some other situations. All these end up in

a mixture of partial or limited solutions,

and/or sets of recommendations of when

and how to implement equality tests in vari-

ous circumstances. This is far from any use-

ful and comprehensive solution of the prob-

lem at hand.

The first argument in favor of allowing mixed

type comparisons comes from Langer&Kreft

(Langer, 2002b). While considering same

type comparisons as the recommended way

of implementing equality tests, they advo-

cate for the use of mixed typed comparisons

in some limited cases. The decision of which

way to compare objects would be based on

the semantics of the classes they instantiate.

According to their examples, it makes sense

to use mixed type comparison in a hierarchy

where Student and Employee are subclasses

of Person, since it would allow comparing a

student to an employee to see if they repre-

sent the same person in a polymorphic col-

lection of Person objects. On the other hand,

it would make little or no sense to compare

an apple to a pear in a hierarchy in which

Apple and Pear are subclasses of Fruit.

Clearly, one cannot ignore or totally avoid

mixed type comparisons: this is far too limit-

ing and in contradiction with the diversity of

the real world we are trying to model in our

applications. On the other hand, using one

or other type of comparability (same type or

mixed type) based on circumstances like the

semantics of the classes seems to be caus-

ing more problems than it is solving. On

what basis would someone decide what kind

of comparability to use for a given applica-

tion or a given set of classes? Could this

change over the development stages of the

application? Could we use both kinds of

comparability types in the same application?

If yes, how would these interact or coexist?

Given these complications, why wouldn’t we

go beyond the hesitant position of using

both same type and mixed type compari-

sons? If we adopt mixed typed comparisons

as the norm, same type comparisons would

be just a particular case of it, and the entire

issue of object comparisons suddenly gets

simplified. In fact, it becomes a purely tech-

nical problem of if and how it can be done

right. The semantic argument is always de-

batable and not very productive in this case.

After all, why would not apples and pears be

comparable in terms of, let’s say, the

amount of vitamins brought into our body

when consumed?

We advocate in favor of the idea that con-

sidering mixed type comparisons as the

norm is realistic. That is, programmers

should have some tool allowing them to

compare objects from different parts of an

inheritance tree. By providing a class inde-

pendent implementation for the Equals()

method, we show that mixed type compari-

sons can be technically supported in a way

that is acceptable for programmers. The idea

is to separate the inherent functionality of

navigating across the inheritance tree from

the local operations of comparing member

data on a field by field basis. The navigation

function is class independent and generic

(application independent!), while the field

comparisons capture the specific semantics

associated with a given class(hierarchy) as

required by a particular application. One of

the key issues in the success of such an ap-

proach is to agree upon an acceptable se-

mantics of mixed type comparisons.

Possible Semantics for Mixed Type

Comparisons

Let us observe that a necessary condition for

two objects to be equal is to have all their

common fields equal. Second, the transitiv-

ity rule is violated if we repeatedly compare

objects of different classes by ignoring their

subclass specific fields. In the example of

section 2, we compared object b1 with a,

and object a with b2 by testing only the

common fields in these objects, and ignoring

the possible differences between b1 and b2

coming from fields defined in class B. This

caused the violation of the transitivity rule.

The problem can be solved if we add the

additional requirement that subclass objects

have default values for all non-common

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 4

Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

fields. That is, in order to have object b

equal with object a, they must have equal

values for their common fields and object b

must have default values for all other fields.

These default values are the same for all

objects of a given class. So, if b1.Equals(a)

and a.Equals(b2) are true that means b1

and b2 have the same values not only for

their fields which are common with object a,

but they also have the same default values

for the rest of their fields, which means that

b1.Equals(b2) is true, and thus transitivity of

Equals() holds.

This semantics is consistent with the equals

contract and uniformly applies on all objects

of a class hierarchy. For example, given two

objects on different branches of the class

hierarchy, like student and employee, we

would have equality if they have equal val-

ues for all their Person fields and default

values for whatever fields are defined in the

Student and Employee classes. As a special

case, two objects with all their fields set to

their default values will be equal even if they

have no fields in common, that is they have

totally different descriptions. This result may

seem quite counterintuitive, but is perfectly

consistent with the equals contract. Seman-

tically, this may be interpreted like “if two

objects contain no relevant information (i.e.

all defaults) then they are the same”.

