
Rufinus and Kortsarts Sat, Oct 8, 10:30 - 10:55, House A

Teaching an Introductory Programming Course

For Non-Majors Using Python

Jeff Rufinus
rufinus@cs.widener.edu

Y. Kortsarts
yanako@cs.widener.edu

Computer Science Department, Widener University
1 University Place, Chester, PA 19013, USA

Abstract

In this paper we present an innovative approach to teaching an introductory programming

course for non-majors using the Python programming language. Lecture structure and

suggestions of topics (course outline) on developing and designing the course are briefly

presented. This teaching approach could be easily adapted to teach introductory programming

courses to majors, including Information Systems majors.

Keywords: pedagogy, innovative teaching approach, teaching tips, Python programming

language

1. INTRODUCTION AND MOTIVATION

The IS 2002 Model Curriculum and

Guidelines for Undergraduate Degree

Programs in Information Systems (Gorgone,

2002) formulates several characteristics of

the IS profession that are integrated into the

curriculum. One of these characteristics is

“IS professionals must have strong analytical

and critical thinking skills.” To achieve the

necessary levels of algorithmic and

computational capabilities for strong

analytical and critical thinking skills, it is

essential to educate students in computation

and computational techniques as early as

possible, perhaps by the end of their first

year. Such practices have been developed

and adapted by many Computer Science /

Computer Information Systems departments

at many universities in the US, where

introductory courses have been developed

and offered for Information Systems majors

as well as for students specializing in other

fields (non-majors).

The difficulties of teaching any programming

languages (C, C++, etc.) in introductory

courses, however, have been widely

recognized. By introductory courses we

mean courses given for the ‘beginners’

(majors and non-majors) with no or minimal

background in programming. The difficulty

lies in the fact that we have to equip these

students with the analytical and critical

thinking skills that could benefit them while

at the same time we have to introduce the

whole concept of a programming language.

As a result, many innovative teaching

methods were developed.

In this paper we present an innovative

teaching approach for an introductory

programming course using Python

programming language that has been

developed in our department. This is a pilot

Proc ISECON 2005, v22 (Columbus OH): §3362 (refereed) c© 2005 EDSIG, page 1

Rufinus and Kortsarts Sat, Oct 8, 10:30 - 10:55, House A

teaching project that has been tested with

non-Information Systems/Computer Science

majors. The results of this approach (within

a reasonable period of time) have proven to

be effective and above satisfactory. The

evidences come from the overall average

grade of the class, evaluation forms and

students’ feedback, and the increasing

number of students taking the course. We

believe that the effectiveness of this

approach will universally apply for other

introductory courses, whether they are for

majors or for non-majors. With no and/or

slight modifications (e.g. the Python

programming language could be substituted

with other programming languages), the

approach presented here could be easily

adapted to teach other introductory courses

including those of Information Systems /

Computer Science. As a matter of fact, we

are now applying this approach into teaching

the introductory data structures and

algorithms courses (with Java language) for

our Information Systems sophomores.

As a brief introduction, our department has

an undergraduate program leading to

Bachelor of Science degrees in both

Computer Information Systems (CIS) and

Computer Science (CS). A variety of courses

for majors (CIS/CS) and non-majors (non

CIS/CS) is currently offered by the

department. Several years ago, the

department began to offer a course on

programming language for non-majors. The

curricular need was to educate non-majors

with computational techniques and

programming capability; this need was

fulfilled through the introduction of a

programming language and real life

applications. The course that we teach is

open to all non-majors and the population of

the students is always different each

semester. For the classes that consist of

85% to 90% science students, the

computational approach worked very well,

but for the classes with a high percentage of

English and other liberal arts majors we

found out (through general course

evaluation) some topics (e.g. the text and

string manipulation, multimedia) were the

most interesting and exciting for the

students.

