
Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

Teaching Scalability Issues in

Large Scale Database Application Development

Russell Anderson
randerson@mail.wtamu.edu

Musa Jafar
mjafar@mail.wtamu.edu

Amjad Abdullat

aabdullat@mail.wtamu.edu

CIS Department, West Texas A&M University

Canyon, TX 79018

Abstract

Many information systems degree programs include a course in database application
development. The course typically requires students to design and build a complete database
application. Instructors usually discuss database performance and scalability. However,
giving students in-depth, hands-on performance and scalability experience is difficult.
Problems often originate due to small size test databases and from testing a whole application

with too few concurrent users. This can be partially overcome by requiring students to
programmatically populate a large test database; it still does not address performance and
scalability problems that arise when hundreds or even thousands of users concurrently
execute transactions against the application. At the Computer Information Systems
Department of West Texas A&M University, we implemented a hardware/software solution
platform that allows students to assess most performance and scalability characteristics of a

database application. The platform permits students to execute thousands of concurrent
transactions against the application. Thus, students can monitor and gather performance
statistics such as minimum, maximum, and mean transaction response time, and failure rates
due to locking or configuration problems. This paper describes in detail the methodology and
the solution platform we used, presents the results of our first round of use in a classroom
setting, the students’ learning experiences and issues encountered.

Keywords: database performance, scalability, web applications, testing

1. INTRODUCTION

At the CIS Department of West Texas A&M
University, we have two courses in the data-
base management series. The first intro-

duces the students to database manage-
ment. It covers relational database man-
agement vocabulary and theory, data mod-
eling including E-R diagramming, data nor-
malization, and a heavy dose of SQL. In the

second course, the emphasis is on applica-
tion development in a web-based enterprise
environment where the browser is the front
end, an application server in the middle and
the database management system is em-
ployed as the primary mechanism for data
storage and retrieval as the back end.

(Chen, 2004) addresses the challenges in
teaching a database course in general and
(YAP, 2004) layout the challenges involved
in deploying scalable Database-driven Web

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 1

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

Architecture and the various architectural
components of such an application, although
the authors did lay down the architectural
components, they did not provide mecha-

nisms for testing the performance and scal-
ability of the applications. In this course we
discuss application scalability and perform-
ance tuning. However until recently, we
have not been able to give students a realis-
tic, hands-on experience; allowing them to
accurately assess the performance and scal-

ability characteristics of their applications.
This is was due to the effort involved in set-
ting up a “neutral“ test environment that is
sustainable across semesters and the
amount of scripting and configuration effort
involved that is usually beyond the scope of

the course (TPC BENCHMARK™ C).

Although many academicians did address
the challenges and present strategies for
teaching such a course sequence, we have
not seen any where in the literature where
the hands-on performance and scalability
issue have been directly addresses (Yap,

20004; Abuhejleh, 20002; Lenox, 2004;
Wagner, 2003; Chen, 2004).

This paper presents a methodology that we
have developed at the CIS Department of
WTAMU. It allows students to conduct, and
then evaluate results of realistic, high-load
application performance tests. Our specific

objectives are:
• allow students to gain insight into how
their database applications will perform
under realistic load conditions;

• help students to better understand the
factors affecting performance, scalability

and DBMS configuration in developing
database applications; and

• develop an environment that is sustain-
able and reusable across semesters with
virtually zero scripting effort and mini-
mal configuration and setup effort.

In the paper that follows, we first review the

issues encountered in teaching performance
and scalability assessment in a classroom
setting. This is followed by a description of
the methodology we have developed to en-
able such testing. The paper concludes with
a presentation of the results achieved when
the methodology was employed in our data-

base applications course.

2. ASSESSMENT ISSUES

In the past, attempts by students to assess
application performance and scalability is-
sues were hindered by the following prob-
lems: First, the size of the database is small
(small row count or small number of integ-
rity constraints). It was typical to have stu-
dents design a data model which in terms of

the schema complexity was similar to that
encountered in a real-world corporate envi-
ronment. However, typical tables in corpo-
rate databases range in size from tens of
thousands of rows to millions of rows;
whereas students may manually enter up to
one hundred rows total then begin testing.

(Wagner 2003) provides a good resource
and pointers to scientific databases that are
large enough and are suitable for using in a
database system course.

