
Conlon and Hulick Fri, Oct 7, 2:30 - 2:55, House A

Is There a Role for Open Source Software

in Systems Analysis?

Michael P. Conlon
michael.conlon@sru.edu

Frank W. Hulick
frank.hulick@sru.edu

Computer Science Department, Slippery Rock University of
Pennsylvania

Slippery Rock, PA 16057, U.S.A.

Abstract

Open source software has enjoyed considerable success in recent years, as measured by the

growth both in its popularity and in the number and complexity of available programs.

However, there is little mention of open source software in today's systems analysis

textbooks. This paper explores the role that open source software should play in systems

analysis, and in the systems analysis course.

Keywords: systems analysis, open source software, free software, software development

1. INTRODUCTION

Free/Open Source Software

In 1999, the term open source was first

applied to what had been called free

software. Several participants in the free

software movement realized that the

multiple denotations of the word free were

causing confusion among potential users of

free software. In particular, free software

was being underutilized in the commercial

arena because of managers' belief that free

software must be valueless software, i.e.,

you get only what you pay for. However,

the word free here refers to freedom, not

price. Richard Stallman, a founder of the

free software movement, defines free

software in the form of four freedoms (Free

Software Foundation, 2005):

• The freedom to run a program, for any

purpose.

• The freedom to study how the program

works, and adapt it to your needs.

Access to source code is a precondition

for this criterion.

• The freedom to distribute copies.

• The freedom to improve the program

and release your improvements to the

public, so that the whole community

benefits. Access to the source code is a

precondition for this criterion as well.

Clearly, these freedoms are important to

commercial users as well as hobbyists and

academics. By emphasizing the availability

of source code, we sidestep the libre/gratis

confusion. Use of the phrase open source

software is not intended to de-emphasize

the importance of freedom, but rather to

eliminate the popular confusion.

Roots of Open Source Software

Open Source software is not new. It has its

roots in the user groups of the major

computer hardware vendors and in the

computer science laboratories of

universities, where a culture of sharing

software has prospered. It is important to

Proc ISECON 2005, v22 (Columbus OH): §2562 (refereed) c© 2005 EDSIG, page 1

Conlon and Hulick Fri, Oct 7, 2:30 - 2:55, House A

realize that proprietary software is, in fact,

newer than open source software, and that

proprietary software vendors actually

needed to convince the programmer

community that software sharing should not

be the norm. Bill Gates, in “An Open Letter

to Hobbyists,” protested that his software

was not to be shared (Gates, 1976). The

success of the personal computer revolution,

and Microsoft's concomitant rise, led to the

general perception that proprietary, closed

source software should be the norm. In the

Unix community, development and use of

open source software continued, but these

efforts did not initially attain wide

recognition because of the failure of the Unix

vendors to penetrate the personal computer

market.

The virtually complete lack of marketing and

advertising effort associated with open

source software permits a general ignorance

of the very existence of this segment of the

software world. Similarly, many who have

heard of open source software have the

mistaken impression that its impact is

negligible. In fact, there are many

successful open source programs. Foremost

among these are the programs that were

running the Internet before proprietary

Internet software was created. Among the

more-significant open-source programs are

• Routed, Bind, Sendmail, and Apache,

which provide Internet routing, name

service, e-mail transfer, and Web service

• Linux, OpenBSD, NetBSD, FreeBSD, and

FreeDOS operating systems

• The Gnu Compiler Collection (gcc) and

the Gnu utilities

• Samba, which provides file and printer

sharing services simulating a Windows

server

• MySQL and PostgreSQL database

management systems

• OpenOffice.org office suite

• Mozilla and Firefox Web browsers

• The KDE and Gnome desktop

environments, each of which provides a

plethora of application programs, from

editors and utilities to finance managers

and multimedia applications.

Motivation for Including Open Source in

Systems Analysis Curricula

Since open source clearly represents a

significant segment of the software world, it

deserves consideration in systems analysis

courses and textbooks. One might ask why

it is not discussed there already.