2. CHALLENGES

The development of this course was a

challenging task for our department for

several reasons. First, the students who

would be taking this course had never been

exposed to computer programming

languages or to computer programming

techniques. Second, the students who would

take this course would come from diverse

disciplines (mostly science majors), some

with good mathematical background and

some without. Third, the programming

language to be used in this course had to

follow the “current” trend in computer

science, including the introduction of object-

oriented method. Of course, there are

varieties of programming languages

available, from C, C++, to Java, but the

question was which one would be easy

enough for the students to learn while at the

same time using it for problem solving. In

the first several years after being

introduced, this course was taught using C

programming language. From our own

experience in teaching this course (based on

students’ evaluations, etc.) we found that

the C language, even though it is a very

powerful language, is not a suitable

language to be introduced to the non-majors

with no background and experience in

programming.

3. WHY PYTHON?

Currently the course is being taught using

the Python programming language (Python

website, 2004). The interesting question is

why Python? There are several reasons for

choosing this language (e.g. “free” open

source, portability, object oriented capable,

there are many new textbooks on Python

available in the market (Deitel, 2004) (Lutz,

2003) (Mertz, 2003) (Zelle, 2004), etc.), but

the most important reason is Python is a

simple but powerful language to learn. This

is a fair statement to write from our own

experience in teaching Python to our

students in the last several years. The

simplicity of the Python programming

language allows for concentration on the

programming and problem solving

techniques rather than on syntax and

complex language structures.

4. PEDAGOGICAL APPROACH

Teaching programming techniques for non-

major students, even in an introductory

course, is a challenging task. The

conventional teaching approach (Cohen,

1989) consisting of long lectures plus

homework, quizzes, and exams, is not a

very good approach for teaching

Proc ISECON 2005, v22 (Columbus OH): §3362 (refereed) c© 2005 EDSIG, page 2

Rufinus and Kortsarts Sat, Oct 8, 10:30 - 10:55, House A

introductory computer programming

techniques for non-major undergraduate

students. There are several reasons for this

argument. First, the students have diverse

backgrounds. Thus, much lecture time is

needed to cover basic technical concepts.

Second, a majority of students dislike the

50-minute lecture format, meaning they will

not be attentive and learn effectively. Third,

homework (with exercises, programming

assignments, problems, etc.) alone is not

enough to build a genuine understanding of

the materials. The fact is that students

always use the “pattern matching” technique

when they try to solve problems in the

homework. (Hanson, 2000) (Hanson, 2004)

Realizing all of these obstacles, we have

modified our lecture style to use in-class

activities as a way to build the students’

understanding of the materials. This

approach tries to generate the students’

capabilities of learning through a research-

based process. After the mini lectures we

give the students class assignments for

individual or team completion. The

assignments themselves consist of several

different exercises. We have to find very

challenging exercises that will help build

their understanding and knowledge on the

subject. To encourage the students to come

to class we always give points for these

activities. Overall, this pedagogical approach

changes the role of a teacher from “sage on

the stage” to “guide on the side” supporting

our main teaching objective: to let the

students build their own understanding of

the materials through challenging problems,

exercises and in-class activities.

After doing all these modifications to our in-

class teaching method, we noticed some

changes in the performance of our students.

First, the students seem to like our method

of teaching (data come from students’

evaluations and/or through private

communications with the students). Second,

the students spend more time working

during class time (some students

commented to add more class time). Third,

the students have more confidence and

better average grades on tests and quizzes.

Overall, the students performed much better

than those in previous years, as manifested

from their average final grades.

5. COURSE OBJECTIVES AND GOALS

Our teaching approach realizes the following

needs: (1) to provide students with

sufficient knowledge in computer

organization (software and hardware); (2) to

provide students with independent and

applied knowledge of the Python

programming language; (3) to provide

students with assignments and examples

that will help them develop critical thinking

and problem solving techniques; and (4) to

provide assignments and projects that are

related to a variety of specific academic

disciplines. The course takes into account

the very limited background that students

will have in the subject.

Our pedagogical approach meets the

following course objectives:

1. To teach students the basic concepts

of the Python programming language

2. To teach students the basic concepts

of the programming cycle

3. To teach students to develop an

understanding of each of the following

concepts: abstraction, debugging and

program correctness, functions and

objects, recursion, efficiency,

reusability.