Second, in the corporate environment, the
number of concurrent users of an application

may range from the tens up to the tens of
thousands. Large user populations are es-
pecially common in web based applications
where the responsibility for data entry has
been extended to the customer or business
partner. In a classroom test environment,
the student/developer himself may be the

only user, or in the best case, a student pro-
ject team of five to six members may per-
form some concurrency testing. In this lat-
ter case students may, using their knowl-
edge of the code, test specific potential
problems with a coordinated attack on a
predetermined unit of data in the database,

hitting a predetermined function point in the
application. Such an approach may validate
already identified potential concurrency
problems or bottlenecks, but obviously fails
to help students identify additional potential
problem locations.

Before developing our current performance
assessment methodology, the process we
used for assessment was mostly manual.
Students first developed the logic for each
required transaction in their application.
Each query/update against the database
found in that logic was then evaluated. This

manual assessment was based on the idea
that the major determinant of query re-
sponse time is the number of physical disk
I/O’s. If we can predict the number of
physical I/O’s that are required to resolve a
query, then we can predict response time.
To accomplish this we had the students de-

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 2

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

velop a sample set of queries that retrieved
and modified data in a set of tables of vary-
ing sizes – with and without indexes. As
those queries executed, they recorded the

disk I/O’s and execution times, then used
these results to develop simple functions to
predict disk I/O’s given the query type, and
the size and structure of the tables involved.
These functions could then be applied to the
previously identified queries, yielding re-
sponse time estimates.

As a second step, students were required to
evaluate the logic of each transaction – ask-
ing the question: “Can the process be re-
coded or the database restructured in a way
that will yield better response time?” Stu-
dents used the “Explain Plan” feature of the

Oracle DBMS that takes as input an SQL
query then returns as output, the optimized
steps that the DBMS will go through to exe-
cute the query. The output of “Explain Plan”
can then be used to help identify inefficien-
cies in the transaction logic and indirectly
point to possible changes in the logic and/or

the database structure that would improve
performance.

The above described processes have both
advantages and shortcomings. The most
important advantage is that it forces the
student to think about what is going on in-
side the DBMS. It is no longer a magical

black box. For example, students quickly
realize that adding an index to improve data
retrieval performance will adversely affect
update performance on the indexed column.
It also gives the student an appreciation for
what the query optimizer is doing. For ex-

ample, a student may look at the output of
an “Explain Plan” and decides to change the
query from a “nested select” to a “join” that
retrieves the same result set. However,
when they compare the first and second
plans, they find that the optimizer has gen-
erated the exact same execution sequence.

Changing the structure of the query has
done nothing to improve expected response
time.

The process has four major short-comings.
First, it is difficult to factor in the effects of
data caching. A query that takes 10 seconds
to execute the first time, may take less than

a second when immediately re-executed. In
the real world, it is difficult to predict what
data will likely be cached and what will not.
Thus, in the I/O analysis, we take the pes-

simistic approach and have the students
clear the cache before each query execution.

The second short-coming is that the process
ignores the issues of concurrent access. It

does not take into account the expected
number of users and the performance ef-
fects that they will have on the DBMS. It
also does not consider the potential prob-
lems that data locking may cause when con-
current users attempt to access and update
the same data.

A third short-coming is that it does not take
into consideration operating system and
DBMS configuration options. Good database
administrators earn their keep by success-
fully tweaking configuration settings. In our
courses we certainly don’t expect to make

competent database administrators out of
our students, but we would like to give them
some exposure to the settings that are
available and the potential effects that these
settings can have on DBMS performance.

A final short-coming (in an academic envi-
ronment) it is hard to deploy hardware,

software architecture, terminals, network
equipment and configuration that are “iden-
tical” which is a TPC requirement (TPC
Benchmark C, 2005) for a realistic perform-
ance testing and scalability environment.

3. METHODOLOGY

OVERVIEW

In this section we describe the methodology

that we have developed to overcome the
performance assessment problems described
in the previous section. Students in our
second database course (Database Applica-
tions) are assigned semester long applica-
tion development projects that employ the
methodology. The steps of the methodology

are:
1. Create a data model for the proposed
system by constructing an Entity-
Relationship diagram, then converting
the diagram to a relational database
schema.

2. Implement the data model, and then
populate the database.

3. Code the application.
4. Iterate until satisfactory results are
achieved.
a. Conduct performance and scalability
tests of the application.

b. Evaluate results.

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 3

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

c. Modify the application logic and the
database configuration.

4. IMPLEMENTATION

DETAILS

The application chosen for implementation in

the course was a record keeping system for
a small animal veterinary clinic. Specific
sub-systems included: patient (animal) and
client visit tracking, sales from inventory,
payment processing, inventory manage-
ment, and purchasing.

