
Naugler and Surendran Sat, Oct 8, 11:30 - 11:55, House A

A Perspective on the Use of Modeling Diagrams
in Computer Science and Information Systems

Curricula

David R. Naugler
dnaugler@semo.edu

Ken Surendran

ksurendran@semo.edu

Southeast Missouri State University,
Cape Girardeau, MO 63701 USA.

Abstract

Modeling diagrams are used in Computer Science and Information Systems courses. Different
tools are used for different paradigms of system development. The authors share their per-
spectives in using different modeling tools in systems analysis and design and database
courses. They discuss paradigm related issues in programming languages. They suggest using
the diagrams from both the paradigms (procedure centric and object oriented) with a view to
enhancing the value of the curricula.

Keywords: Modeling tools, analysis and design, system development paradigms

1. INTRODUCTION

The term tool, as used in this paper, is not
necessarily a software product and may re-
fer to standards as well. Many important
design tools are notations or collections of
concepts that do not necessarily have or
need a software implementation. Such tools
can be considered separately from any im-
plementation. Thus Unified Modeling Lan-
guage (UML), a graphical modeling lan-
guage, is considered to be a modeling tool,
as are design patterns, Entity Relationship
Diagrams (ERDs) and normal forms.

Virtually all software explicitly or implicitly
involves modeling in some form during its
design and construction. At all stages in the

design and construction of software, models
are used, often implicitly, to guide develop-
ment. The whole system development proc-
ess consists of a series of transformations
starting from abstracting the system in the
problem domain and realizing solution in the
computer domain. During this process, sev-
eral intermediary system artifacts are pro-
duced in the analysis and design workflows
using diagramming tools, before program
construction. These intermediary models
normally use standard diagramming lan-
guages for facilitating communication among
the various participants in the development
process.

However, a model is not the same thing as
what it is modeling. Even the standard
(IEEE754) floating point numbers used in

Proc ISECON 2005, v22 (Columbus OH): §3364 (refereed) c© 2005 EDSIG, page 1

Naugler and Surendran Sat, Oct 8, 11:30 - 11:55, House A

most programming languages to model real
numbers violate simple algebraic rules such
as the commutativity of addition [Goldberg,
1991]. The difference between the model
and the “reality” it abstracts is a factor in all
modeling and in the conclusions that can be
reached from using a system based on a
model. The main problem with using models
is abstracting the essence of what is being
modeled so that solutions in the model cor-
respond to real solutions of the problem.
This applies at all levels of modeling.

Modeling diagrams are used extensively in
the systems analysis and design course and,
to some extent, in the database course.
Once an information system is planned, the
actual construction is preceded by analysis
and design during which the intended sys-
tem is abstracted and blueprints for imple-
mentation are prepared. In view of the
complex nature of analysis and design and
its importance in system development, the
IS2002 model curriculum (Gorgone, 2003)
recommends three analysis and design
courses. In the first course analysis and
logical design are considered and in the re-
maining two, physical design and implemen-
tation issues are considered for applications
in different environments. Even though the
database course is not explicitly mentioned,
it is embedded in one of the physical design
courses.

The computing sciences use sophisticated
techniques to model a software project.
Large projects require such models. Smaller
projects may not require such explicit mod-
els but may benefit substantially if such
techniques are used. Modeling can be per-
formed at a variety of levels. A model can
be as simple as a few sketches on paper or
so complicated that many thousands of
pages of carefully written information is re-
quired to express it. Software Engineering
explicitly studies the use of certain modeling
methods for the purpose of designing large
software projects. In Computer Science
(CS) curricula, analysis and design topics are
covered in software engineering courses.
Also, many CS programs include a database
course in their core curricula.

At the authors’ university, the MIS program
has both analysis and design and database
management as core courses and the CS
and CIS (Computer Information Systems)

programs have software engineering and
database as core courses. The authors teach
modeling diagrams in procedure centric (PC)
paradigm in the analysis and design course
and UML diagrams in object oriented (OO)
paradigm in software engineering courses.
In the database courses, modeling diagrams
pertaining to relational databases are
taught. Having experienced the paradigm
changes in these areas over the years, they
observe a few similarities and differences
between the models used in these para-
digms. Based on these observations, they
suggest a few possibilities in using some of
the ideas from the OO paradigm in PC SA&D.
Also, they highlight the difficulties faced in
teaching OO paradigm along with relational
databases in software engineering. In the
next section, they briefly describe the two
major paradigms used in systems analysis
and design.

