
McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

A Reverse Life-Cycle Database Course
With Mini-Projects

Kirby McMaster

kmcmaster@weber.edu

Nicole Anderson
nanderson1@weber.edu

Dona Bilyeu-Dittman
ddittman@weber.edu

Computer Science, Weber State University
Ogden, UT 84408 USA

Abstract

The usual approach to teaching an introductory database course--as presented in curriculum

guidelines from professional societies, in database textbooks, and in papers and

presentations--is to sequence the topics according to the database development life-cycle.

Students proceed from data modeling to database design to database implementation and

operations. In this approach, students are often assigned a semester-long project, where they

perform life-cycle activities to develop a single database system. In this paper, some problems

with the life-cycle approach are discussed, and an alternative reverse life-cycle approach is

suggested. With the reverse life-cycle approach, students begin by performing operations on

existing databases, and then learn how to implement their own databases. Data modeling and

design topics are delayed until students become familiar with database systems. Instead of a

semester-long project, students are given a sequence of mini-projects, where each mini-

project involves activities within one stage of database development.

Keywords: database, life-cycle, data modeling, entity-relationship model, relational model,

database design, SQL.

1. INTRODUCTION

In recent years, there has been a significant

amount of activity to define the content of a

first database course for Computer Science

and Information Systems programs.

Professional organizations such as ACM,

IEEE, AIS, and AITP have provided lists of

recommended topics for database courses in

their curriculum guidelines. Authors of

database textbooks carefully select topics to

include in their texts, choosing those they

feel are relevant to today's students. Papers

presented at professional meetings have

reviewed which topics are commonly

included in database courses and what types

of projects should be assigned to students.

Less has been written about the order in

which database topics should be presented.

The implicit topic ordering found in the

curriculum guidelines, in most database

textbooks, and in many papers follows the

database development life-cycle. In the life-

cycle approach, the normal topic sequence is

data modeling, database design, database

implementation, and database operations.

The most common type of project in this

approach is a semester-long group or

individual project, in which a single database

application is developed by performing life-

cycle tasks.

This paper discusses some problems with

the life-cycle approach for database courses,

and offers an alternative topic sequence,

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 1

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

referred to as the reverse life-cycle

approach. In the reverse life-cycle approach,

the topic order is database operations,

database implementation, followed by data

modeling and database design. When the

reverse life-cycle approach is used, a single

semester-long project is impractical, since

the database would have to be implemented

before it is designed. Instead, we

recommend a sequence of smaller mini-

projects involving different databases. Each

mini-project requires students to perform

tasks within a specific stage of database

development. It has been our experience

that teaching a first database course using

the reverse life-cycle approach can be very

effective for students early in their academic

program.

2. THE LIFE-CYCLE
APPROACH

In the life-cycle approach, the topic

sequence follows the stages in developing a

new database system. The data modeling

stage describes how to construct a

preliminary data model, such as an entity-

relationship model or object model. The

database design stage covers the conversion

of a preliminary data model into a

normalized relational model. The

implementation stage explains how to create

tables and views and specify integrity

constraints. The database operations stage

focuses on performing queries and data

entry.

In 2001, the ACM and IEEE organizations

issued a set of Curriculum Guidelines for

Computer Science courses (2001). For an

introductory database course, the following

topics were recommended:

IM1 Information models and systems

IM2 Database systems

IM3 Data modeling

IM4 Relational databases

IM5 Database query languages

IM6 Relational database design

IM7 Transaction processing

IM8 Distributed databases

IM9 Physical database design

The order in which sections IM3 through IM5

are listed approximates the life-cycle

approach. The main difference is that

database design topics are divided between

IM3 (mapping conceptual schema to a

relational schema) and IM6 (normal forms).

A Model Curriculum and Guidelines for

Information Systems courses was prepared

by the ACM, AIS, and AITP organizations in

2002 (Gorgone, 2002). In this curriculum,

database topics are embedded within a two-

course sequence. The first course--Analysis

and Logical Design--includes data modeling

and logical database design. The second

course--Physical Design and Implementation

with DBMS--covers additional data modeling

topics (e.g. relational vs. object models),

physical database design, and database

implementation.

A team-oriented project is recommended for

the two-course sequence, where students

design and implement a departmental

information system that includes a database.

The database topics within the two-course

sequence closely follow the life-cycle

approach.