Alternative Semantics for Mixed Type

Comparisons

Although the above semantics seems to

solve some problems and supports an im-

plementation which is in accordance with the

equals contract it has a limited applicability

and proves to be too restrictive in some

cases. For example in the case of the Stu-

dent and Employee classes, one would be

able to identify that a student and an em-

ployee represent the same person only if the

objects have default values for all their fields

except the ones defined by the common Per-

son class. Problems like this can be ad-

dressed at the local level of the field com-

pare functionality, where the specifics of

each class and application are captured, and

should not affect the idea of comparing

mixed types. One can imagine using a whole

variety of alternative local semantics; e.g.

one could take into consideration only some

attributes, considered as relevant for the

equality test, or use attributed program-

ming techniques in order to determine when

a given field would be compared or not.

4. PREVIOUS APPROACHES

Based on the semantics defined above,

Langer&Kreft (Langer, 2002b) propose an

approach that allows mixed type compari-

sons of objects in a class hierarchy. Their

solution relies on two methods each class in

the hierarchy is required to implement: a

method for comparing fields, and a naviga-

tion method that makes sure that objects on

different levels or even on different branches

of the inheritance tree are compared cor-

rectly. The equality comparison method is

implemented only once in the root class of

the hierarchy. They provide a Java imple-

mentation of the entire solution, which turns

out to be compliant with the equals contract.

One can observe the trade-off Langer&Kreft

propose in their approach. User classes are

no longer required to implement the chal-

lenging equality comparison method. In-

stead they are required to implement two

other methods: a fields comparing method

and a recursive navigation method.

The field comparing method is class specific,

and its implementation in each class is a

natural requirement.

The situation is different with the navigation

method. Its implementation is not straight-

forward and can be almost as difficult as

implementing the equality comparisons. Un-

derstanding the mechanics of how this

method works is quite a challenging task.

This is hardly something that any user would

like to deal with whenever defining a new

class. Unfortunately, this makes the pro-

posed solution quite unappealing, if not im-

possible to use in practice.

5. MIXED TYPE COMPARISONS,

RECURSIVE APPROACH

Given the difficulties to deal with the naviga-

tion method, we propose a generalized and

more practical solution of the mixed type

comparison problem. The general layout of

our approach follows the one proposed by

Langer&Kreft, except that we provide a gen-

eralized and class independent implementa-

tion of the navigation method. We achieved

this by using reflection and late binding

techniques. Our implementation is in C#,

but it can be easily translated to Java as

well. The result is that the navigation

method can be factored out to the top of the

class hierarchy. There will be only one im-

plementation of this method, and it will be

inherited by all classes. Consequently, the

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 5

Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

trade-off for the user classes is a much more

practical one: a new class joining the hierar-

chy is required to implement only the field

comparison method. Both Equals() and the

navigation method are implemented in the

root class of the hierarchy.

Implementation of Equals()

For a given hierarchy of classes there is one

single implementation of the Equals()

method, and that is located in the top of the

hierarchy, the RootClass. Figure 1 shows the

implementation of Equals() in the RootClass.

The code is quite straightforward and class

independent in spite of the fact that it may

be called from each class in the hierarchy.

After a couple of routine tests included for

the sake of efficiency, the call is made to the

navigation method, called Navigate().

The CompareFields Method()

The method that deals with the field com-

parisons, called CompareFields(), is class

specific and it is the only one that needs to

be implemented in each class. This method

is the materialization of the local semantics

chosen for the classes at hand as required

by the current application. It compares the

slice of relevant fields defined in the current

class. For the semantics defined in section 3

this method compares the fields defined in

the current class with the corresponding

fields of the object, called other, given as

parameter. This is actually happening only

when the currently defined fields are com-

mon with other, which means that other

needs to be an instance of this class or of

one of its subclasses. When this is not the

case, one would check that the currently

defined fields are set to their default values.

In general, the implementation of this

method is straightforward for classes having

only value types as fields and one can follow

the pattern given in the sample implementa-

tions from (Langer, 2002b). If our classes

have complex types as their fields then all

we need to do is to recursively call the

CompareFields() methods of these types.

Note that the entire semantics of object

comparisons is captured locally in the

CompareFields() method of each class. By

changing the implementation of the

CompareFields() method users can adopt

different comparison semantics for their

classes; e.g. like relaxing the condition of

having default values for all non-common

fields. The only requirement is to keep their

semantics consistent with the equals con-

tract.

The Navigation Method()

Since both Equals() and CompareFields()

turn out to be fairly simple, one can expect

that most of the functionality involved in the

mixed type comparison operations is con-

centrated in the Navigate() method. As its

name may suggest, this method will navi-

gate the inheritance tree in order to check

all fields of the compared objects. Indeed, all

versions of the CompareFields() method per-

form strictly local operations that involve

public class RootClass

{

 public override bool Equals(Object other)

 {

 if(other==this) return true; //same object

 if(other==null) return false; //nothing equals null

 if(!(other is RootClass)) //incompatible types

 return false;

 return Navigate(this.GetType(),

 (RootClass)other,false);

 }
}

Fig. 1. Implementation of Equals() in the RootClass

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 6

Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

only the fields defined by the current class.