2. ANALYSIS AND DESIGN

PARADIGMS

There are currently two major paradigms for
analysis and design which reflect two some-
what distinct ways of solution conceptualiza-
tion. Structured Analysis and Structured
Design (procedure centric paradigm) and/or
Object Oriented Analysis and Design (object
oriented paradigm) are taught in Systems
Analysis and Design (SA&D) courses. Of the
two analysis and design paradigms, the pro-
cedure centric paradigm has been in use for
quite sometime, whereas the object oriented
(OO) paradigm has gained prominence rela-
tively recently (since 1997). A series of in-
novations such as structured design (Your-
don & Constantin, 1979), the relational
model for database (Codd, 1970) and the
entity-relationship model (Chen, 1976) pro-
vided a basis for a formal procedure centric
SA&D course. A large majority of the Infor-
mation Systems programs continue to use a
procedure centric approach in their SA&D
course. However, after the introduction of
UML in 1997 (Booch, et al, 1999) as “the”
standard modeling language for the object
oriented paradigm, more and more instruc-
tors are considering the object oriented
paradigm for their SA&D course. For the
sake of completeness, these two SA&D
paradigms are very briefly summarized in
the following.

Proc ISECON 2005, v22 (Columbus OH): §3364 (refereed) c© 2005 EDSIG, page 2

Naugler and Surendran Sat, Oct 8, 11:30 - 11:55, House A

2.1 The Procedure Centric Paradigm

Data and processes are considered sepa-

rately in the procedure centric approach. The
first model in a SA&D course taught using
this paradigm is the context diagram. This is
followed by several levels of data flow dia-
grams (DFDs). The separation of process
and data and the focus on process is appar-
ent in them. Concurrently, a corresponding
entity relationship diagram is introduced to
deal with the data. The initial logical dia-
grams are then transformed into physical
ones that address architectural concerns. As
part of detailed design, structure charts and
schema are discussed. This brief description
of the procedure centric paradigm considers
a few main diagrams discussed later. User
interface design, test plans, and implemen-
tation issues are also discussed.

Research and development in database
technology has flourished relatively inde-
pendently of this paradigm. Most present
day applications use a relational database
management system (RDBMS), although a
few legacy hierarchical and probably also
network databases are still in use. All types
of databases are modeled well in the proce-
dure centric approach since databases are
designed independently of the processes.

2.2 Object Oriented Paradigm

Structured Analysis and Structured Design
helps produce specifications suitable for im-
plementing applications with process (proce-
dure) oriented languages such as COBOL
and encourages procedural programming in
more so-called object-oriented languages
such as C++, and Java. Even though ob-
ject oriented languages have long existed,
matching modeling standards for analysis
and design were finalized only in 1997when

the Object Management Group released Uni-
fied Modeling Language (UML) as the stan-
dard modeling language for expressing the

analysis and design artifacts under OO para-
digm. In a way, the lack of a suitable mod-
eling tool limited the growth of OO applica-
tions. Table-1 summarizes the basic models
 under the two paradigms for the three main
primary (system development Life Cycle)
SDLC steps.

The inherent invisibility of software which
makes system development difficult is ad-
dressed by providing five different views of
the system under development: the use
view, logical view, process view, implemen-
tation view and deployment view (Kruchten,
1995). UML diagrams can be used for de-
picting these views.

