
Morien Absentee

A Critical Evaluation Database Textbooks,

Curriculum and Educational Outcomes
Roy Morien

Research Fellow

roymorien@hotmail.com
Centre for Extended Enterprise and Business Intelligence

Curtin Business School
Curtin University of Technology, Perth, Australia

ABSTRACT

Thirty year’s experience in the IST industry, including 20 years teaching IS subjects, such as

database design, have convinced me that IST education is not done well. Whether this

manifests itself as poor teaching, or by poor learning, is a moot point, but the outcome seems

to be the same. Graduates venture out into the professional world apparently poorly equipped

both technically and managerially.

This is demonstrated by the many horror stories that abound, especially about poor database

design. Given that databases are the central focus and foundation of most business systems,

and a major resource in both time and effort to develop and maintain, database education

needs to be of the highest order of relevance, practicality and correctness.

The problem seems to lie to a considerable extent in the textbooks that are available for

college courses. These have problems of fact and process in abundance.

This paper narrates some of the experience of the author in anecdotal fashion, but presents a

significant analysis of a number of leading textbooks, highlighting the pedagogical problems

that abound in them.

Keywords: Entity Modelling, Relational Modelling, Database Education.

1. INTRODUCTION

This is not a research report, although it does

contain elements of research. It is more a

personal experience report discussing

matters of relevance in Information Systems

Education, and to Information Systems

teaching academics.

There can be little doubt that the state of

system development and project outcomes is

still, to this day, in a somewhat parlous state.

It is very difficult to find an academic paper

published in journals or presented at IS

conferences and that does not at least imply

that things can be done much better in

systems development, and at worst that

system development failures are almost an

inevitable and very costly outcome. Of recent

times the “agile database’ proponents have

joined the fray (Ambler (2003); Fowler

(2003); Morien (2005))

These problems start, in my view, with IS

education, and especially with the state of

database textbooks. IS education needs to

improve, and become more rigorous, a

common vocabulary needs to be developed,

and essentially a “Database Book of

Knowledge” needs to be created, to

overcome the substantial and significant

fragmentising and singularising of database

theory, practice and terminology. Database

curriculum especially, as the topic being

addressed in this paper, needs to be

relevant, practical and correct. It should also

contain a significant slice of thoughtful

discussion about the business environment,

and not be all about technicalities.

I have recently left an information systems

school at a university where I taught for 20

years. I taught database, programming,

systems development methods and system

development technologies. Being also a

qualified and experienced accountant, I

always tried to teach these matters in a

business context and relevance. So I have

more than a little experience in IS education.

I have also suffered the frustrations of

conservatism in curriculum that was almost

mind-numbing.

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 1

Morien Absentee

Regrettably, I must conclude from my many

years of teaching these subjects that in

general many topics are taught badly.

Foremost amongst these is the general topic

of database, in which I include Entity

Relationship Modelling, Logical Data

Modelling and Relational Database Design. I

could also say that many topics are learned

badly, by students who often do not see the

relevance of what is being taught to them. So

it is not a one-way problem, or perhaps

indicates that a more practical way of

teaching and learning is called for.

As also being a long-time practitioner in IST,

I have always been excited about the field. It

is an exciting career, and an important one,

and it is a dreadful shame when it is rendered

down to its technical basics, and then taught

in a confused and “cookbook” fashion.

It should be a matter of great concern to us,

the educators, if our students graduate into

professional positions ill-equipped, or poorly

taught, and create the systems monsters that

seem to be prevalent in IT systems today.

To approach this subject, I would first like to

recount some conversations and experiences

that I have had over those years. But before

the criticism is levelled at me that I am

recounting only one person’s experience, I

will also present some analysis of a number

of database textbooks that have been offered

for use in university and college courses over

the past 20 years.

Perhaps I am taking too much upon myself,

seemingly placing myself in the role of “grand

old gentleman of IS”. But, then, I am one of

the early generation of IS practitioners who

remember NCR, and ICL, and even CICS. I

was there when there were no PC’s, just

microcomputers with interesting names like

Ohio Scientific, Commodore PET, Altair and

Cromemco, and Z80’s competed with 8080’s

and 6502’s for the market, and CP/M was the

predominant operating system. I was also

there when IMS was prevalent, and ADABAS

was new, and System/R was still a research

project. I started in computing in 1976, and

my first experience of the peculiarities of the

IT industry was when I was approached by a

Project Manager in charge of a major

accounting system development (Yes, they

didn’t have accounting packages back then).

who astonished me was his question … “We

have been asked to develop a Debtors Trial

Balance program, and we don’t know what it

is. Is it like a Balance Sheet?”. My

qualifications and experience in Accounting,

and in Corporate Law and Administration,

and business and management background

and knowledge seemed well placed at that

time.