Each database textbook has its own choice

of coverage and sequencing of topics.

Fourteen recent database textbooks

(versions published since 2000) were

examined to see whether they follow the

life-cycle approach or a different approach.

As an indicator of how closely a textbook

follows the life-cycle approach, we recorded

which chapter covered data modeling and

which chapter covered SQL queries. A

textbook representing the life-cycle

approach should cover data modeling before

SQL queries. The results are summarized as

a scatter diagram in Figure 1.

In this sample of database textbooks, nine

covered data modeling early (in Chapters

2,3, or 4), before SQL queries (Elmasri,

2004; Garcia-Molina, 2002; Hoffer, 2005;

Kifer, 2006; Ramakrishnan, 2003; Riccardi,

2001; Riccardi, 2003; Ricardo, 2004; Rob,

2004). The other five textbooks covered

data modeling later, after SQL queries

(Connolly, 2005; Date, 2004; Kroenke,

2006; O'Neil, 2000; Silberschatz, 2005). The

split between modeling early vs. modeling

later would have been greater (11 to 3) if

the Kroenke (2006) and Silberschatz (2005)

textbooks had not changed the topic

ordering in their latest versions. The

majority of database textbooks still favor the

life-cycle approach, with data modeling

presented in an early chapter. But there is

recent movement toward later coverage of

data modeling in two textbooks, as authors

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 2

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

DATABASE TEXTBOOKS
Chapter Topics

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

E-R Model Chapter

S
Q
L
 Q
u
e
ry
 C
h
a
p
te
r

Model Early

Model Later

 Figure 1: Modeling Early vs. Modeling Later

recognize benefits from offering a non-

traditional sequence of topics. Database

instructors are not forced to follow the topic

sequence presented in the textbooks they

adopt, but they are often influenced by it.

Recent papers and presentations on teaching

the first database course have focused more

on content than topic sequence. One such

paper is "Trends in the Evolution of the

Database Curriculum" by Robbert and

Ricardo (2003), presented at ITiCSE 2003.

The authors conducted surveys of database

educators in 1999, 2001, and 2002, asking

them which database topics are included in

their database courses, and how many hours

are spent on each topic. For the 106

respondents in the 2001 survey, the five

topics with highest weighted average hours

were SQL, database design, entity-

relationship model, relational model, and

normalization. The order in which database

topics are or should be taught was not

discussed in the paper.

A few papers do suggest or imply a database

topic sequence, and seem to recommend the

life-cycle approach with semester-long

projects. Baugh (2003) presented a paper at

ISECON 2003 entitled "A First Course in

Database Management." The paper

describes her organization of course topics,

and how the concepts are taught in the

context of individual semester-long projects.

Baugh's course content includes:

Topic 1: Database Terminology

Topic 2: Database Design

Topic 3: Relational Database

Topic 4: SQL Language

Topic 5: Normalization

Topic 6: Database Management

This sequence is a slightly modified life-cycle

approach, in which the normalization part of

database design is covered after SQL

(similar to the ACM Curriculum Guidelines).

Baugh makes the following statement:

"This course was designed to allow the

student to work on an individual database

project while learning the database theory

in a concurrent manner."

Adams (2004) was moderator for a panel

discussion at SIGCSE 2004 on "Managing the

Introductory Database Course: What Goes

In and What Comes Out?" Each of the four

participants described what topics are

important and what types of projects are

given to students. There is a strong

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 3

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

consensus as to course content and projects

among the four presenters.

Liz Adams: "We cover both the ER model

and the Semantic Object Model. We only

consider the relational model and we cover

normalization. ... We spend some time on

relational algebra and SQL. ... Most of the

labs are team projects as is the term

project. The term project has a number of

sequenced components, each with a

specified due date."

Don Goelman: "What does that leave as

the 'sine qua non' topics for our course?

My vote (and practice) goes to high-level

modeling (ER, EER, and UML), principles of

the relational model, mappings among the

models, abstract query languages, SQL

(primarily as DML), relational design

theory, and the object data model. ...

Three hourly exams, a final, and a

semester group project are the chief

assessment tools."

Mary Granger: "This course focuses on

logical database design, incorporating

Entity-Relationship diagrams, relational

database and normalization, relational

algebra and SQL. ... The team project

consists of students creating the entity-

relationship diagrams, the tables and

relationships in Access, implementing a

certain level of functionality...."