4. To teach students to develop logical

and critical reasoning and problem

solving techniques

5. To teach students to develop team and

collaborative skills

6. To teach students to develop write and

read communication skills

7. To teach students to be able to modify

existing software to adapt for specific

problems

8. To teach students to apply the

knowledge of the programming

language and programming techniques

to their own discipline

6. LECTURE STRUCTURE

To support our pedagogical approach the

following lecture structure was developed

and tested at our department and received

very positive student feedback:

Lecture Features:

• The simplicity of the Python

programming language allows for

concentration on the programming

and problem solving techniques

rather than on syntax and complex

language structures.

Proc ISECON 2005, v22 (Columbus OH): §3362 (refereed) c© 2005 EDSIG, page 3

Rufinus and Kortsarts Sat, Oct 8, 10:30 - 10:55, House A

• Logical reasoning, as the most

important problem solving strategy,

is emphasized through theoretical

and practical materials.

• Each weekly lesson is comprised of

three lectures with theoretical

materials, lecture programming

examples, a laboratory part, ideas

for the team assignments, and home

programming assignments with

sample solutions. The homework

assignments for each lesson are

divided into sections according to the

specific topic and to the complexity

level. The materials support the

typical lecture structure that was

used at our department (see Table

1)

• Each lesson includes a “problem

solving” section that relates to a

specific problem solving strategy

that is relevant to the specific week

of study. Special attention is devoted

to analyzing and translating the

word problems that can be solved

with a computer and specific

examples are presented.

• If time permits, advanced material

related to scientific computing using

python, and bio-python with bio-

informatics examples, can be

presented.

• The lecture practice component

emphasizes the problem solving

techniques in the software

development cycle. The

programming examples are based on

real world problems and motivate

students to learn in order to solve

practical problems. The lecture

practice component emphasizes an

active learning approach. Special

solution templates are designed to

involve students into the active

learning process.

• The program testing procedure is

explained in detail for each example.

• The lecture practice component

includes examples from the different

areas to answer the needs of the

diversity of the students in the

course.

• The laboratory component includes

teamwork assignments that can be

implemented during additional

laboratory sessions and/or during

the student practice session at the

end of the lecture.

Session

Purpose

% of time

(total =

100%)

Warm-up

Multiple-choice quizzes are given (written or

verbal) to review material that was covered in

the previous lecture.

10%

Theory Explanation of new material is presented. 30%

Lecture

practice

Examples are solved and explained in detail

with active student participation.
30%

Student

practice

Special sets of assignments are designed and

proposed for independent work by the

students to practice the theoretical material

that was explained at the beginning of the

lecture.

30%

Table 1. Lecture structure

Proc ISECON 2005, v22 (Columbus OH): §3362 (refereed) c© 2005 EDSIG, page 4

Rufinus and Kortsarts Sat, Oct 8, 10:30 - 10:55, House A

7. COURSE OUTLINE

• Introduction: Computer – what is

inside?

o This lecture provides a

brief introduction to

computer organization,

operating systems, and

programming languages.

• Python environment:

o This lecture introduces the

Python environment and

instructions for Python

installation.

• First program in Python:

o This lecture introduces a

few simple examples for

the first Python programs.

o The practice part of this

lecture includes a detailed

explanation about two

different modes with which

students can work:

immediate and edit modes.

o The approach that is

adopted for the first

program will not include

the function “main” to

reduce the complexity of

the examples and to reach

a maximum understanding

of the programming

process.

• Explanation of the software

development process:

o In this lecture, the program

development cycle is

explained in detail.

o Examples are given at

several different

complexity levels.

• Basic Python commands and

statements:

o This lecture will introduce

input/output operations

and assignment

statements.

o It will also introduce two

basic data types in Python:

numeric and alphanumeric.

• Decision and loop structures:

o This lecture explores if, if -

else, if – elif – else.

o It also explores while loop

and for loop.