2. CONVERSATIONS FROM THE DARK

SIDE: INDUSTRY

Recently in Singapore I was told about a

database system that was totally devoid of

any referential integrity constraints. Even the

department manager was sanguine about

this, happy to advise that all that needed to

be done to delete the orphaned records was

to go to another screen from where those

“child” records could be deleted. The fact was

that someone had designed that database

with this appalling lack of correct and proper

consideration for that important matter;

Referential Integrity. Where had they learned

their craft?

Then in Hong Kong I was shown a Data

Diagram purporting to be the schema

diagram for a major student administration

system at a prominent Hong Kong university.

I could not believe how bad it was, with sets

of columns in a record such as Result1,

Result2 …Result24 (because students had to

study twenty four subjects in their course).

This schema was so unnormalised as to be an

affront, even to the most pragmatic relational

database designer. Who had educated the

designer of that database schema?

At another time, I was contacted by a

graduate in Jakarta, who asked my advice on

how to deal with a database table that had a

record with about 75 columns designated as

being available for whatever purpose an

individual designer might assign to them.

One problem was that any given designer

had no idea which columns had been

assigned for what purpose by any other

designer and which columns were still

available and unused. My advice to him was

tantamount to “shoot yourself”; it was the

best I could think of at the time.

At one time I personally undertook some

contract work for a major telecom

organisation. Amongst other tasks, I worked

on a small system that controlled the

ordering of and distribution of telephone

directories to about 600,000 homes and

businesses. The Entity Relationship Diagram

that they had created is shown here.

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 2

Morien Absentee

This diagram showed that a Customer had an

Order that was delivered by a Courier to that

Customer, because the Courier delivered to

the Suburb that the Customer lived in.

This was fine, until it was realised that the

Order quantity could vary over time, as the

Customer ordered more or less books. There

was no differentiation between current order

quantity and delivered quantity. So, when the

Courier was paid for the books delivered,

they were paid for the number of books that

was on order at the time that the payment

was calculated. This frequently was different

from the number actually delivered. Another

problem arose when another Courier actually

delivered the books, because the Courier

designated as delivering to that Suburb had

not been available at the time of delivery. So

the outcome was that often the wrong

Courier was often paid often for the wrong

number of books delivered. There were many

other problems in this system, requiring a

significant rewrite that cost more than the

original development cost. Unfortunately, the

designers were recent graduates from my

University school.

At a government department where I was

called in by a business area manager, there

were three database schemas defined for a

particular high value system. There was the

schema defined by a consultant, who was

talking to the major users. There was the

schema designed by the DBA, who had his

own ideas on the structure – for efficient

access, of course. Then there was the

schema implied by a group of potential users

who were designing the system based on

their screen designs. Unfortunately, these

three schemas did not agree with each other.

For a start, the DBA created his schema

almost off the top of his head, and didn’t talk

to the clients, for two reasons. First, he was

affronted that a consultant had been brought

in, and second, he felt that the design of the

database was a technical matter that the

clients wouldn’t understand. The outcome

was actually quite chaotic, very expensive to

rectify, and caused a lot of anger and

resentment and conflict. Actually, there was

in fact a fourth schema developed by myself,

and validated by the creation of a prototype

system. This schema in fact proved to

support the business requirements better

than any of the other three, but was ignored

because the IT Manager felt affronted that I

had been commissioned by a user area

manager against his (the IT Manager) better

judgement.

I could go on for many pages. After all, thirty

years is a long time to accumulate a lot of

anecdotes. I am quite confident that any one

with my length of service and experience in

this industry could also recount similar horro

stories.

What I do want to point out is the

international flavour of this problem.

Singapore, Jakarta, Hong Kong, Australia;

these problems are obviously universal.

3. ANECDOTES FROM ACADEMIA

When I attended an academic conference

(the Australasian Conference on Information

Systems - ACIS) I was astonished to hear, at

a session being presented by an academic

from the host campus, the statements “We

have a big problem. In the first semester, our

students define their ER Model, and they

usually get excellent marks for it”, but then

“The trouble is, when they come to

implement it in the second semester, they

find out that it is wrong, and cannot be

properly implemented. I don’t know what we

can do to overcome this problem”. Having

been a keen advocate of prototyping

development for many years prior to this,

and having had significant success

developing systems in an evolutionary

fashion for a long time, the answer was very

clear to me – evolve the ER Model and

implement it at the same time, thus

validating every component of the ER Model

as it is identified and defined. What I was

obviously hearing was an outcome of the

seeming academic reluctance to embrace or

teach evolutionary development methods.

But then, in an attempt to be helpful and

provide guidance to his students, an

academic of my acquaintance issued an FAQ

information sheet to his project students. The

very first ‘question’ was “Our client wants a

Customer Order

CourierSuburb

Lives In

Delivers To

Has

Delivered By

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 3

Morien Absentee

prototype in 3 months. What do we say?