To get realistic results in the performance

tests a database is needed that is compara-
ble in size and structure to typical databases
implemented in a corporate environment.
Given that the project is of sufficient com-
plexity, a well constructed Entity-
Relationship diagram will guarantee that the
resulting database schema will be useful for

performance testing. A diagram of the clinic
schema used is presented in Figure 1. The
database schema was generated using IBM-
Rational Architect from IBM. It consisted of
twelve tables – five master tables (client,
animal, service, vendor, and inventory) and

seven containing transaction (detail) data.
Also, five of the transaction tables had multi-
attribute primary keys. These represented
connections in many-to-many relationships
between master and transaction entities.
Although in terms of table count, this would
not be considered representative of typical

corporate databases, in terms of navigation
complexity and size of the database, it is
sufficient.

To populate a database of sufficient size,
students were required to write a JAVA ap-
plication that filled the database with ran-
domly generated content. Issues in coding

the application included:
• Even though the data was randomly
generated, it still needed to conform to
domain restrictions of the columns.

• All referential integrity constraints must
be maintained. For example, detail rows

for a sales order must only contain rows
for items that are found in the products
table and sold to a customer found in
the customers table.

• All other data constraints must not be
violated. For example, the date of a
payment check for an invoice must not

predate the invoice itself.

The data must be typical and reasonable.
For example, orders may contain from one
to ten line items; no total order amount will
exceed $10,000; and a customer will not

place multiple orders on the same day or
maybe even in the same week.

The JAVA applications that students wrote to
populate the database were required to han-
dle all of the above. Once coded, databases
of any desired size could be generated sim-
ply by changing a few constants inside the

application.

The architecture chosen for application de-
velopment was web-based (Forms, JAVA
servlets and Java server pages (JSP)). JSP
documents consist of a blend of html, defin-
ing the browser presentation, and JAVA

code, executing the application logic on the
server when an HTTP request is made. It is
the JAVA code executing on the server that
interacts with the DBMS enabling dynamic
content and implementing the transaction
processing requirements of the application.
The interface between the web application

server and the DBMS is accomplished in
JAVA via the JDBC API.

Once the application code has been com-
pleted, the next step is to conduct the per-
formance and scalability tests. This testing
process and its components are the main
focus of this paper.

The system used for testing is a combination
of specialized hardware and software (see
Figure 2). The main components of the sys-
tem are:
• One Avalanche-220EE load testing appli-
ance from Spirent Communication

(Spirent, 2003). Its purpose is to gen-
erate large quantities of realistic network
traffic simulating concurrent clients from
multiple subnets in the hardware. The
appliance is at the center of our test
methodology, it simulates thousands of
web clients from multiple sub networks

through hardware and configuration.
• One Dell Power Edge-800 server running
the Windows 2003 server operating sys-
tem with one 1GB network card. This
machine executed the Oracle 10g Data-
base Management System implementing
the student project database.

• One Dell Power Edge-800 server running
the Windows 2003 server operating sys-
tem with one 1GB network card. It exe-
cuted the Tomcat application server

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 4

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

where the JSP applications were imple-
mented.

In addition, two high speed Dell switches
were included in the configuration. One was

used for the test load traffic, and the second
was used for server administration traffic.
This second switch allowed the test load
network traffic to be isolated from the test
administration traffic.

Four transactions within the clinic application
where chosen for the performance test. See

Table 1 for purpose and the number of ta-
bles accessed by each transaction.

To conduct the actual performance tests, we
used the Avalanche appliance to randomly
select and submit transactions to the web
application server which in turn made re-

quests to the database server. The data
submitted by the processes came from pre-
viously generated transaction files which
were accessed independent of the perform-
ance analysis network by the Avalanche ap-
pliance.

In setting up a test run, Avalanche allows

the investigator to specify load settings ei-
ther in terms of transactions per second or
number of concurrent users. (When specifi-
cation is by number of concurrent users,
once the maximum number of concurrent
users is reached, Avalanche does not start
the next transaction until a transaction cur-

rently in the mix completes.) For the per-
formance tests, we chose to specify the
number of transactions per second (tps).
Each student’s application was tested at 5,
then 25, and finally 50 transactions per sec-
ond.

The duration of each test was 80 seconds: a
15 second ramp-up time to reach the peak
tps rate, a 60 second span at peak rate, and
then a 5 second ramp-down. Thus each
student received the results from three 80
second test runs: 5, 25 and 50 tps. After
each test run, the database was restored to

its original state.

5. TEST RESULTS

Avalanche generates two reports in spread-
sheet format for each test run. The first is a

summary of performance during the test
run. A list of statistics included in this report
is found in Table 2. In their analysis, stu-
dents were told to focus on average, mini-

mum, and maximum page response times,
and transaction success rates at each of the
specified transaction per second rates.