In order to have the inherited fields com-

pared as well, one will need to perform some

kind of navigation across the inheritance

tree in order to call the corresponding ver-

sions of the CompareFields() method. This is

exactly the task of the Navigate() method.

In order to understand how this method

works, let us take as an example the sample

hierarchy depicted in Figure 2.

The sample class hierarchy is composed of

the RootClass on top of the hierarchy and

classes: ClassA, ClassB, ClassC and ClassD

as depicted in the figure. For simplicity, let

us assume that each class defines exactly

one field of its own: FieldRoot is defined by

the RootClass, ClassA defines FieldA and so

on. As a result, an object b, instance of

ClassB, will have 3 fields: FieldRoot and

FieldA as inherited from RootClass and

ClassA and, FieldB defined in ClassB. Simi-

larly, an object d instance of ClassD, will

have fields: FieldRoot, FieldA, FieldC and

FieldD.

Based on the semantics defined in section 3,

two objects will be equal if they have equal

values for their common fields and all their

subclass specific fields are set to default val-

ues. For example, objects b and d, instances

of ClassB and ClassD, are equal if and only if

their FieldRoot and FieldA are equal and the

specific fields: FieldB in b and, FieldC and

FieldD in d are set to their default values.

Let us observe that the most general case of

equality comparison is when the two objects

are instances of classes located on different

branches at different depths in the class hi-

erarchy. All other are particular cases of this

one. So, keeping things simple, let us use

the example in Figure 2 and analyze what is

to be done when comparing objects b and d,

instances of ClassB and ClassD. During the

navigation across the class hierarchy, there

are three main tasks that need to be solved:

- check for the default values of the sub-

class specific fields of object b – this re-

quires navigation on the left side branch

from ClassB to ClassA.

- check for the default values of the sub-

class specific fields of object d – this re-

quires navigation on the right side branch

from ClassD to ClassA.

- check for equality of the common fields

- this requires navigation on the common

branch from ClassA to RootClass.

Fig. 2. Sample Class Hierarchy

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 7

Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

Navigation will be done from the subclass

levels to the upper level classes in the direc-

tion indicated by the arrows in Figure 2, by

simply calling the Navigate() method of the

base class. At each step of the navigation

process, the corresponding CompareFields()

method is called in order to check the fields

defined at the current level.

Implementing the Navigation Method()

One of the challenges during the navigation

process across the left or right side branch is

to detect where each branch ends. This is

the lowest level class that is also common

for both branches, which in our example is

ClassA. This class has the property that both

objects b and d are instances of ClassA, i.e.

b is ClassA and d is ClassA evaluate both to

true. So, when navigating on the left side

branch from ClassB to ClassA, one would

stop when the other object (d in our exam-

ple) is an instance of the current class. Using

class specific tests of the form b is ClassA or

d is ClassA makes the navigation method

itself to be class specific, which means that a

specialized version of the Navigate() method

would be required for each class. This is

where reflection comes in providing the

functionality needed to generalize the navi-

gation method by avoiding direct references

to the class names. First, one can use the

GetType() method in order to get the type of

a class or the class type of a given object. In

our case the Equals() method (see Figure 1)

will get the type of the current object, i.e.

this and pass it as the first parameter of the

Navigate() method:

return Navigate(this.GetType(),

 (RootClass)other,true);

while the navigation method is designed to

receive as first parameter a Type object

which will always be set to the type of the

current class:

public bool Navigate(Type typeOfThis,

 RootClass other, bool reverseOrder)

The second useful functionality is that Type

objects come with a method called IsIn-

stanceOfType(), which is the dynamic coun-

terpart of the is operator. This means that

given the variable typeOfThis that holds the

type of the current class, the expression

typeOfThis.IsInstanceOfType(other) will tell

us when the other object is an instance of

the current class that is, when we are at the

end of the branch. Another problem with the

navigation method is to make sure that all

the required branches are processed and

that they are processed one single time. The

technique proposed by Langer&Kreft

(Langer, 2002b) is to use a flag variable to

control the navigation process. This is ex-

actly what the third parameter of Navigate()

does. Initially, the navigation method is

called with parameter reverseOrder set to

false. When reaching the common class for

the first time, the first two parameters are

reversed and reverseOrder is set to true. In

our example, this means that the current

class type becomes ClassB while parameter

other will be object b. This sets the right

values for navigation along the right side

branch. When returning from the right side

branch, navigation simply continues on the

common branch up to the RootClass level. If

this level is reached, the entire comparison

process successfully terminates and the two

compared objects are equal. The implemen-

tation of Navigate() as a recursive method is

given in Figure 3.