Answer: Say NO! One of the outcomes of

this (first of two) unit is to produce an

Analysis and Design document which will be

used in the following unit to build the

system”. This is insisting on precisely the

same predicament as described by the

puzzled and desperate academic from that

prior conference.

Following on this same train of thought, I saw

one of the project supervisors about to leave

the premises with a pile of large, impressive

looking reports. He told me that he was off to

spend the weekend assessing these

documents. He seems somewhat startled

when I asked “How? What assessment

criteria will you apply?” In subsequent

discussion I pointed out that all he could do,

in his assessment, was to consider the

neatness of the diagrams, the perhaps weigh

the documents and use the large number of

pages as indications of the excellence or

otherwise of the specification contained in

those documents. There was no way that he

could be sure of the validity of the content.

How could he know if that specification in any

way reflected the needs and requirements of

the client?

At the start of a new semester, which was at

the start of the student project when I was

given overall supervision of those projects, I

ran a short test on ER Modelling and

database design matters. Here are some of

the outcomes.

In answer to the question ‘Why is a Relational

Database called “relational”?’ nearly all of the

students answered ‘Because you can

represent relationships in it’. This is, of

course, quite wrong. Those students who

didn’t answer this way answered nothing. Not

one student could answer the questions ‘Who

was Dr. Edward Codd?’ and ‘Who was

Professor Peter Chen?’ In answer to the

question “What is an associative entity?”

those who answered said “It replaces a

Many-to-Many relationship”, which is also

quite wrong; certainly as an unadorned

response. In fact, most students believe that

in the ER Model it is wrong to have a Many-

to-Many relationship, and it must be replaced

by two One-to-Many relationships, which

again is quite wrong, unadorned or

otherwise, both from a modelling viewpoint

and from a semantic viewpoint. In the ER

Model the Many-to-Many relationship is a

totally valid semantic construct, and to

replace it with two One-to-Many relationships

does not maintain the semantics and logic of

that situation (apart from being somewhat

contradictory to the idea of automatically

replacing the relationship with an associative

entity). What was also clear was that none of

the students could differentiate between an

ER Diagram and a Relational Diagram;

basically they had always been taught that

they are one and the same thing. This is

what they were taught, and this is what their

textbook also seemed to support.

The outcome of this test was a disaster. Most

or all of the students answered wrongly

because they had been taught that wrong

fact, or had not been taught at all. This was

notwithstanding the fact that they had

covered ER Modelling and database design

issues in at least two prior units. More

troublesome is the fact that some of this

misinformation is perpetuated in textbooks,

which I will discuss later.

During my time as a project supervisor, I

began to realise that some groups, when

designing their database, had an

autoincrement integer field as the primary

key of the table on all and every table. One

reason this came to my attention was that

some groups were having difficulty in

processing the referential integrity rules

because of this. In another case, the system

had to append the data from a number of

tables in remote locations into a centrally

located table, and the autoincrement field

was causing problems. When I asked why

there was this inevitable autoincrement field,

I was told ‘Because we were told that you

can’t have a string field as a primary key’.

Apparently this was an efficiency issue. The

tutor who told them this had a degree in

computer science from Brazil. Again the

international dimension of this problem was

clear.

I have been assured by academics that

entities do not have identifying attributes.

Only tables have these and they are called

primary keys.

Students are frequently taught that

Referential Integrity is what you do when you

declare foreign keys in the database tables

and specify cascade deletes as automatic

actions. What they aren’t taught is that

Referential Integrity is a general principle and

practice, of considerable significance and

import in database processing.

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 4

Morien Absentee

4. A CRITIQUE OF THE TEXTBOOKS

I will first address a number of topics that I

consider relevant and in some cases central

to database curriculum, and see how these

topics are treated in the textbooks.

5. WHAT IS A RELATIONAL DATABASE?

Well, first, to provide the correct answer; it is

a database where the data is stored in tables,

based upon the mathematical principles of

sets and relations, as described by Dr. E

Codd in 1970 (Codd, 1970). The term

‘relational’ comes from this reference to

relations.

In Palinski (1997, at page 16) the question is

put, and answered, in this manner: “What is

a Relational Database? (it is) ... a set of

tables or holders of records that are ‘related’

to each other by a common value”. At a

substantial way through the book, at page

112, when discussing Set Operators, the

almost throwaway statement is made that

“Relational databases are founded on set

theory”. However, I can find no explanation

of the importance of this. Nor does this

statement in any way negate or explain the

implication clearly to be drawn from the

earlier statement that it is relational because

you can relate tables to each other by a

common value.

I searched in vain for any mention of Codd.

Personally, I think a course on Relational

Databases without mention of Codd is like a

medical course that never mentions Pasteur,

or a psychology course that makes no

mention of Freud or Jung.