The second spreadsheet report contains

measurements of the progress of the test
run sampled at four second intervals. The
measurements reported are listed in Table 3.
As with the summary report, students were
directed to focus on average, minimum, and
maximum page response times and transac-
tion success rates. When problems oc-

curred, such as HTTP errors or significant
increases in response time, the progress re-
port allowed students to determine when
during the run the problem occurred and
which transactions were having the problem.

A third output dataset that students were

given to inspect was the TCP log captured by
Ethereal. Hereafter referred to as the pcap
log. It contained packet contents for all
network traffic to and from the Avalanche
appliance (Avalanche and through configura-
tions allow for the capture of the pcap file).
Its usefulness is described later in the paper.

6. STUDENT EXPERIENCE

As previously stated, the first two objectives
of our database performance assessment
system were to help students gain an appre-

ciation of how their applications would per-
form in a large “real world” environment and
to help them identify possible design and
software configuration changes that could be
made to improve performance. In this sec-
tion, we summarize the experiences of stu-
dents relative to these objectives.

Finding 1: DBMS configuration prob-

lems: For many students, the first step in
analysis of the data was to look at the aver-
age response times for each of the four
transactions. A plot of typical results is

shown in Figure 3.

Two conclusions may be drawn from the
plot. First, at 5 tps, the response time is
acceptable for all transactions (well under 1
second). At 25 tps, one of the transactions
(animal visit history) jumps to 20 seconds.

Second, it is obvious from the plot that the
results are misleading. In going from 5 tps
to 25 tps, the response time increases as
expected; but in going to 50 tps, the re-
sponse time decreases. Students recogniz-
ing this inconsistency were told to look at

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 5

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

more of the data. A plot of transaction suc-
cess rates explains this (see Figure 4). The
response time was actually decreasing, be-
cause many of the submitted transactions

were actually failing and returning almost
immediately. For example, at 50 tps, only
24% of the transactions to record an animal
visit were succeeding. For more information
on the failures, students were told to search
the pcap logs. In doing so, they found that
two different messages were frequently con-

tained within the server response (Oracle
Corporation, 2003) and (Berners-Lee, 1999)
document the various ORA- and HTTP er-
rors and their diagnosis:
ORA-00018: maximum number of sessions

exceeded,

and
HTTP 500: Internal Server error.

In seeing the first, students immediately
recognized that the default configuration for
the DBMS was not adequate. It was set at
one hundred maximum sessions, which was
quickly reached. The second error message

told students that the web server was not
able to keep up with all requests. However,
since this was a course in database man-
agement, not web server administration,
they were told not to attempt to solve this
problem, just to recognize its existence.

Finding 2: Coding considerations

and the DBMS optimizer: As students
compared average response times on trans-
actions, they found large differences be-
tween student implementations. For exam-

ple, in retrieving an animal history one stu-
dent’s average response time was about 500
ms, while another student’s was about 7000
ms.

When they compared code, they found the
reason for that difference. To retrieve an
animal’s history required reading from five

different tables. The first student had re-
trieved the desired data with two different
queries, each specifying multi-table joins.
The second had programmatically retrieved
the same data by reading one row from the
Visit table then searching the ServicesRen-
dered table for the current visit number, and

finally reading service descriptions from the
Services table. There were two lessons
learned here. First, reduce as much as pos-
sible requests from the application server
(JSP page) to the database server. Second,
specify for the DBMS everything you want

(via multi-table queries), then allow the
optimizer to choose the best way to retrieve
that data.

Finding 3: Deadlock Does Happen:
In the search of the pcap log, students also
encountered an occasional Oracle message
see (Oracle Corporation, 2003) for more ex-
planations of the error:
ORA-00060: deadlock detected while wait-

ing for resource.

In class lectures, we had discussed the pos-
sibility of deadlock and the need to include
in the code the ability to detect and properly
respond to a deadlock situation. Most stu-
dents considered the possibility of deadlock
so remote that they did not take the time to

properly handle it in their code. Seeing the
above error in the log file brought them back
to reality. Deadlocks do occur. It must be
detected and handled.

Finding 4: The Value of Indexes:
After analyzing results of their test runs,

students were asked to modify their applica-
tions, trying to improve performance in
processes that had slow response times. A
common solution was to create an index on
foreign key columns. In most cases per-
formance did not improve. To help students
understand why, students were taught how

to use the Oracle “Explain Plan” feature,
which reports the data access sequence and
access methodology that the DBMS will fol-
low in order to execute a given query. In
doing so they found that the DBMS sequen-
tially read through the detail table first, and

then used foreign key values in that table to
retrieve rows in the master tables using pri-
mary key indexes. Since, primary key col-
umns were automatically indexed; the crea-
tion of indexes on foreign key columns pro-
vided no benefit.