Catherine Ricardo: "For all students, it is

vital to cover the essentials and to

introduce the newer topics.... I assign a

semester-long project, to be done in

teams. Students design a database and

implement it using Oracle."

The first three participants are describing a

life-cycle approach for their database

courses. Data modeling is covered early,

both as a lecture topic and as a project

activity. All four participants assign

semester-long team projects.

3. PROBLEMS WITH THE
LIFE-CYCLE APPROACH

When a database course follows the life-

cycle approach, it is not uncommon for

students to have difficulty developing entity-

relationship models for their projects.

Students also have trouble converting the

entity-relationship model into a relational

model, especially the process of normalizing

the tables. This is not surprising, since most

students have had very little experience with

actual database systems.

During a semester-long project, students

should have an easier time with concrete

tasks such as creating tables, inserting data,

and performing queries. However, student

database designs are often poor, so the task

of implementing them can be a challenge.

Also, with a bad design, desired queries can

be difficult or impossible to perform if the

required data is not available or is in an

inconvenient form.

The main issue here is one that appears in

other areas of CS and IS, and it pervades

Mathematics. The issue is: when should

abstraction be taught? Should we teach

abstract concepts first, followed by specific

implementations? Or should we give

students tangible examples first, and then

generalize to abstract concepts? This issue

applies to how we teach programming, how

we teach object-oriented concepts, and how

we teach database courses.

Data modeling is a form of abstraction.

When we use the life-cycle approach, we

teach students how to develop abstract

models for data before they are familiar with

actual database systems. Date (2004) does

not agree with this approach.

"Some reviewers of earlier editions

complained that database design issues

were treated too late. But it is my feeling

that students are not ready to design

databases properly or to appreciate design

issues fully until they have some

understanding of what databases are and

how they are used."

 Kroenke (2006) gives a different reason for

not covering data modeling early.

"Furthermore, today's students are too

impatient to start a class with lengthy

conceptual discussions on data modeling

and database design. They want to do

something, see a result, and obtain

feedback."

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 4

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

4. THE REVERSE LIFE-CYCLE
APPROACH

Consider the following alternative to the life-

cycle approach. Because it is difficult for

students to develop systems that are

unfamiliar, the course starts with the

database operations stage of the life-cycle.

Students are given sample databases and

asked to perform queries and data entry.

This allows them to learn what a database

system consists of and how it behaves.

Next, during the database implementation

stage, students are provided with a well-

designed relational model and asked to

implement the tables, integrity constraints,

and views of a relational database. The

relational model can be in the form of a

relational model diagram with a data

dictionary, or it could be a working

prototype (e.g. using Access).

For the analysis/design stages, students

learn how to construct a preliminary data

model (using entity-relationship modeling or

object modeling), and then transform the

preliminary data model into a normalized

relational model. Another assignment would

be to have students improve a badly

designed relational model. The ultimate goal

of this stage is to obtain a detailed relational

model that is in a maintainable, anomaly-

free normal form.

When this point in the course has been

reached, the reverse life-cycle approach has

been accomplished. As each development

stage is discussed, students are familiar with

the end products for that stage, since they

have already experienced the next stage.

Their focus can be on methods for creating

these end products, or deliverables.

Understanding the deliverables implies that

students have seen examples of well-

designed databases along the way and have

a good idea of what they should look like. If

time permits, students can be given a short

final project that allows them to go through

the development process in the usual life-

cycle direction.

The reverse life-cycle approach for database

courses is not mentioned in the ACM/IEEE

Curriculum Guidelines. We also could not

find any research papers that describe or

recommend this approach. Of the five

database textbooks described earlier that

are in the Modeling Later group, the one that

most closely follows the reverse life-cycle

approach is Database Systems, by Connolly

and Begg (2005). We have used this

textbook in our course, and student

evaluations of this course have been

positive.

Two of the authors have used the reverse

life-cycle approach in their database courses

over the past four years. In addition to the

positive feedback from students and the

benefit of allowing students to understand

stage deliverables, other advantages are

gained using this approach. This topic

ordering is very familiar to students, as it is

typically followed when learning traditional

software development. Students tend to

understand the end products of general

software development more easily. They

often have an idea what software should do

and how to test it.