In furthering my search, I looked for

“relation”, and unfortunately found it. I say

unfortunate because the term was used in

“This type of table is called a relation table …

Relation tables do not have any significance

without a tie to a base table”. The type of

table being referred to is where, if we were

referencing this back to an entity model,

would be how a many-to-many relationship

between two entities would be represented in

the Relational Model. It is referred to in other

texts as an association table. However, it is

almost the definition of a weak entity from

Courtney & Paradice (1992) which is “An

entity whose existence depends on another

entity ..”. Batini et al. define weak entity as

“entities that have only external identifiers”.

Awad & Gotterer (1992) do not mention weak

entities at all, neither it seems does Stamper

& Price (1990), nor Watson (1996), Post

(1999) and Pratt & Adamski (2002). Apart

from all of this, whatever it is, it is certainly

not a "relation table". In correct relational

database terminology, a table is called a

relation; a relation is not a special kind of

table, as implied here.

The bottom line here is that often the concept

of relational databases is wrongly taught, and

wrongly defined in textbooks. I find this a

great pity, because if students were taught

from the roots of the concept, they would

have a much better comprehension, and a

greater ability to design a relational database

correctly. And I am not talking about arcane

relational calculus or algebra.

6. WHAT IS AN ASSOCIATIVE ENTITY?

According to Satzinger et al (2002), this is a

concept stated, at p. 173 as “A data entity

that represents a many-to-many relationship

between two other data entities” …

“…Analysts often discover that many-to-many

relationships involve additional data that

must be stored…the solution is to add a data

entity to represent the relationship between

(the entities) … sometimes called an

associative entity”. Whatever else might be

said about this quote (such as the complexity

of the statements), one thing seems obvious

to me; is this statement saying that a data

entity represents a many-to-many

relationship per se, or just when it has

attributes? If it is the existence of attributes

in the relationship that is the crux of the

matter, then what about a one-to-many

relationship that has attributes? Or are these

authors denying that possibility?

I will discuss that matter elsewhere.

Looking elsewhere in the textbooks, Rob and

Coronel discuss associative entities and

relationship in this manner. Their Figure 4.4

on p.190 restates the Many-To-Many

‘Contains’ Relationship (as in CLASS

‘contains’ STUDENT) by turning it into what

they term a composite entity. At p.83, this

book states ‘…by creating a composite entity

or bridge entity’. This is considered

troublesome for a number of reasons. First,

what this book is calling a ‘composite entity’

or bridge entity’ is the ‘data entity’ of

Satzinger et al, who do indicate that it is

called an ‘associative entity’ elsewhere in the

literature. But it is also known as a

Relationship Entity, or a Gerund (McFadden

et al, 1999) who use both the terms Gerund

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 5

Morien Absentee

and associative entity), or an Intersection

Entity elsewhere, depending on which book

you read. The Rob & Coronel book states ‘We

also must create a composite entity between

CLASS and STUDENT’. But we can ask Why?

Why must we do this? What is so essential

that we must? What benefit do we gain by

introducing these artefacts? And it is very

confusing because of all the different names

used for it. Just a point here … It is this very

situation that Palinsky asserts will result in a

“relation table”.

McFadden et al. obfuscate this situation to a

considerable degree. In the Glossary of

Terms, at p.599, an Associative Entity is

defined as “an entity type that associates the

instances of one or more entity types and

contains attributes that are peculiar to the

relationship between those entity instances”.

My immediate comments would be Why is it

necessary? What is wrong with leaving the

Relationship as it is? That is, if you can

understand from this definition that we are in

fact talking about an entity standing in the

place of a relationship! This definition also

includes mention of entity types and entity

instances. Make of that what you will.

At p.99, McFadden discusses Associative

Entities in these terms: “The presence of one

or more attributes on a relationship … the

relationship should perhaps instead be

represented as an entity type”. At p. 224:

“…when the data modeler encounters a

many-to-many relationship he or she may

choose to model that relationship as an

associative entity in the E-R Model”. There is

no mention of attributes here. At p.219 it was

stated “Associative entities (also called

Gerunds) are formed from many-to-many

relationships between other entity types”.

McFadden et al. do try to provide criteria for

identifying an associative entity. At p100 they

say “How do you know whether or not to

convert a relationship to an associative entity

type?” The given list of criteria includes:

• All of the relationships for the

participating entity types are ‘many’

relationships.

• The resulting associative entity type has

independent meaning to end users, and

preferably can be identified with a single-

attribute identifier.

• The associative entity has one or more

attributes, in addition to the identifier.

• The associative entity participates in one

or more relationships independent of the

entities related in the associated

relationship.