One approach to using the various UML dia-
grams in an SA&D course is briefly described
here. Analysis and design using OO para-
digm starts with a use case diagram and use
case descriptions. (The use case model in-
cludes, in addition, supplementary quality of
service requirements.) Using the use case
descriptions, three groups of analysis classes
are identified which collectively take on the
responsibilities of providing the required ser-
vices. Interaction (collaboration / sequence)
diagrams for the scenarios of the use cases
help in the above class identification activity.
The non-functional requirements from the
use case model help identify the analysis
mechanisms some of the identified classes
may require. These classes are suitably
packaged paving the way for architectural
design using package diagrams. The classes’
analysis mechanisms are mapped into de-
sign mechanisms. In particular, the persis-
tent entity classes (from analysis) become
candidates for database consideration. The

Paradigms Main SDLC steps

Procedure Centric Models Object Oriented Models
Analysis Context, Data Flow, Entity

Relationship
Unified Modeling Language (Use
case, collaboration, class, package)

Design Structure chart, schema UML (Sequence, statechart, object,
class, subsystem, deployment)

Implementation Procedure centric language OO Languages

 Table 1

Proc ISECON 2005, v22 (Columbus OH): §3364 (refereed) c© 2005 EDSIG, page 3

Naugler and Surendran Sat, Oct 8, 11:30 - 11:55, House A

boundary classes (from analysis) are trans-
formed into user interfaces. Required sub-
systems and their interfaces are identified.
The possibility of using design patterns and
frameworks are also examined. The behavior
of complex objects is expressed using state-
chart diagrams. Finally, all design class dia-
grams are prepared.

In such an SA&D course, user interface and
database design are also discussed. Both OO
and PC SA&D courses use more or less the
same contents for user interface design.
However, the discussions on database de-
sign vary. Both the class diagram (which
also contains the entity classes) and the en-
tity relationship diagram (ERD) serve as dia-
grams for database design. The database
courses use ERD as RDBMS are popular (and
of practical value). In SA&D courses, rela-
tional modeling diagrams are still taught for
the database aspects. Even in SA&D courses
that deal with object oriented paradigm, the
emphasis is placed on the relational model-
ing with an introduction to the designs deal-
ing with OODMBS and ORDBMS (Satzinger,
et al, 2004).

2.3 Relational Database

Relational database technology was a highly
significant development in Computer Science
and is now a solid, stable and mature tech-
nology. Commercially available and widely
used RDBMS’s such as Oracle provide a very
high level of dependability, security and
support. Given the very considerable finan-
cial and intellectual investments in RDBMSs
and their remarkable success - almost all
non-toy programs use a commercial RDMS -
users are reluctant to seriously consider al-
ternatives and vendors are reluctant to
make changes that break existing relational
databases or that fail to maintain the current
levels of dependability and security.

2.4 Relational to Object Oriented

The relational model handles objects with no
problem. In fact, the model really does not
define the data types that can be used. The
atomicity requirement called the first normal
form was adopted for practical efficiency and
implementation reasons because of the early
emphasis on model implementations and not
on the model itself and is only artificially
part of the commonly received model (Date,
2001, Fagen 1981). Implementations of the
relation model – relational DBMS’s - have

built in data types and often only built-in
data types.

Major RDBS vendors have moved slowly to
incorporate object orientation into their
products. Indeed, there are some very real
and subtle difficulties and issues in the full
incorporation of object orientation in DBMS
which computer scientists have yet to com-
pletely solve. So-called object-relational
DBMS are a transitional phase incorporating
some object concepts while maintaining the
security and dependability of relational sys-
tems. Intersystems’ Caché database system,
which uses what the company calls the
postrelational database model, is an estab-
lished commercial product which can rea-
sonably be called object oriented and which
interfaces well with some object oriented
languages in common use (Kirsten et al,

2003).

2.5 Use of Object Oriented Databases

Most developers and users are reluctant to
consider pure Object Oriented DBMSs
(OODBMS). Indeed, many object-oriented
languages and platforms have strong sup-
port for relational databases. Both Java and
the Visual Studio languages (most impor-
tantly C#, and Visual Basic) provide much
support for interacting with relational data-
bases through SQL and even creating and
manipulating relational databases in mem-
ory. As a result most developers on such
platforms think of databases as relational
databases and have developed the knowl-
edge and skill to use them. The Caché da-
tabase system certainly allows interaction
between the database and languages such
as Java and C++ but Oracle and SQL Server
seem to be dominant currently.