This situation can be explained in that,

historically, open source software tended to

be systems software, not the usual domain

of systems analysis. However, as the

systems software has stabilized, open-

source programmers are moving more and

more into application programming. As

businesses perceive advantages in open

source development, they will need more

systems analysts who understand open

source development processes.

2. OPEN SOURCE IN THE SOFTWARE

DEVELOPMENT LIFE CYCLE

Build or Buy?

Often, systems analysis is performed in

order to specify software for acquisition

rather than for development. An advantage

of off-the-shelf software is reduced risk,

since, before the firm commits to it, the

software is known to work. A disadvantage

is that the software may not be a good fit for

the firm, and the firm might need to make

inconvenient changes to its business

processes, and perhaps write custom

workaround software to accommodate the

acquired software to the firm's legacy

systems.

Open Source Reduces Risk

Perhaps the simplest way to include open

source into systems analysis is to consider

existing open source software as well as

proprietary software when making the

“build-or-buy” decision, which now becomes

the “build, buy, or download” decision.

Appropriate open source software gives us

the best of both building and buying. Risk is

reduced because the software is known to

work (and it can even be tested before any

commitment to it is made), and, because of

the availability of source code, the program

can be customized to the firm's specific

needs.

Risk is further reduced when open source

software is chosen, because open source

Proc ISECON 2005, v22 (Columbus OH): §2562 (refereed) c© 2005 EDSIG, page 2

Conlon and Hulick Fri, Oct 7, 2:30 - 2:55, House A

software is written to community standards.

There are no secret, proprietary file formats

or secret communication protocols in open

source software, since it is not to the

advantage of anyone writing open source

software to foster user lock-in. This means

that the firm's data will be accessible well

into the future. Even if standards change,

open standards are well-documented, so any

competent programmer can write a program

to convert data to any new format.

Additional risk reduction comes from the

very openness of the code. Since anyone

can see the code, there is little chance that a

security trapdoor can be introduced

undetected. Additionally, because the firm

possesses the product's source code, there

is no danger of the product's discontinuance

because of a vendor's merger, bankruptcy,

or change in marketing strategy. If the

software is useful to the firm, the firm can

continue to use, maintain, and extend it.

Commercial Open Source Development

Another option for the firm is to build

software rather than to acquire it. Should

open source development be considered?

Isn't it folly for a company to give away the

results of its efforts? The answer depends

on the firm's business model.

A company that makes most of its money by

licensing software would be foolish to donate

its software to the open source world, unless

it is planning to change its business model.

Don't expect Microsoft Word, WordPerfect,

or Quicken to become open source anytime

soon.

However, most programmers and analysts

are not employed by companies that license

software. They are employed by companies

that use software (Raymond, 1999). There

are distinct advantages to such a company

in open-sourcing its software products.

Their small IT staff may be overworked, but

if their software is useful to other

companies, those companies' programmers

may contribute to the software project. This

effectively extends the company's

development staff without extending its

payroll. The resulting independent peer

review of the software can facilitate the

development of more-reliable, feature-rich

software for less cost.

There are even reasons for software-for-

licensing companies to consider going open

source. Often there is more money to be

made in supporting software users than in

selling software licenses. By open-sourcing

a product, a company might develop a larger

market, and the support business could be

lucrative. Red Hat Linux and MySQL are

products of such (profitable!) companies.

Open Source Methodology

Many open source projects are organized

with a single leader or a small leadership

committee (simplified to just leader

henceforth). The leader decides whether to

adopt any proposed software change, the

sole criterion being the technical merit of the

proposed change. Since the code base of an

open source project is placed in a public

repository, such that anyone can download,

view, and modify the source code, anyone at

all can suggest any change whatsoever. So,

what constitutes technical merit?

In proprietary software development it is

expected that documents have been

developed which specify the scope of the

project, its financial feasibility, and a

schedule for its completion. Code is

developed in accordance with the planning

documents, so there is no question about

the code's merit. It would be rather unusual

for a programmer involved in proprietary

development to contribute a feature outside

the scope of the plan. However,

development projects have been known to

fail in spite of such planning.