Now, if that doesn’t confuse the database

student, then nothing will! For mine, I am

still at a loss to understand exactly why an

associative entity is even necessary and

useful. I do not believe that it adds the

slightest semantic richness to the model, and

frankly just makes the whole thing more

confusing by adding this extra but poorly

defined concept and practice to the modelling

activity and the diagram. After reading

McFadden, if I didn’t have 25 year’s

experience in ER Modeling and Relational

Modeling, I think I would be mightily

confused about how to identify an associative

entity. That is of course, if I wasn’t using a

textbook that uses an entirely different term

for this concept, or indeed a textbook that

doesn’t mention this concept at all. This

leaves unanswered questions such as “What

about a 1:M relationship with attributes?” and

“What about an M:M relationship that

doesn’t have attributes?”. Actually, Rob &

Coronel perhaps provide a simplifying

assumption that relationships don’t have

attributes, which is of course contradicted in

most other database textbooks.

So, how would I state the matter? Simply! I

have tried to teach the following ER Modeling

guidelines:

• All relationships have attributes, even if

they are just the identifying attributes of

the entities that participate in the

relationship, as foreign identifiers in the

relationship.

• Relationships may themselves participate

in relationships.

• All relationships, be they many-to-many,

one-to-many or one-to-one, may

ultimately be represented in the

Relational Data Model as tables

(relations). One-to-many relationships

may alternatively be represented as

foreign keys in the Table at the ‘many’

end, in the Relational Model.

• The concept of Associative Entities is

redundant, unnecessary and fails to

provide semantic richness and value

whilst introducing a complexity into ER

Modeling theory and practice.

What, might I ask, could be simpler?

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 6

Morien Absentee

7. HANDLING MANY-TO-MANY

RELATIONSHIPS

My view of handling M:M relationships is

simple:

• M:M relationships are a valid and

necessary and frequent construct in the

ER Model.

• All M:M relationships have attributes, at

least the foreign attributes of the

identifiers of the entities that participate

in the relationship.

• M:M relationships transform into a table

in the Logical Data Model.

• Relationships can participate in

relationships, and this is in fact a

commonly seen situation.

However, many textbooks make a huge

“song-and-dance act” about this, totally

unnecessarily, in my view, often erroneously,

and usually unhelpfully.

On a web site (TechRepublic, 2005) where,

amongst other things, there are threads of

discussion, I read a thread that started

“Solve a many-to-many relationship in

Microsoft Access”. My first reaction to this

was This is not sensible! It is not even a

problem! By the time the matter at hand is in

Access, the many-to-many relationships from

the ER Model have been satisfactorily

represented as a table. You cannot, of

course, have a many-to-many relationship

between tables, so how can there still be a

many-to-many relationship when you are

using Access?. The various contributions to

this thread that followed were most

intriguing, and there were all sorts of

suggestions about comboboxes, and list

boxes and so on.

Rob and Coronel, at p.83, state ‘…we can

easily avoid the problems inherent in the

many-to-many relationship by creating a

composite entity or bridge entity’. Apart from

introducing two terms (composite entity and

bridge entity) that seem clearly to state that

many-to-many relationships are real and

proper, and should be replaced by an entity

of some naming convention, this statement

implies that having a many-to-many

relationship is a problem. Why is this? Aren’t

many-to-many relationship able to provide us

with information, semantics etc. about some

aspect of the business? If we look at the

context of this statement in the textbook, we

would see that it is made during a discussion

of tables, and how tables are linked. This is

actually introducing a confusion into the

discussion. Properly we should say that

entities and relationships are part of the

Conceptual Modeling activity, when

manifested as an Entity-Relationship Model,

not the Relational Modeling activity, except

only that when you are defining the

Relational Model you are making well

considered judgments about how to

represent the entities and relationships –

which are part of the Conceptual Model – in

the Relational Model.

The situation is further complicated when we

read p.210, where in Section 4.3.11, still in

the Chapter dealing with Entity Relationship

Modeling, the following statement is made –

‘In the original E-R Model…relationships do

not contain attributes…If M:N relationships

are encountered, we must create a bridge

between entities…The bridge is an entity

composed of the primary keys of each of the

entities connected’. This statement is very

troubling for a number of reasons. First, it

introduces the notion of relationships not

having attributes. Then it implies the

requirement that a bridge entity must be

created. It also implies that an M:N

relationship must be restated as a bridge

entity. This imperative statement is not

justified anywhere, neither here nor at p.83

where there is similar discussion. Why ‘must’

this be so? There is no answer to be found –

it is merely an assertion. A distinct problem

that arises from all of this is that there does

not appear anywhere in this book a clear set

of criteria for converting a Relationship into a

Composite Entity. The question still must be

asked, however, what is the point of the

whole concept of a composite entity (or

bridge entity – take your pick as to

terminology).

We may find an answer to this conundrum in

a popular textbook on database, McFadden et

al. (1999, op.cit.). However, as already

discussed above, McFadden’s confused and

confusing guidelines and discussion on

transforming many-to-many relationship into

associative entities, or gerunds, is not

helpful.