Even so, educators don’t ask students to

develop a complex software system in the

introductory programming course. Students

are first taught building blocks such as

variables, control statements, functions, and

classes, and then build upon these concepts

by creating small programs (e.g. a program

to perform temperature conversion). Finally,

they are asked to put all these ideas

together, from requirements collection to

the testing phases of development, to build

larger software systems.

When this approach is compared to the way

students are later exposed to databases in

the business world, it is quite similar. They

often encounter an existing database and

are asked to query it or modify it. It is not

until later in their career, when they have

more experience, that they are asked to

design a database system from the ground

up. We see all of these situations as benefits

of the reverse life-cycle approach.

5. USING MINI-PROJECTS

When the reverse life-cycle approach is

used, it is not practical to assign students a

semester-long project involving a single

database, since they would have to start

with the completed system. It is more

instructive to have a number of smaller

mini-projects involving different databases.

Each mini-project requires students to

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 5

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

perform tasks within a particular stage of

development.

Developing good database projects can be

time consuming. To assist instructors, we

have prepared eight mini-projects that can

be used to support the reverse life-cycle

approach. Each mini-project requires

approximately two weeks to complete. Mini-

projects have been prepared for the

following topic areas:

1. Files vs. Databases

 data vs. metadata

 file processing vs. database

processing

 data independence

2. Relational Databases and Relational

Algebra

attributes, domains, and tables

relationships: primary keys and

 foreign keys

 relational algebra operations

 procedural query language

3. Relational Calculus and Query-By-

Example

predicate logic: domains, predicates,

 facts, rules

 relational calculus expressions

 Query-By-Example (QBE)

 nonprocedural query language

4. Structured Query Language: Queries

SELECT statement:

 SELECT...FROM...WHERE

 aggregate functions

grouping: GROUP BY...HAVING...

 sorting: ORDER BY...

 nested queries

5. Structured Query Language: Data

Definition and Data Entry

 CREATE TABLE statement

 integrity constraints

 INSERT, UPDATE, and DELETE

 statements

 ALTER TABLE statement

 CREATE VIEW statement

6. Data Modeling: Entity-Relationship

Model

 entities and attributes

 relationships

 cardinality: 1-1, 1-M, M-M

 entity subtypes

7. Data Modeling: Relational Model

Design and Normalization

 update anomalies: insert, update,

 delete

 functional dependencies, determinants

 normal forms: 1NF, 2NF, 3NF, BCNF

8. Database Development Life Cycle

 modeling: develop preliminary data

 model (E-R model)

 design: develop normalized relational

 model

 implementation: create tables, views

Sample problem descriptions for several

mini-projects are included in the Appendix.

These mini-projects have been classroom

tested and revised several times. The key to

a suitable mini-project is that its main focus

should be on topics and activities within a

specific stage of development, although it

may include some review of previous topics.

Also, it should be possible to complete a

mini-project within approximately two

weeks.

6. SUMMARY AND
CONCLUSIONS

The purpose of this paper is to propose a

reverse life-cycle approach for teaching an

introductory database course. The traditional

life-cycle approach, which is recommended

in CS and IS curriculum guidelines, in

research papers and presentations, and in

most database textbooks, presents topics in

the order they are encountered in the

process of developing a database system. A

semester-long project usually accompanies

the course topics in this approach. The main

problem with the life-cycle approach is that

abstract data modeling is covered before

students have become familiar with

database operations and implementation.

The reverse life-cycle approach delays data

modeling and database design until after

students have had experience with actual

database systems. As a result of this

experience, students are better prepared to

make design decisions. Instead of having a

single semester-long project, the reverse

life-cycle approach is more effective when

students are given a sequence of mini-

projects involving different databases. Each

mini-project has students perform tasks

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 6

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

within a particular stage of database

development.

The life-cycle approach may be suitable

when the first database course is offered in

the senior year, as long as students have

had some exposure to databases in previous

courses. In this case, a semester-long

database development project, especially a

team project, allows the database course to

serve as a capstone to the student's degree

program. However, because the recognized

importance of database concepts to CS and

IS students is increasing, the trend is for

schools to offer the first database course

earlier than the senior year, and to offer

additional database courses as electives.

In our degree program, the introductory

database course is offered at the sophomore

level, after students have completed a two-

semester programming sequence.