Open source projects generally do not have

such planning documents, yet “bad” code

gets rejected and “good” code gets

accepted. Ultimately, it is the team of

developers on the project who determine

what constitutes “good” code. These

developers have self-selected themselves for

the project, so they embody a good deal of

domain expertise (Morton, 2004). If the

leader says certain code is bad, s/he can

expect considerable opposition from the

team if they disagree. A leader who

disregards the opinions of the team risks

losing leadership. Open source projects

have acquired an excellent record for

quality, so the open-source quality-

assurance process certainly works.

Among the advantages of open-source

development is its resistance to externally-

Proc ISECON 2005, v22 (Columbus OH): §2562 (refereed) c© 2005 EDSIG, page 3

Conlon and Hulick Fri, Oct 7, 2:30 - 2:55, House A

mandated scope creep, which is often cited

as one of the major causes of project

failures. Because the people determining

technical merit in open-source projects are

developers and not managers, they tend to

accept changes based on the practicality and

usefulness of the changes, rather than on

criteria related to marketing, or to

someone's status within the corporate

hierarchy. Sometimes, external developers

may contribute features outside the defined

scope of the project. Since they have taken

it upon themselves to design the new

feature, it represents no cost to the firm,

and since it comes from someone with

genuine concern for the project, it may well

be that this new feature belongs in the

system in spite of its omission from design

documents.

One type of planning not found in successful

open source projects is schedule planning.

While deadlines exist, they are set by the

development team rather than managers,

and they are not set until it becomes

apparent to the leader that the current

phase of development is nearing completion.

Since no one ever really can tell how long

something that has never been done before

can take, the real purpose of deadlines is to

establish a limit on development time. A

firm that does open source development will

have to be content with not knowing very far

in advance when their project will be

completed. In reality, it is never possible to

know the completion time in advance, but in

open source development there is no

attempt to pretend otherwise. When the

developers set the deadlines, software is

released when it is ready, with minimal

bugs. If someone really needs the software

before it's ready, they can always download

it from the code repository. Research even

seems to indicate that this lack of scheduling

actually results in the fastest delivery of a

working system (DeMarco and Lister, 1987).

None of this means that open source

projects don't fail. Browsing through the

open source projects at sourceforge.org will

reveal many projects that are inactive.

Projects may become inactive for many

reasons, other than successful completion:

The leader lost interest and never attracted

a community of developers to take over; the

project wasn't carefully thought-out and

never made significant progress; the project

was not feasible; the project duplicates

another successful project. The good news

is that someone else attempted these failed

projects, so your firm's resources were not

wasted in the process.

There is some question as to what problems

are appropriate for open source

development. Andrew Morton, one of the

leaders of the Linux project, has suggested

that good open source projects deal with

problem domains which are well-understood,

such as operating systems, compilers,

Internet infrastructure, databases, word

processors, and the like (Morton, 2004).

Eric Raymond (Raymond, 1999) agrees.

When a firm attempts a state-of-the-art

software project, it may not find a

community of programmers who understand

the problem, thus bearing much of the cost

of development itself. It would be difficult

for such a firm to justify donating such a

project. One would need to question

whether, as the project progresses, it will

collect an external following to contribute to

further development, and whether the

benefits of such contributions would be

preferable to the income obtainable from

licensing the program.

Initiating Open Source Development

A firm should start its open source software

project in much the same way as if it were

not open source. Determination of business

requirements and the technical feasibility

study are as important as ever. Check for

related government or community

document-format or communication-protocol

standards. If such standards exist,

conformance with these standards must be

specified.

From his experience in the fetchmail

experiment, Eric Raymond (1997) suggests

that the next step is for the firm to look for

an open-source project that approximates its

requirements. This eliminates some risk:

the starting code, however incomplete, still

works.

Assume, as happened with fetchmail, that

such a project exists, with some working

code, but that many or even most

requirements are not met. By contributing

improvements to this code, the firm’s

programmers will start to get feedback from

the leader and other members of the team.

Proc ISECON 2005, v22 (Columbus OH): §2562 (refereed) c© 2005 EDSIG, page 4

Conlon and Hulick Fri, Oct 7, 2:30 - 2:55, House A

As more and more improvements are

contributed, and if the contributions are

constructive, the firm’s programmers will

become trusted within the team. This will

lead to their being given write-access to the

code repository. One of them may even be

asked to take over leadership should the

current leader have lost interest in the

project.