Post (1999) attempts to bring relational

database design into the OO world. At p.35

he states “Many-to-many associations

between classes cause problems in the

database design. They are acceptable in the

initial diagram like Figure 2.6, but they will

eventually have to be split into one-to-many

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 7

Morien Absentee

relationships”. His Figure

2.6 is shown here, and is

interestingly labelled

“Class diagram or entity-

relationship diagram”

thus implying that these

are the same thing.

Personally, I would view

Sale as a relationship,

and if this was a Class

Diagram would show an

Association Class. In the

ER Model I would deal

with it in another

manner.

Post also, a p.94, says “Overview class

diagrams often contain many-to-many

relationships. In the relational database

many-to-many relationships must be split

into 2 one-to-many relationships …”. I was a

little puzzled as to what an “overview class

diagram” is, and if it is really different to an

ordinary class diagram, but perhaps I am

being too critical. Also, I would prefer to

express this by the statement of some simple

transformation rules from the ER Model to

the Relational Model. But of course, to make

these transformation rules understandable,

the concept of an ER Model being different to

and separate from a Relational Model must

be understood. Batini, Ceri & Navathe (Batini

et al, 1992) did say, at page vii, 'In fact,

many organisations are discovering the need

to do conceptual and logical design at the

same time as they move over to relational

and object-oriented database technology'.

However, I do not think they meant that the

conceptual and logical models were the same

thing. It is also interesting to note that Batini

et al do not mention the concept of

associative entities under any guise or name.

My respect for this book increases when I

see, at p.292 and thereabouts a clear

understanding of the separation of these

models, and the mapping of the M:M

relationship from the ER Model into the

Relational Model. However, I am a little

nonplussed to discover that Batini et al. do

discuss transforming such a relationship into

a weak entity. Go figure! And also try to see

the confusion that might be faced by a

student if he or she were reading from more

than one textbook on the subject.

A comment that arises from Batini et al’s

quoted statement above: “the need to do

conceptual and logical design”: some books

talk about Logical Design as if it is Conceptual

Design. Some books do attempt to

differentiate and explain the terms. The

supposed 3-tier schema of Conceptual –

Logical – Physical is represented in many

other ways, and other terminology … again

very confusing to the student.

8. SEPARATION OF MODELS

In the modern era, Model Driven Architecture

(MDA) and Model Driven Development (MDD)

have promised greater productivity, greater

quality and represent a different development

paradigm. (OMG, 2005). The crux of MDA is

the different models that can be created, and

the transformation rules that govern

transforming one model into the next, often

according to design patterns as templates for

code generation.

I refer to this new and exciting development

to support my view that it is highly desirable,

if not essential, to understand the existence

of these two concepts; different models, and

transformation rules.

This can be simply applied to the ER Modeling

/ Relational Modeling dichotomy.

I was recently reading an ebook downloaded

from the Internet … “Entity Relationship

Modelling Principles (Pederson, 2005). Very

soon I found this quote “In a relational

database, all entities have bonds between

them. A relationship is a link between

entities, and it tells us something about

which relationships exist between our

entities”. I was confused. Were we still

talking about Entity Modelling? Why did

“relational database” suddenly appear.

Relational databases have tables, and rows

etc., not entities. When Peter Chen (1976)

wrote his original monograph on Entity

Modeling, relational databases did not exist,

for all intents and purposes. Chen in fact

discusses network databases but from the

viewpoint of there being a separate data

model. I believe that again we see here a

confusion and failure to correctly differentiate

between Entity Modeling and Data Modeling,

associated as they are, but not the same

thing. In fact, this ebook failed to mention

Peter Chen at all. Again, as with my view in

regard to Codd, how can we teach Entity

Modelling without mentioning the progenitor

of that methodology?

I believe that we need to emphasise the

separate models, which will make the

Customer

Sale

Item

1 … 1

0 … *

1 … *

0 … *

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 8

Morien Absentee

thinking much simpler and clearer to

students.

However, when we have one view of the 3-

tier schema as Conceptual, Logical and

Physical, and another as External,

Conceptual, Internal (Courtney & Paradice)

and the Conceptual level is shown as “Logical

Schema”, then we do have a problem of

contradiction, with varying views.

9. TEACHING ENTITY MODELING: MADE

DIFFICULT?

From a pedagogical viewpoint, McFadden et

al. provides a case study, in my view, in

confusion, contradiction and illogicality. It has

all the appearance of being written by three

different authors, each of whom provided

chapters, without reference to each other,

and standardisation of concepts.