Jade, a product from New Zealand, offers a
consistent two-in-one OO development envi-
ronment in that it is an OO language with
OO database (Jade, 2005). Such an inte-
grated product could be used in capstone
courses involving the development of a new
software entirely (analysis, design, imple-
mentation – including database) in the OO
paradigm without having to use any DB con-
nectivity tools.

Proc ISECON 2005, v22 (Columbus OH): §3364 (refereed) c© 2005 EDSIG, page 4

Naugler and Surendran Sat, Oct 8, 11:30 - 11:55, House A

3. PROGRAMMING

LANGUAGES AND SYSTEM
DEVELOPMENT PARADIGMS

The types of programming languages avail-
able for system implementation affect the
selection of system development paradigm.
Availability depends on the existence of ef-
fective compilers or interpreters, language
specific or compatible programming support
tools such as development environments,
the knowledge and skill of the programmers,
and the support of management. Perhaps
the most important consideration is the pro-
gramming paradigms with which the imple-
menters are comfortable.

3.1 Language Paradigms

A programming language is fundamentally a
tool used by programmers to express algo-
rithms. Different languages have different
syntax and may provide the programmer
with different constructs. Different pro-
gramming language paradigms provide dis-
tinct ways to conceptualize algorithms, and
hence distinct ways to think about problems.
An important “bonus” of most programming
languages is that they are implemented so
the algorithms expressed in them can be
“automatically” compiled to produce code
that actually runs. Programmers can easily
continue to think and program procedurally
in any programming language, although this
is more difficult in some than in others.

3.2 Object Oriented Languages

Programming languages may be categorized
into paradigms in various ways. Most useful
ways do not lead to disjoint categories. Ob-
ject orientation is way of conceptualization
which leads to many quite different appear-
ing instantiations in programming languages
when added to or used in conjunction with
other paradigms. One of the earliest object
oriented languages was Simula 67 which
was built on top of Algol 60 in much the
same way as C++ is built on C. Algol 60,
the first programming language that was
carefully designed, is the direct or indirect
ancestor of most procedure oriented lan-
guages. Some form of object orientation
has been added to many procedure oriented
languages. The languages most commonly
used for commercial program construction,
such as C++, Java and more recently C#
and VB.NET, are of this type.

Most programming using so-called object
oriented languages is procedural program-
ming, at best using the syntax the language
provides for objects. It is important to re-
member that object-oriented programming
is a programming paradigm which is not
synonymous with using the syntax of
classes/objects in object oriented languages.

In Information Systems we are concerned
with object oriented modeling primarily for
the construction of systems using object ori-
ented tools in what may be considered the
usual languages such as C++ and Java. In
such languages classes are a very heavy
duty construct carrying a great deal of the
load of the design and construction of pro-
grams. Not to be left out of consideration,
modern COBOL versions have classes.
Other, less widely known and used, lan-
guages such as SML and Unicon have power-
ful constructs lacking in C++ and Java. In
these languages classes maybe available but
serve a somewhat minor function since
much of the power of the languages comes
from other constructs. Neither of these lan-
guages needs object orientation for effective
large scale programming. [Note: SML does
not itself have classes – the variant O’CAML
is essentially SML with classes. There are
some subtle issues with adding classes while
maintaining SML’s typing systems]. On the
other hand, the language Smalltalk (Kay,
1993), is often called a pure object oriented
language since virtually everything, includ-
ing control constructs and literals are ob-
jects.

It can be observed from the above discus-
sions that concepts from new paradigms
were incorporated in older procedure-centric
languages to enrich them. In the same vein
the useful concepts in OO analysis and de-
sign could be used to enrich the PC SA&D.
These suggestions are indicated in the next
section.

4. OBSERVATIONS and

SUGGESTIONS

The Unified Modeling Language (UML) has

become a very important modeling tool for
software projects. It is the confluence of
several major approaches to provide ade-
quate object oriented analysis and design

Proc ISECON 2005, v22 (Columbus OH): §3364 (refereed) c© 2005 EDSIG, page 5

Naugler and Surendran Sat, Oct 8, 11:30 - 11:55, House A

(OOAD) models in software engineering for
writing major projects. Since UML is a later
development than the procedure centric (PC)
modeling tools, the PC SA&D could benefit
from using the heuristics practiced in OO
SA&D.