After some time the firm will come to one of

two conclusions: either this software is going

to solve the problem, or, as happened in the

fetchmail experiment, a complete re-write is

necessary. In the former case, the firm

needs only to proceed as it is already. In

the latter case, it has, in effect, refined the

problem, and is now prepared to re-write the

specifications and structural design. This is

not a failure: the firm has just avoided the

“This is what we asked for but this is not

what we need” problem. Brooks wrote,

“Plan to throw one away; you will, anyhow.”

(Brooks, 1995)

If there seems to be no open-source

program that approximates the firm’s needs,

this is the point where development starts.

 Raymond insists that a project cannot begin

in bazaar style, i.e., with large numbers of

geographically dispersed, self selected team

members. On the other hand, a polished,

final product isn’t necessary, either, before

soliciting outside developers. What is

needed is a program which can “(a) run, and

(b) convince potential co-developers that it

can be evolved into something really neat in

the foreseeable future” (Raymond, 1997),

even if the firm must create that much itself.

Once again, Raymond's fetchmail project

serves as a model for development. As the

replacement system is designed and built,

the code should be posted on the Internet

for public access. Postings must occur

regularly; waiting until the code is perfect

would be a mistake. Of course, suitable

disclaimers about the stability of the code

should be posted, too. If the project is

useful, developers from the old project will

be attracted, and new ones as well. These

people will help find bugs and contribute

fixes and improvements, and the system will

approach stability rapidly. Raymond states,

“Treating your users as co-developers is

your least-hassle route to rapid code

improvement and effective debugging

(Raymond, 1997).” Note that this procedure

has a lot in common with Extreme

Programming (Beck, 1999).

Thus, testing is integrated with

development: the openness of the code

means that people will try the code, well

before it's ready for final release. Bugs that

would not have been noticed become

apparent to someone in the mass of users

trying out the system. Linus' Law applies:

“Given enough eyeballs, all bugs are

shallow” (Raymond, 1997). A major feature

of open source development is that it

bypasses Brooks' Law, multiplying the ability

to find and fix bugs.

The pervasiveness of the Internet is the

single development which has catapulted

open source development to the fore.

Programmers will be productively developing

software with team members who have

never met each other before. Most

communication within the design team in

open source development occurs over e-mail

and, to a much lesser extent, IRC (Internet

Relay Chat) (Morton, 2004). Unlike with

proprietary development, all of the design

conversations (and disagreements) are

public. Expect that “dirty laundry” will be

hanging out; this is a requirement for a

democratic process. Mailing lists are

archived, providing a running record of

design conversations and decisions. If you

are disturbed by the frank, public

discussions related to the system you are

developing, remember that proprietary

development has lots of dirty laundry, too,

but the public is rarely privy to the

conversations.

3. CHANGES TO THE SYSTEMS

ANALYSIS COURSE

The above discussion necessitates the

following changes in systems analysis course

content:

• Add open source into the menu of

options in the (renamed) “build, buy, or

download” decision. Treat the open

source option as a low-risk option,

explaining that the low risk derives from

the facts that the code is known to run,

the code can be modified to meet a

firm's specific needs, and that the code

will not be a captive of a vendor's

insolvency, acquisition, or changes in

Proc ISECON 2005, v22 (Columbus OH): §2562 (refereed) c© 2005 EDSIG, page 5

Conlon and Hulick Fri, Oct 7, 2:30 - 2:55, House A

market strategy.

• Add download-and-modify as an option

intermediate to build and buy. This is an

option that was previously unavailable,

and it gives the firm significant

flexibility. Point out that the download

option offers the advantage of giving

code customized to the firm's needs

without the need for the firm to bear all

of the development costs itself.

• Discuss open source development as a

valid option when the decision is made

to develop custom software. Among the

reasons for developing new software

under an open-source regimen are the

potential assistance from outside

developers, which leads to rich

functionality and minimal bugs, and the

distribution of development costs across

all the firms that take an interest in the

software.

