
Finkbine Fri, Nov 3, 8:00 - 8:25, Bordeaux

Representing and Generating Mutant Pro-

grams in Support of Measuring Test Suite

Effectiveness

Ronald Finkbine
rfinkbin@ius.edu

Computer Science, Indiana University Southeast
New Albany, IN 47250 USA

Abstract

Mutation testing is a technique of testing software, a form of white-box testing where the pro-

gram is dealt with at statement level. It involves the production and execution of a modified

version of a “correct” program, a mutant version, against its associated test suite. Each exe-

cution of a mutant can generate one of three logical results; (1) one of the test cases fails

showing that the test suite is sufficient to detect the mutant program, (2) all test cases pass

and this indicates a weakness in the test suite which needs to be repaired by the addition of a

new test case, or (3) all test cases pass and a meaningless mutation program was generated.

This paper discusses the database definition and support for representing and generating mu-

tant programs.

Keywords: Test suite effectiveness, mutant program, Java

1. INTRODUCTION

In the area of software development, test-

ing is performed to show that a piece of

software exhibits expected behavior. There

are many methodologies used in testing

software [Jorgensen 2002] including black

box, white box, integration testing, system

testing and user acceptance. The earliest

testing done on a program is the unit test,

performed by the programmer during cod-

ing. This is done by executing their pro-

gram against the test suite (a collection of

test cases). This unit testing of a piece of

software shows that a program passes this

test suite as designed by the programmer

but this does not necessarily assure the

quality of the test suite.

As a non-software, real-world example, a

generous faculty member can have an ex-

tremely simple examination question in an

effort to ensure the students give the cor-

rect answer. Asking a graduate student in

mathematics “What is two plus two?” is a

question of the proper form, and it is an

answerable question. However, it is an in-

appropriate question to test a graduate

student’s knowledge of high-level mathe-

matics. In order to detect weakness and

improve the quality of software we must

test the software, but also test, measure

and improve the quality of test suites the

software is to be tested against.

In discussing test effectiveness, we use the

term “strength” of a test suite. The test

suite is a set of test cases, and the suite

needs to have the ability to exhibit when

the source program does not work cor-

rectly. Passing all its test cases indicates

the program works as expected but failure

of a test case indicates the program is not

working as expected. The challenge is to

have a good test suite, the passage of

which indicates the program is working

correctly. Having a weak test suite doesn’t

show the program works correctly and

since programmers design the test suite,

how do you measure the strength of the

test suite?

The mutation testing of a program at-

tempts to measure and allow improvement

Proc ISECON 2006, v23 (Dallas): §2122 (refereed) c© 2006 EDSIG, page 1

Finkbine Fri, Nov 3, 8:00 - 8:25, Bordeaux

of the test suite. A program that has suc-

cessfully passed it test suite at the unit

level is a candidate for mutation testing.

This type of testing uses a source program

as input, introducing modifications to gen-

erate mutant versions of the program. Mu-

tation analysis induces faults into software

by creating many versions of the software,

each containing one fault [Offutt 2001].

Each mutant is compiled and executed

against the test suite and this can result in

one of three results:

• One of the test cases fails, indicat-

ing the test suite is of sufficient

strength to detect the mutant pro-

gram

• All test cases pass, indicating a

weak test suite

• All test cases pass, indicating a

meaningless mutant has been gen-

erated

Please note that the last two choices de-

tailed above are similar and it would be

necessary for a programmer to interpret

the results of a mutant’s execution to de-

termine if a meaningless equivalent muta-

tion has been created.

As an example a single test case consists

of an input file that contains inputs to spe-

cifically test certain characteristics of the

subject program. The execution of the test

case will produce an output file, absent

some form of run-time error that interrupts

execution. A test case should test one cer-

tain behavior of the subject program. For

example, five test cases for a linked list

program would be [Finkbine 2002]:

1. Insert into an empty list?

2. Insert into the front of a non-

empty list?

3. Insert into the end of a non-empty

list?

4. Insert into the middle of a non-

empty list?

5. Insert a duplicate item into the

list?

Students often do not think of a reasonable

test suite, they often get the program to

work on one test case and stop at that. So

this system would contain a table that con-

tains a record of each test case for the

subject program. In this example, we see

that five test cases are present; however,

it would be very reasonable to have many

more test cases, but hopefully not redun-

dant ones.

2. DATABASE DEFINITION

This project consists of components for

support of mutation testing:

• Database for maintaining secure

source code program

• Generator for producing mutants

• Compiler for generating class files

for execution

• Execution manager for running

class files and capturing outputs

• Database for maintaining test suite

for source program

• Test suite manager for addi-

tion/deletion of test cases

• Results manager for results of test

case runs

Representing mutant programs, or having

the ability to generate them at will, re-

quires substantial database support.

Figure 1 shows the standard hello-world

program in Java. Figure 2 shows the token

stream for the first line of this sample pro-

gram. The fieldnames for these columns

are record name, token number, line num-

ber, column number, starting column

import java.io.*;

class test {

public static void main

 (String[] args)

 {

 System.out.println

 ("hello world");

 } //main

} //class test

Figure 1

…

Token 1 1 1 import

Token 2 1 8 java

Token 3 1 12 .

Token 4 1 13 io

Token 5 1 15 .