As early as pp.10-11 we find such

contradiction and confusion of terminology,

concept and definition. On p.10 we have the

definition of an entity as “an object or

concept that is important to the

business…high level entities are: Customer,

Product, Employee, Customer Order,

Department” . High level entities? What are

they? Is there also a concept of “low level

entities” somewhere in the text? The

Enterprise Data Model is defined on p.10 also

as “a graphical model that shows the high-

level entities…and associations between

them” . Well, apart from the fact that they

seem to be saying that the model and the

diagram are synonymous, and enshrining the

concept of high level entities, I can only

wonder at the contradiction here. Entities,

high level or otherwise, are first defined as

concepts, then are said to comprise a data

model (albeit the Enterprise Data Model).

Their Figure 1.3, on p.10, reproduced here, is

captioned “Segment from the enterprise data

model”.

However, on the same page, just below, the

statement is made that this diagram in

“Figure 3” “is referred to as an entity-

relationship diagram”.

What becomes even more confusing is this.

Having stated that ER Modeling is so

important that an entire chapter is dedicated

to the topic, we can turn to Chapter 3, at p.

87, and see their Figure 3-1: Sample ER

Diagram that contains the snippet shown in

this next figure shown here.

So, for what really purports to be the same

diagram, we see a totally different

diagrammatic form. This form is singular and

unique to this book, and is a peculiar

amalgam of Chen’s diagramming form, and

the crows-foot form is Information

Engineering, published in the late 1980s by

James Martin and Clive Finkelstein. Second,

where did Order Line go? Why is it shown in

the previous diagram and not in the

subsequent diagram? Both of these diagrams

purport to say the same thing. Again,

confusion, in my view. Also on this one page

we have the interesting but confusing

statements that an entity is a concept

important to the business, that appears in an

Enterprise DATA Model (my emphasis) which

is also called an entity relationship model

(which presumably is not yet concerned

about data and database artefacts, such as

tables).

While we are on p87, we can see the

statement “An entity relationship model is a

detailed logical representation of the data for

an organisation”. Well, so much for being an

Enterprise Data Model, and so much for

showing entities which are business concepts.

It would be intriguing then to see what they

think is a Relational Model, or a Logical Data

Model. In fact, they do not seem to show a

Relational Diagram or Logical Data Diagram

Customer Product

Order LineOrder

Customer

OrderProduct Requests

Submits

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 9

Morien Absentee

at all, except as relations shown as horizontal

boxes with separate parts for the data fields.

10. TEACHING ENTITY MODELING: MADE

SIMPLE

In a number of discussion and tutorial

papers, that I regularly provided to my

students (Morien, 2003a, 2003b, 2003c,

2003d, 2003e) I have outlined a simple

approach to ER Modeling and Relational

Modeling. In the first paper, “Simplifying the

Entity Modelling Activity – A simple set of

rules to follow”, I outline and discuss some

basics. These can be summarised as:

(1) Acknowledge the separate existence and

purpose of the various systems models; The

Conceptual Model, manifested as an ER

Model, the Logical Data Model, manifested as

a Relational Data Model, the Physical Data

Model and the associated Process Model.

(2) Each of these models, especially the ER

Model and the Relational Data Model, has

their own set of diagramming artefacts, and

terminology. The ER Model deals with

entities, relationships, attributes and

identifiers. The Relational Model deals with

tables, data fields, indexes and keys (primary

and foreign).

(3) The ER Model can be transformed

according to certain simple rules into the

Relational Data Model, which in turn can be

transformed into the Physical Data Model,

and processing requirements that are

inferred can be the beginning of the Process

Model.

(4) All relationship types are appropriate and

semantically valuable – many-to-many, one-

to-many, one-to-one, and all relationships

will have attributes. Relationships may

themselves participate in relationships. There

are some simple rules for transforming

relationships into the Relational Model.

(5) The associative entity concept has no

relevance, and adds nothing of semantic

value to the ER model, whilst providing

complexity in the modelling activity. So,

forget about it!

In the paper entitled “Identifying Entities,

Relationships and Attributes” (Morien, 2003b)

I provide guidelines for identifying and

validating the components of the ER Model,

including the attributes. One outcome of the

attribute guidelines is that the subsequent

tables that will be defined to represent the

entities and relationships will be

automatically in 3NF and BCNF.

The transformation of the ER Model into the

Relational Model is described in

“Representing Entities, Relationships and

Attributes in the Relational Model” In this

paper I publish a set of simple transformation

rules for the ER Model artefacts into the

Relational Model artefacts.

In “Visualisation of the Entity Model: Visual

Development Methods for Understanding the

Entity Modelling Process” I present an agile

database development approach, which I

term a Focal Entity Prototyping Approach to

database system development, which is

heavily visual, and evolutionary. My

experience of this approach is that the

delivered system is correct and validated on

the day that it is delivered, and meets most if

not all of the user’s requirements, as of the

day of implementation.