Scheduling the first database course early in

our program allows us to offer advanced

database courses (e.g. Distributed Database

Development, Database Administration) as

upper-division electives. It also enables

other upper division courses such as Web

Development and Software Engineering to

utilize the knowledge gained in the first

database course.

This paper has presented a new and

innovative way to teach an introductory

database course using a reverse life-cycle

approach. This approach allows students to

gain critical theoretical background

information as well as practical application

experience, including practice with modeling

and implementing database systems. The

reverse life-cycle approach is enhanced by

the use of mini-projects that allow students

to be more successful in their learning.

So far, there is little mention of the reverse

life-cycle approach in the research literature

and the curriculum guidelines. However,

there is some movement toward the reverse

life-cycle approach in two recent database

textbooks. Since many teachers plan their

courses based on the textbooks they choose,

perhaps their approach to teaching database

courses will change as textbooks evolve.

7. REFERENCES

Adams, Elizabeth, et al, "Managing the

Introductory Database Course: What

Goes In and What Comes Out?" SIGCSE

2004.

Baugh, Jeanne M., "A First Course in

Database Management." ISECON 2003.

Connolly, Thomas and Carolyn Begg,

Database Systems: A Practical Approach

to Design, Implementation, and Man-

agement (4th ed). Harlow, England:

Addison-Wesley, 2005.

Date, C. J., An Introduction to Database

Systems (8th ed). Boston, MA: Addison-

Wesley, 2004.

Elmasri, Ramez and Shamkant Navathe,

Fundamentals of Database Systems (4th

ed). Boston, MA: Addison-Wesley, 2004.

Garcia-Molina, Hector, et al, Database

Systems: The Complete Book (1st ed).

Upper Saddle River, NJ: Prentice Hall,

2002.

Gorgone, John T., et al, "IS 2002: Model

Curriculum and Guidelines for Under-

graduate Degree Programs in Informa-

tion Systems." ACM/AIS/AITP, 2002.

Hoffer, Jeffrey, et al, Modern Database

Management (7th ed). Upper Saddle

River, NJ: Prentice Hall, 2005.

Kifer, Michael, et al, Database Systems: An

Application Oriented Approach (2nd ed).

Boston, MA: Addison-Wesley, 2006.

Kroenke, David, Database Processing:

Fundamentals, Design, and Implementa-

tion (10th ed). Englewood Cliffs, NJ:

Prentice Hall, 2006.

O'Neil, Patrick and Elizabeth O'Neil,

Database: Principles, Programming, and

Performance (2nd ed). San Francisco,

CA: Morgan Kaufman, 2000.

Ramakrishnan, Raghu and Johannes Gehrke,

Database Management Systems (3rd

ed). New York: McGraw Hill, 2003.

Riccardi, Greg, Principles of Database

Systems with Internet and Java Applica-

tions (1st ed). Boston, MA: Addison-

Wesley, 2001.

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 7

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

Riccardi, Greg, Database Management: With

Website Development Applications (1st

ed). Upper Saddle River, NJ: Prentice

Hall, 2003.

Ricardo, Catherine, Databases Illuminated

(1st ed). Boston, MA: Jones and Bartlett

Publishers, 2004.

Rob, Peter and Carlos M. Coronel, Database

Systems: Design, Implementation, and

Management (6th ed). : Course Tech-

nology, 2004.

Robbert, Mary Ann, and Catherine M.

Ricardo, "Trends in the Evolution of the

Database Curriculum." ITiCSE 2003.

Silberschatz, Abraham, et al, Database

System Concepts (5th ed). New York:

McGraw Hill, 2005.

The Joint Task Force on Computing

Curricula, "Computing Curriculum 2001:

Computer Science." ACM/IEEE, 2001.

APPENDIX: SAMPLE MINI-PROJECTS

Project #1. Files vs. Databases

Part A

You will be given a C (or Java) program that performs the following Reorder query on
the STOCK.DAT and STKTYPE.DAT data files:

For all STOCK records, list StkNo, SType, StkName, QtyOnHand,
and (STKTYPE) ReorderPt and OrderSize in which the QtyOnHand
is at or below the ReorderPt and for which an order has not
yet been placed.

You will need to modify this program because the format of the data files has changed.