The use case is not a diagram that is limited
to the OO paradigm. It can be used for sev-
eral purposes. Using use case diagrams in a
course taught using PC paradigm can en-
hance learning. The value of use diagrams
is that they can be used to verify analysis
and design artifacts and to ensure they are
in sync with the earlier requirements. Con-
text diagrams fail to provide this. Also, use
case diagrams provide the context informa-
tion as well. Use case diagrams serve, to
some extent, the purpose of level-0 DFD
minus the data-stores. This aspect needs to
be further examined. Some text-books
(Dennis & Wixom, 2003) introduce use cases
just before process modeling.

The use case descriptions in the use case
model artifact are helpful in user interface
design.

The activity diagram, just like use case,
need not be restricted to OO alone. Captur-
ing the business usually precedes require-
ments analysis (i.e., in PC process model-
ing).

During use case analysis, entity classes are
identified and also their analysis mecha-
nisms are identified. Those analysis classes
with persistent mechanisms are candidates
for ERD. The heuristics used for identifying
the entity classes (such considering all the
nouns and filtering them to pick the real en-
tities) can also be used. Collaboration dia-
grams (drawn using use case scenarios) can
provide considerable insight to the prepara-
tion of ERD diagrams, in particular in finding
the related entities and type of relationships.

Usually teaching OO SA&D is easier when
the students have considerable background
in OO programming. However all students
find it difficult when a relational database is
chosen for handling persistent classes. This
requires additional redesign from OODBMS
to RDBMS. No doubt there are solutions for
handling this; however, they are not very
elegant. Class diagrams are much more
complex than ERDs since they abstract com-

plex relationships not found in ERDs. Class
diagrams are suitable for OODBMS, which
are not yet commonly used. Hence, in some
higher level database courses, mappings
between object and relational are considered
(Dietrich & Urban, 2005).

The perspectives presented in this paper

are from the academic trenches. It would

be interesting to know the trends in the

industry concerning the paradigm uses

and paradigm mixes.

REFERENCES

Booch G., J. Rumbaugh, I. Jacobson (1999).
The Unified Modeling Language User
Guide, Addison Wesley, 1999

Date, C.J. (2001), The Relational Model: A

Retrospective Review and Analysis, Ad-
dison Wesley, 2001

Dennis, A. and B. H. Wixom, (2003), Sys-

tems Analysis and Design, 2nd edition,
John Wiley & Sons

Dietrich S. W. and S. Urban (2005). An Ad-

vanced Course in Database Systems:
Beyond Relational Databases, Pearson
Prentice Hall.

Fowler, Martin (1997), UML Distilled: Apply-

ing the Standard Object Modeling Lan-
guage, Addison Wesley, 1997

Goldberg, David (1991), “What every com-

puter scientist should know about float-
ing-point arithmetic”, ACM Computing
Surveys, Volume 23 Issue 1 March 1991

Haugland, S., M. Cade and A. Orapallo

(2004) J2EE 1.4 The Big Picture, Pren-
tice Hall

Jade, (2005) Retrieved September 21, 2005

from.
http://www.jadeworld.com/education/ja
detep.htm

Kay A. (1993). “The Early History of Small-

talk”, ACM SIGPLAN Notices, Volume 28,
No. 3, 1993, pp 2-54

Proc ISECON 2005, v22 (Columbus OH): §3364 (refereed) c© 2005 EDSIG, page 6

Naugler and Surendran Sat, Oct 8, 11:30 - 11:55, House A

Kirsten W, M. Ihringer, M. Kühn and B.

Rohrig (2003) Object-Oriented Applica-
tion Development Using the Caché
Postrelational Database, 2nd Edition,
Springer Verlag

Kruchten, P., (1995). “The 4+1 View Model

of Architecture,” IEEE Software 12(6).

Satzinger, J. W., Jackson, R. B., Burd, S. D.,

(2004). Systems Analysis and Design in
a Changing World, 3rd Edition, Thomson
Currier technology.

Proc ISECON 2005, v22 (Columbus OH): §3364 (refereed) c© 2005 EDSIG, page 7