• Point out the advantages of giving

software away to the community, as well

as the circumstances when proprietary

development makes better sense. These

advantages include the software

improvements discussed in the

preceding point, and the potential

income from selling support. Open-

sourcing software may facilitate its wider

distribution, thus giving the firm greater

potential for income from support

contracts. Indicate that keeping the

source code closed makes most sense

when the code embodies trade secrets

or when the firm expects to make

significant income from licensing the

software.

• Emphasize the importance of the

openness of the process when open

source development is chosen, since

outside contributors will not join a

partially-closed process. Discuss how

open source development trades control

for outside assistance. Tell students that

an open process means public

discussions, and even arguments, about

design decisions. This is necessary to

achieve the best possible technical

solution.

• Stress that release of open source

software must be both early and often,

at least in the early phases of

development. Regular, frequent

releases encourage the developer

community, tempting them to try out

the latest version and return bug reports

and fixes, and serve as an incentive for

them to get involved.

• Point out that this outside assistance can

both help eliminate bugs and drive faster

development.

• Finally, point out that open-sourcing

software is not a panacea. A project

that is not well-thought-out and

competently led will fail, whether the

development process is open or closed.

4. CONCLUSION

Open source software has become an

important part of the software world. It

makes economic sense for many

development projects. Systems analysts and

designers need to understand its economics

and peculiar development processes. It is

incumbent upon those who teach systems

analysis and design to educate future

systems analysts about open source

development.

5. REFERENCES

Beck, Kent (1999) Extreme Programming

Explained: Embrace Change. Addison-

Wesley Professional, ISBN 0-201-61641-

6

Brooks, Frederick P. (1995) The Mythical

Man-Month: Essays on Software

Engineering, 20th Anniversary Edition.

Addison Wesley, ISBN 0-201-83595-9.

Dafermos, George (2001) “Management &

Virtual Decentralised Networks: The

Linux Project”. Masters thesis, Durham

Business School.

DeMarco and Lister (1987) Peopleware:

Productive Projects and Teams. Dorset

House, 1987, ISBN 0-932633-05-6.

Free Software Foundation (2005) “The Free

Software Definition.” Web document:

www.gnu.org/philosophy/free-sw.html.

Gates, William (1976) “An Open Letter to

Hobbyists.” MITS Computer Notes,

February, 1976. Currently available on

the Worldwide Web at

www.blinkenlights.com/classiccmp/

Proc ISECON 2005, v22 (Columbus OH): §2562 (refereed) c© 2005 EDSIG, page 6

Conlon and Hulick Fri, Oct 7, 2:30 - 2:55, House A

gateswhine.html.

Glass, Robert L. (2003) “A Sociopolitical

Look at Open Source.” Communications

of the ACM, 46(11), November, 2003,

pp. 21-23.

Mockus, Audris; Roy T. Fielding; and James

Herbsleb (2000) “A Case Study of Open

Source Software Development: the

Apache server.” Proceedings of the 22nd

International Conference on Software

Engineering, June 2000, Limerick,

Ireland.

Mitsova, Helena and Markus Neteler (2004)

“GRASS as Open Source Free Software

GIS: Accomplishments and

Perspectives.” Transactions in GIS,

2004, 8(2), pp. 145-154.

Morton, Andrew (2004) “Open Source

Software Development and the

Software-using Business World.”

Transcript of a speech given at

SDForum, November 16, 2004.

Obtainable at www.groklaw.net/

article.php?story=20041122035814276&

query=Software-using+business+world

Open Source Initiative (2002) The Open

Source Definition. WWW document,

http://www.opensource.org/docs/definiti

on.php

Raymond, Eric (1997) The Cathedral and the

Bazaar. WWW document, www.catb.org/

~esr/writings/cathedralbazaar/cathedral

-bazaar

Raymond, Eric (1999) The Magic Cauldron.

WWW document, www.catb.org/~esr/

writings/cathedral-bazaar/magic-

cauldron

Proc ISECON 2005, v22 (Columbus OH): §2562 (refereed) c© 2005 EDSIG, page 7