The old format of the STOCK file, as currently recognized by the program, is as follows:
 Columns Field DataType

 1-3 StkNo Character (digits)
 4 SType Character (upper-case letters)
 5-20 StkName Character
21-23 QtyOnHand Integer (>=0)
 24 OnOrder Character (N or Y)

The old format of the STKTYPE file is as follows:
 Columns Field DataType

 1 TType Character (upper-case letters)
 2-13 TypeName Character

 14-16 ReorderPt Integer (>=0)
 17-19 OrderSize Integer (>=0)

The STOCK and STKTYPE files are ASCII text files. Each record ends with CR/LF
bytes.

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 8

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

The new format of the two files includes the following changes:
a. The size of the StkName field has been increased to 18 characters in each STOCK

record.
b. A 3-digit LeadTime field has been added at the end of each STKTYPE record.
c. The name and datatype of the OnOrder field in the STOCK table has been changed

to QtyOnOrder, with 3-digit integer values instead of 'N' and 'Y'.
d. The number of records in the STKTYPE file has increased from 5 to 6, and 2

records have been added to the STOCK file.

1. Turn in a source code listing of your modified program and a printout of the query

output.
2. Summarize (in words) the changes you made to the program. How does this part of

the project illustrate the concept of data independence?

Part B

A Microsoft Access file called INVENTORY.mdb contains the STOCK and STKTYPE
data as tables in the new format. An SQL statement that performs the Reorder query
(described in Part A) on data in the old format is:

select StkNo, SType, StkName, QtyOnHand,
 ReorderPt, OrderSize
from STOCK, STKTYPE
where SType = TType
 and QtyOnHand <= ReorderPt
 and OnOrder = 'N';

Revise this SQL statement for the Reorder query so that it works correctly for the data in
the new format. You can run this SQL query statement in the Access Query SQL View
screen. I recommend that you type the revised SQL statement into a text file, and then
copy and paste it into the SQL View screen to run it.

1. Turn in the revised SQL statement for the Reorder query, along with a printout of

the query output.
2. Summarize (in words) the changes you made to the SQL statement that performs

the query. How does this part of the project illustrate the concept of data inde-

pendence?

Project #4. Structured Query Language: Queries

In this case, you will use SQL to perform queries on a Time and Billing application used
by the X-Files group in the FBI. The database is implemented in Microsoft Access (or
Oracle).

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 9

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

The X-Files group currently has four agents—Walter Skinner (Manager), Dana Scully,
John Doggett, and you. The application keeps track of hours spent by the agents on a
variety of cases. Each agent fills out timecards each day (8 hrs/day).

The database consists of four tables: DEPT, AGENT, CASES, and TIMECARD. The
structure of each table is shown below. Primary key attributes are underlined. Note that
the TIMECARD table has a composite primary key.

DEPT (DeptCode, DeptName)
AGENT (AgentID, LastName, FirstName, HireDate, DeptCode, Specialty, Rate)
CASES (CaseNum, CaseTitle, OpenDate, Budget, CloseDate)
TIMECARD (AgentID, CaseNum, WorkDate, Hours)

The following relationships are defined between the tables:

DEPT to AGENT: DeptCode to DeptCode (1 - M)
AGENT to TIMECARD: AgentID to AgentID (1 - M).
CASES to TIMECARD: CaseNum to CaseNum (1 - M).

1. Edit the data in the AGENT table so that Agent FB340 has your last name and first

name. Use an SQL UPDATE statement, if necessary.

2. Use the Access Query SQL View (or SQL*Plus) to define and run the following

queries. Type the SQL SELECT statements for the queries into an editor. Then copy
and paste the statements one at a time into the SQL View (or SQL*Plus) screen to
run them.

a. For WorkDate 07/12/2005, show the WorkDate, AgentID, LastName,

CaseNum, and Hours. Order the results by LastName, CaseNum.
b. For AgentID "FB270" for the days 07/12/2005 through 07/14/2005, show the

AgentID, LastName, WorkDate, CaseNum, and Hours. Order the results by
WorkDate, CaseNum.

c. For the days 07/12/2005 and 07/15/2005, show the CaseNum, CaseTitle,
WorkDate, AgentID, and Hours for all cases with "Alien" in the title. Order
the results by CaseNum, WorkDate, AgentID.

d. For LastName "Scully" for the week of 07/11/2005 through 07/15/2005, show
the LastName, CaseNum, CaseTitle, and sum(Hours) as TotalHours. Order
the results by decreasing TotalHours.

e. For CaseNum 2802 for the week of 07/11/2005 through 07/15/2005, show the
CaseNum, AgentID, LastName, sum(Hours) as TotalHours, sum(Charge) as
TotalCharge. Order the results by LastName. The formula for the calculated
field Charge is [Hours*Rate].

f. For the week of 07/11/2005 through 07/15/2005, list the AgentID, LastName,
and FirstName of all agents who either worked on Case 2803 or worked on a
Case with a budget above $50,000. Do not show any duplicates in the output.