The last challenge in the development of a

class independent navigation method is to

compare the fields defined at the current

class level, by issuing a call to the right ver-

sion of the CompareFields() method. One

may expect that some kind of cast operation

by the current level class type may provide

the binding to the right method. Unfortu-

nately, this is not the case, since cast opera-

tions are meant to alter compile time bind-

ing. What we need here is to dynamically

bind our call to the version of the Compare-

Fields() method that corresponds to the cur-

rent class level. That is, at each navigation

step, a different version of the Compare-

Fields() method needs to be called. This kind

of functionality can be achieved by using late

binding techniques.

In C# there are two ways one can use to

dynamically invoke a method: by using the

Invoke() method, or by using the more gen-

eral InvokeMember() method.

When using the Invoke() method, a required

preliminary step is to get the method infor-

mation corresponding to the method we

want to call dynamically, that is Compare-

Fields(). This information is contained in a

MethodInfo object which is returned by the

GetMethod() method of a type object. In our

case, the expression:

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 8

Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

 typeOfThis.GetMethod("CompareFields")

returns a MethodInfo object describing the

CompareFields() method for the current

level class type represented by the variable

typeOfThis. The MethodInfo object is the one

that provides access to the Invoke() method

through which the right version of Compare-

Fields() is called. The complete code for the

dynamic call is shown bellow:

MethodInfo compareFieldsMethod=

typeOfThis.GetMethod("CompareFields");

if(!(bool)compareFieldsMethod.Invoke(this,

 new Object[] {other}))

 return false;

The first parameter of Invoke() is the object

making the dynamic call, while the second

one is an array of objects representing the

list of parameters with which the dynamic

method is called.

The equivalent dynamic call sequence using

InvokeMember() is:

if(!(bool)typeOfThis.InvokeMember(

 "CompareFields",

 BindingFlags.InvokeMethod |

 BindingFlags.Default,null,this,

 new Object[] {other})) return false;

Details about InvokeMember() and its pa-

rameters can be found in (Liberty, 2003)

and (Troelsen, 2003).

6 ITERATIVE NAVIGATION

Things become even simpler after a closer

look at the functionality of the navigation

method. Even in the most complex case all

that needs to be done is to navigate along

three branches of the class hierarchy and

since there is only one single navigation

method implemented in the root class there

is really no need for recursion in its imple-

mentation. The iterative version is given in

Figure 4.

public bool Navigate(Type typeOfThis,

 RootClass other, bool reverseOrder)

{

 if(typeOfThis.IsInstanceOfType(other)&&

 !reverseOrder)

 // reverse order

 return Navigate(other.GetType(),this,true);

 // compare my fields

 if(!(bool)typeOfThis.InvokeMember("CompareFields",

 BindingFlags.InvokeMethod

 | BindingFlags.Default,null,this,

 new Object[] {other})) return false;

 //succesfully done when at RootClass

 if(typeOfThis==Type.GetType("RootClass"))

 return true;

 //navigate to upper level

 return Navigate(typeOfThis.BaseType,

 other,reverseOrder);
}

Fig. 3. Recursive version of the Navigate() Method

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 9

Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

Let us notice that now there is one single

parameter passed to the Navigate() method.

Passing the type of the current object is not

needed anymore, and the reverseOrder

boolean flag can be discarded as well. Obvi-

ously, the call of Navigate() in the Equals()

public bool Navigate(RootClass other)

{

 //process this branch

 Type typeOfThis=this.GetType();

 while(!typeOfThis.IsInstanceOfType(other))

 {

 if(!(bool)typeOfThis.InvokeMember(

 "CompareFields",

 BindingFlags.InvokeMethod

 | BindingFlags.Default,null,this,

 new Object[] {other})) return false;

 typeOfThis=typeOfThis.BaseType;

 }

 //process other branch

 Type typeOfOther=other.GetType();

 while(!typeOfOther.IsInstanceOfType(this))

 {

 if(!(bool)typeOfOther.InvokeMember(

 "CompareFields",

 BindingFlags.InvokeMethod

 | BindingFlags.Default,null,other,

 new Object[] {this})) return false;

 typeOfOther=typeOfOther.BaseType;