Token 6 1 16 *

Token 7 1 17 ;

…

Figure 2

Proc ISECON 2006, v23 (Dallas): §2122 (refereed) c© 2006 EDSIG, page 2

Finkbine Fri, Nov 3, 8:00 - 8:25, Bordeaux

number and field spelling.

This representation will be contained in the

Token_Tbl as shown in Figure 3. Note

that all database tables are in the graphic

of a disk (round top) and the programs in

the system that move and produce data

are in rectangles.

The Token_Tbl graphic shows the fields

required to represent the original Java pro-

gram. A stream of tokens (for the entire

program) as partially depicted in Figure 2

is expected to be a working, correct pro-

gram, though this is dependent upon the

programmer loading the subject program.

This table will not be modified by this sys-

tem. The correctness of the original pro-

gram is assumed, the intent of this project

is to support the manipulation and genera-

tion of mutants. This system does require

a compiler be present since the mutant

programs generated will be compiled and

executed.

The MutantOp_Tbl describes the record

associated with mutable operators. The

early phase of this project allows mutation

of the mathematical operators. Logical

operator, variable manipulation and further

mutations will follow in a further phase.

Records in this table are used to modify

some of the tokens extracted from the To-

ken_Tbl in production of mutants.

The TestCase_Tbl shows the data re-

quired for the tracking of individual test

cases that constitute the test suite. A test

suite would consist of all test cases neces-

sary to show that a program works cor-

rectly.

The MutantExecution_Tbl shows the ta-

ble to track execution of the each mutant

program generated against each record in

the test case table. It is necessary to have

a test run of the correct program against

each test case. This would allow for accu-

rate determination of the run-time of each

mutant. It is possible that a mutant pro-

gram will cause an endless-loop and the

run-time for each test case would allow the

Program_Execution_Controller (con-

trols mutants at run-time) to determine

when a mutant exceeds twice the expected

run-time and force a kill signal to be sent

to the mutant.

3. Detailed Example

As an example, assume the simple

program of Figure 4. This program adds 1

to 2 (but does not print it). This program

file would be read by

Program_TokenLoader and loaded into

Token_Tbl as a ordered set of tokens as

described in Figures 1 and 2.

The Program_MutantGenerator would

read this program from Token_Tbl and

would modify the mathematical operator

plus (“+”) to a minus (“-“). This mutant

sequence of tokens would be recorded in

the MutantTokens_Tbl and would be

output, compiled and executed by the

Program_Execution_Controller

program. Note that changing the plus to a

minus in Figure 4 will produce a

syntactically correct program. The compiler

will accept this program, it will be up to the

test cases (at least one of them) to fail,

indicating the mutant is an incorrect

program and the test suite is strong

enough. Also note that to perform

mutation testing on this simple at least

requires that we read the two operands (1

and 2) in on the command line so we could

be a test suite that could execute the

program with command line parameters,

one per each test case.

4. Future work

There are a number of areas in which this

project needs to develop.

First is to strengthen the database

supporting this project. Moving from MS-

Access to MySql, implementing database

import java.io.*;

class simple {

public static void main

 (String[] args)

 {

 int x;

 x = 1 + 2;

 } //main

} //class simple

Figure 4

Proc ISECON 2006, v23 (Dallas): §2122 (refereed) c© 2006 EDSIG, page 3

Finkbine Fri, Nov 3, 8:00 - 8:25, Bordeaux

integrity contraints and system

administrator scripts are intended.

Second is to expand the operators used in

generating mutants. Other researchers

have classified the operators into eight

classes; boolean contants, boolean

operators, relational operators,

increment/decrement operators, arithmetic

operators, binary bit operators, arithmetic

assignment operators and binary bit

assignment operators [Agrawal 1989].

Currently, this project only supports

mutation utilizing the arithmetic operators.

Third is the Program Execution Controller-

to more fully control the mutants at run-

time. Current control is not satisfactory

though it can never be perfect since it is

not possible to determine with 100 percent

accuracy that a program will never halt.

4. BIBLIOGRAPHY

Agrawal, H. and R. DeMillo, R. Hathaway,

W. M. Hsu, W. Hsu, E. Krauser, R. J. Mar-

tin, A. Mathur, and E. Spafford, “Design of

Mutant Operators for the C Programming

Language,” SERC#: SERC-TR-41-P, March
20, 1989.

Jorgensen Paul C., Software Testing: A

Craftsman’s Approach, Second Edition,

CRC Press, ISBN 0849308097, 2002.

Finkbine, R. B. and N. A. Kraft, “Introduc-

ing the Test Harness: Automating the Test

Suite,” in Proceedings of the Information

Systems Education Conference (ISECON

2002), San Antonio, Texas, USA, Novem-

ber, 2002.

Hierons, R. M., M. Harman, and S. Danicic,

“Using program slicing to assist in the de-

tection of equivalent mutants,” in Software

Testing, Verification and Reliability,

9(4):233-262, 1999.

Offutt, A. J. and R. H. Untch, “Mutation

2000: Uniting the Orthogonol”, appeared in

Mutation Testing for the New Century,

Kluwer Academic Publishers, ISBN 0-7923-

7323-5, 2001

Proc ISECON 2006, v23 (Dallas): §2122 (refereed) c© 2006 EDSIG, page 4

Finkbine Fri, Nov 3, 8:00 - 8:25, Bordeaux

Figure 3

Proc ISECON 2006, v23 (Dallas): §2122 (refereed) c© 2006 EDSIG, page 5