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 10

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

g. For the week of 07/11/2005 through 07/15/2005, list the AgentID, LastName,
and FirstName of all agents who worked on neither Case 2804 nor Case
2805. Do not show any duplicates in the output.

h. For the week of 07/11/2005 through 07/15/2005, list the AgentID, LastName,
and FirstName of all agents who worked at least 8 hours on Case 2804. Do
not show any duplicates in the output.

Turn in the SQL SELECT statement for each query, along with the query output.

Project #7. Data Modeling: Relational Model Design and Normalization

Part A

The data requirements for a new database system for Integrity Auto Sales, a used car lot,
are described as follows. Integrity purchases all cars at wholesale at various Auto
Auctions. If a car hasn't been sold to a customer in 90 days, Integrity sells the car at
wholesale at another Auto Auction.

Most cars are sold to customers. Each sale involves one or more salesreps, who are paid a
commission. Cars may be sold with or without a warranty. All cars are "detailed" just
before they are put on the lot. Some cars require special repairs before they can be sold.

The database system must be able to help manage the used-car inventory, keep track of
past customers to encourage repeat sales, evaluate the performance of sales personnel and
calculate their commissions, and determine the profitability of the business operations.

A preliminary data model consisting of an Entity-Relationship Diagram and an attribute
list has already been prepared (see AutoRentalERD.doc). You are to continue the
development of the database system by completing the following tasks.

1. Evolve the Entity-Relationship model into a Relational Model Diagram, showing
all tables and their relationships (including cardinality). This model should have no
Many-to-Many relationships. Specify the primary key for each table, and include
foreign keys to link tables.

2. List the functional dependencies within each table to check that all of your tables
are in Third Normal Form. Revise the tables as necessary until "all non-key fields
depend on the key, the whole key, and nothing but the key."

3. Build a data dictionary for the model that lists all of the attributes. For each
attribute, include the name, the domain, a description, and the tables that contain the
attribute.

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 11

McMaster, Anderson, and Bilyeu-Dittman Fri, Oct 7, 4:00 - 4:25, House A

Part B

Genealogy Search Services (GSS) is a small business that helps individuals with research
on their ancestors. GSS wants you to improve a database system that helps them track
customers, orders, and current pricing of search services.

Each customer order lists one or more search services to be performed for a single
ancestor. Different ancestors are placed on different orders. Order pricing is based on the
current catalog prices (which can change over time). Each order includes a shipping &
handling charge. The initial orders stored in the database are shown in a Word document
file called GSSdata.doc.

The current (poorly designed) database is in the Microsoft Access database file
GSSX.mdb. The database consists of two tables: GCUST and GORDER. The current
structure of each table is described below. Primary keys are underlined, and GORDER
contains CustCode as a foreign key.

GCUST (CustCode, CLName, CFname, Address, City, State, Zipcode, Email)
GORDER (OrderNo, OrdDate, CustCode, Ancestor, Shipping,

BirCode, BirDescr, BirPrice, BirCDate,
BapCode, BapDescr, BapPrice, BapCDate,
DeaCode, DeaDescr, DeaPrice, DeaCDate,
MarCode, MarDescr, MarPrice, MarCDate)

You are to improve the design of the GSS database by doing the following:

1. List the functional dependencies for the GORDER table. What normal form
describes the current state of the GORDER table?

2. Restructure the GORDER table so that the resulting tables are in Third Normal

Form (3NF).

3. Write a CREATE TABLE statement for each of your final tables, including
primary key and foreign key constraints.

4. Write an SQL CREATE VIEW statement that displays the data in the format of
the original GORDER table.

Proc ISECON 2005, v22 (Columbus OH): §2565 (refereed) c© 2005 EDSIG, page 12