Recently I published a paper at the Agile2005

conference entitled " Agile Development of the
Database: A Focal Entity Prototyping
Approach". One significant aspect of the
evolutionary database development approach
published there is that the database system
development is done in a manner that is ER
Model-driven, acknowledges the multiple

model concept, and allows iterative delivery

of fully validated and correct schema

components and associated processing and

reporting processes.

My teaching experience has been that when I

describe my approach to ER Modeling and

Relational Modeling, most students have

what can almost be called an epiphany.

Stripping away much of the technical jargon

reveals the underlying techniques, which, in

reality, are not that complex.

These thoughts and practices can be

gathered together somewhat in this diagram.

STUDENT

Entity

Course

Enrolment

COURSE

Entity

M M

STUDENT

Table
COURSECOURSECOURSECOURSE

TableTableTableTable

Course Course Course Course
Enrolment Enrolment Enrolment Enrolment

TableTableTableTable

Student Table

Maintenance Form

Course Enrolment

Table

Maintenance Forms

Course Table

Maintenance Form

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 10

Morien Absentee

11. CONCLUSION

I have been constrained by space to

reviewing just a short list of database texts.

However, I think the point has been made,

and that is that database education, and the

supporting textbooks, are in a confused,

ambiguous and contradictory state. For a

topic of such immense importance I am

certain that considerably more thought and

careful construction of definitions of concepts

is required, and the clear, simple and

logically consistent statement of theory and

practice carefully adhered to.

Perhaps with the more universal acceptance

of the UML this may be achieved. However, it

is a bit disconcerting to realise that the UML

does not have a Relational Database diagram

recommendation amongst the 13 diagrams

expanded in UML 2.0.

12. REFERENCES

Ambler, Scott (2003), Agile Database

Techniques, Wiley

Awad, Elias M. & Malcolm H. Gotterer (1992),

Database Management, Boyd & Fraser

Publishing Company.

Batini, Ceri, Navathe (1992) Conceptual

Database Design: An Entity Relationship

Approach, Benjamin/Cummings Publishing

Company

Chen, P. (1976), “The Entity-Relationship

Model – Towards a Unified View of Data”,

ACM Transactions on Database Systems,

March 1976

Codd, E.F. (1970) A Relational Model for

Large Shared Data Banks, Communications of

the ACM 13(6): pp. 377-387.

Courtney, James F. & David B. Paradice,

(1992), Database Systems for Management,

Irwin, 2nd Ed.

Fowler, Martin (2003) at

http://www.martinfowler.com/articles/evodb.

html, accessed May 19th, 2005

McFadden, Hoffer & Prescott (1999), Modern

Database Management, 5th Ed., Addison-

Wesley.

Merrett, T.H. (1984). Relational Information

Systems, Reston Publishing Co.

Morien, R. (2003a). Simplifying the Entity

Modelling Activity – A simple set of rules to

follow, unpublished paper, School of

Information Systems, Curtin University.

Morien, R. (2003b). Identifying Entities,

Relationships and Attributes, unpublished

paper, School of Information Systems, Curtin

University.

Morien, R. (2003c). Representing Entities,

Relationships and Attributes in the Relational

Model, unpublished paper, School of

Information Systems, Curtin University.

Morien, R. (2003d). Visualisation of the Entity

Model: Visual Development Methods for

Understanding the Entity Modelling Process,

unpublished paper, School of Information

Systems, Curtin University,

Morien, R. (2003e). Referential Integrity in

the Relational Model, unpublished paper,

School of Information Systems, Curtin

University.

Morien R. (2005), Agile Development of the
Database: A Focal Entity Prototyping
Approach, Agile2005 Conference, Denver,
Colorado, July.

Palinski, John (1997), Oracle Database

Construction Kit, QUE

Pederson, Alf A., 2005, Entity Relationship

Modeling Principles, ebook at

http://db.ittoolbox.com/documents/documen

t.asp?i=2883 accessed May 30th, 2005

Post, G.V (1999), Database Management

Systems: Designing and Building Business

Applications, Irwin/McGraw-Hill.

Pratt, Philip J. & Joseph J. Adamski (2002),

Concepts of Database Management, Thomson

– Course Technology, 4th Ed.

Rob & Coronel, Database Systems Design,

Implementation & Management.

Satzinger, Jackson and Burd, (2002) Systems

Analysis and Design in a Changing World, 2nd

Edition, Course Technology

Stamper, David & Wilson Price (1990)

Database Design & Management: An Applied

Approach, McGraw-Hill

TechRepublic

http://techrepublic.com.com/5100-6329-

5034790.html accessed May 19th, 2005

Watson, Richard T. (1996), Data

Management: An Organisational Perspective,

John Wiley & Sons.

Proc ISECON 2005, v22 (Columbus OH): §5113 (refereed) c© 2005 EDSIG, page 11