• Functions:

o Functional programming as

a basic programming

design technique is

introduced.

o Our teaching experience

demonstrates that the

functional approach is

much easier for non-

majors to understand than

object-oriented approach.

o The concept of function,

however, can be a difficult

concept for the liberal arts

students to understand.

Many liberal arts students

do not have the necessary

mathematical background

and are not familiar with

the concept of function in

mathematics.

o The concept of function is

introduced using the idea

of transferring messages.

The integrated teamwork

supports this idea.

• Recursive functions:

o This topic is the most

intellectually challenging

topic in the course.

o The theoretical part of the

lecture provides a wide

range of solved examples

of different complexity to

introduce the concept.

• Simple data structures such as

lists, arrays, and dictionaries:

o The concept of simple data

structures is presented.

o Simple examples of lists,

arrays and dictionaries are

given.

• Algorithms:

o The basics of the design

and analysis of algorithms

are presented.

o The focus is on numerical

algorithms to motivate

science majors and to show

the power of the computer

as a computational tool for

real world problem solving.

• Advanced topics of the course

include introduction to object-

oriented design and bio-python

with bioinformatics examples.

8. CONCLUSIONS

It is a very challenging task to teach an

“Introduction to Programming” course for

majors and non-majors. In the case of

Proc ISECON 2005, v22 (Columbus OH): §3362 (refereed) c© 2005 EDSIG, page 5

Rufinus and Kortsarts Sat, Oct 8, 10:30 - 10:55, House A

non-majors, several reasons for the

challenge should be mentioned: First, the

students who would be taking this course

have possibly never been exposed to

computer programming languages or to

computer programming techniques.

Second, the students who would take this

course come from diverse disciplines

(mostly science majors), some with good

mathematical background and some

without. Third, the programming language

to be used in this course has to follow the

“current” trend in computer science,

including the introduction of object-

oriented method, yet this language should

be simple and powerful. Our own

experience demonstrates that the Python

programming language is a good choice for

these beginners because it is a simple

language to learn, is powerful, and has

object-oriented capability.

We developed an innovative teaching

method that has been tested successfully

in our institution. Our experience

demonstrates that students could learn

more from in-class activities than long

lectures. In a 50-minute class we offer a

mini-lecture followed by a variety of in-

class activities. The in-class activities are

always challenging and specially built in

the form of research-based guided process.

These activities are mostly done in a team

even though individual assignments are

also given. Overall, this pedagogical

approach changes the role of a teacher

from “sage on the stage” to “guide on the

side.”

The approach presented here could be

adapted to teach other introductory

courses, including those for IS majors.

9. REFERENCES

Cohen, D. K. (1989) “Contributing to

 Educational Change”, Philip W.

 Jackson, Editor. McCutchan:

 Berkeley, CA.

Deitel, Harvey M., Paul J. Deitel, Jonathan

P. Liperi, Ben Wiedermann (2004)

Python: How to Program.

Prentice-Hall.

Gorgone, John T., Gordon B. Davis,

Joseph S. Valacich, Heikki Topi,

 David L. Feinstein, Herbert E.

 Longenecker, Jr. (2002) “IS 2002

Model Curriculum and Guidelines

for Undergraduate Degree

Programs in Information Systems.”

 Association for Information

 Systems.

Hanson, D., and T. Wolfskill (2000)

 “Process Workshops – A new model

 for instruction”, Journal of

Chemical Education 77, 120-129.

Hanson, D., and T. Wolfskill (2004)

 Personal communications and

 Discussions during NSF

Chautauqua Workshop, SUNY-

Manhattan, NY.

Lutz, M., and D. Ascher (2003) Learning

Python, 2nd edition. O. Reilly.

Mertz, D. (2003) Text Processing in

Python. Addison-Wesley.

Python websites (2005) http://www.

python.org and http:// www.

biopython.org.

Zelle, John M. (2004) Python

Programming: An Introduction to

Computer Science. Franklin Beedle

& Associates.

Proc ISECON 2005, v22 (Columbus OH): §3362 (refereed) c© 2005 EDSIG, page 6