 }

 //process common trunk up to RootClass

 if(!(bool)typeOfThis.InvokeMember(

 "CompareFields",

 BindingFlags.InvokeMethod

 | BindingFlags.Default,null,this,

 new Object[] {other})) return false;

 while(typeOfThis!=Type.GetType("RootClass"))

 {

 typeOfThis=typeOfThis.BaseType;

 if(!(bool)typeOfThis.InvokeMember(

 "CompareFields",

 BindingFlags.InvokeMethod

 | BindingFlags.Default,null,this,

 new Object[] {other})) return false;

 }

 return true;
}

Fig. 4. Iterative version of the Navigate() Method

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 10

Dollinger Fri, Oct 7, 3:30 - 3:55, Senate B

method will change accordingly.

The method consists of three blocks of code.

The code in the first block performs the

navigation from the class type of object this

until its closest common ancestor with object

other. The second block is similar, just that

it navigates on the branch of object other,

while the last block navigates along the

common branch up until the RootClass.

7. CONCLUSIONS AND FURTHER

DEVELOPMENTS

Equals() is intended to capture the seman-

tics of content based equality comparisons of

objects as opposed to object identity imple-

mented by the == operator. This would

make Equals() a class specific method; thus

overriding it is expected to be an every day

routine. However, correctly implementing

Equals() turns out to be a challenging task,

and everyday routines are not supposed to

be challenging. The correctness criteria for

equality comparisons are given by the

equals contract, and are not easy to comply

with. On the other hand, programmers

would expect a solution that is both simple

and free of artificial limitations. Program-

mers should not find a difficult challenge in

implementing such a basic functionality like

object equality and should not be limited to

compare only objects of the same type. We

provide an approach to the equality com-

parison problem which is a generalization of

the solution provided by Langer&Kreft in

(Langer, 2002b) and is able to reconcile the

requirements of the equals contract with the

legitimate expectation of programmers. This

means that mixed type comparisons of ob-

ject are allowed without limitations, while

programmers are expected to implement a

fairly straightforward CompareFields()

method instead of having to override

Equals(). The key techniques used are based

on reflection and late binding, which allow

class independent navigation of the inheri-

tance tree.

There are several directions for further de-

velopment of the work presented in this pa-

per. The functionality of mixed type com-

parisons could be made generally available

in a user transparent manner. All it would

take is to implement both Equals() and

Navigate() methods at the level of the Ob-

ject class. Providing these as standard sys-

tem level functionality would leave pro-

grammers only with the requirement of im-

plementing the CompareFields() method as

their own local concept of object equality.

This requirement could be enforced by hav-

ing classes to implement an adequate inter-

face defining the CompareFields() method.

Given its simple structure, an even more

convenient approach could be to automati-

cally generate the code of the Compare-

Fields() method based on a list of user des-

ignated fields, considered as relevant for the

equality tests, along with their default val-

ues.

As a final thought, we would like to empha-

size the idea that it may be beneficial to

have more elaborate content-based default

functionality implemented at system level

both for Equals() and GetHashCode(). The

two are closely related and a navigation

technique similar to the one presented here

could be used in the computation of objects’

hash codes. As with field comparisons, users

will only have to designate which fields

would be used in the generation of the hash

code value.

REFERENCES

Davis, M. (2000a) Durable Java: Liberte,

Egalite, Fraternite, Java Report, January

2000, URL:
http://www.macchiato.com/columns/Durable5.html

Davis, M. (2000b) Durable Java: Hashing

and Cloning, Java Report, April 2000,

URL:
http://www.macchiato.com/columns/Durable6.html

Langer, A., Kreft, K. (2002a) Secrets of

equals() – Part 1, Not all implementations

of equals() are equal, Java Solutions, April

2002, URL:
http://www.langer.camelot.de/Articles/JavaSolutions/

SecretsOfEquals/Equals-1.html

Langer, A., Kreft, K. (2002b) Secrets of

equals() – Part 2, How to implement a

correct slice comparison in Java, JavaSo-

lution, August 2002, URL:
http://www.langer.camelot.de/Articles/JavaSolutions/

SecretsOfEquals/Equals-2.html

Liberty, J. (2003) Programming C#, Third

Edition, O’Reilly

Schaefer, A. (2004) All equals() are not

born equal, Java.net, October 2004, URL:
http://weblogs.java.net/blog/schaefa/archive/2004/10/

all_equals_are.html

Troelsen, A. (2003) C# and the .NET Plat-

form, Second Edition, Apress

Proc ISECON 2005, v22 (Columbus OH): §2554 (refereed) c© 2005 EDSIG, page 11