Finding 5: Response Time is Very

Much Affected by Lock Waits: After
reconfiguring the DBMS to support sufficient
session and open cursor requirements, stu-
dents still observed dramatic response time
deterioration when going from 5 to 25 then

50 tps. To help them understand what was
happening, we had them open and watch
the visual Oracle performance monitor
where they could see a live graph at run-
time showing the number of current locks
and the number of sessions currently waiting
on locks to be released. Although we did not

provide output logs or other data that di-

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 6

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

rectly linked DBMS status to web server per-
formance, students were able to use what
they had visually seen on the monitor to go
back and examine the spreadsheet output

which reported transaction performance at
four second intervals throughout the test
run. In doing so they found a correlation
between times of high transaction response
time and the visually observed high lock wait
counts.

7. ACKNOWLEDGEMENTS

All the tests were performed at the Software
and Network Security Testing Lab
(SoNSTLab) of the CIS department at
WTAMU. Spirent Communication donated

the appliance testing equipment (Avalanche
and Reflector). Oracle 10g and IBM Rational
are part of the Oracle and IBM Academic
Initiative with the CIS Department at West
Texas A&M University.

8. SUMMARY

By employing a network performance test
appliance in conjunction with a web based
java Servlet and JSP application, we were
able to successfully provide students with a

“real world” test environment of their data-
base applications. They were able to evalu-
ate their application performance under real-
istic user loads far better than would be pos-
sible by sitting down a group of students in a
lab and have them concurrently execute
transactions. The testing environment al-

lowed students to:
• assess which transactions had potential
response time problems,

• quickly locate problems in the DBMS
configuration parameters,

• discover alternative approaches to appli-
cation code that improved response

time,
• recognize the need in their applications
for better error detection and handling,

• see the affects of a locking scheme on
response time, and

• more fully appreciate the fact that prob-

lems such as deadlock do occur and also
need to be addressed in the code.

This was our first attempt using the network
performance test appliance in a classroom
setting. Changes we plan to make in the
performance testing phase of future offer-

ings of our database applications course in-
clude:
• generation of DBMS status and perform-
ance logs that will allow the students to

directly link the performance measures
of the DBMS with response time meas-
ures of the web application server
rather than the visual link previously
employed;

• having students experiment with differ-
ent locking schemes to evaluate their af-

fects on response time and deadlock fre-
quency; and

• scheduling time in the course for more
redesign/code iterations. In the original
trial students only had time for two it-
erations.

9. REFERENCES
Abuhejleh, Ahmad “A Second Course in da-
tabase Management Systems: A Rationale
and a Proposed Course Outline” Proceedings

of ISECON’2002.

Berners-Lee, T. et al (1999) “Hypertext
Transfer Protocol HTTP/1.1” RFC2616,
http://www.w3.org/.

Chen, Catherine and Charles Ray (2004)

“The Systematic Approach in Teaching Data-
base Applications: Is there Transfer When
Solving Realistic Business Problems?” Infor-
mation Technology, Learning and Perform-
ance Journal, Vol. 22 No. 1, Spring 2004.

Lenox, L. Terri and Charles R. Woratschek

(2004) “The Pros and Cons of Using a Com-
prehensive Final Project in a Database Man-
agement Systems Course: Marvin’s Magnifi-
cent Magazine Publishing House”, Proceeding
of ISECON’04.

Oracle Corporation (2003) “Oracle® Data-
base Error Messages, 10g Release 1 (10.1),
Part Number B10744-01”.

Spirent Communication (2003) “Avalanche
Analyzer User Guide”
http://www.spirent.com/.

Spirent Communication (2003) “Avalanche-
220EE User and Administrator guides”
http://www.spirent.com.

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 7

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

TPC BENCHMARK™ C (2005) Standard
Specification Revision 5.6”
http://www.tpc.org.

Wagner, J. Paul, Elizabeth Shoop and John
V. Carlis (2003) “Using Scientific Data to
Teach a Database Systems Course” ACM
SIGSE’2003 February 19-23, pp. 224-228.

Yap. Y. Alexander and Claudia, Loebbecke
(2004) “A System for Teaching MIS and MBA
Students to Deploy a Scalable Database-

driven Web Architecture for B2C E-
Commerce.” Proceedings of ISECON’2004.

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 8

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

10. APPENDIX: FIGURES and TABLES

Figure 1. Vet Database Schema

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 9

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

Figure 2. Hardware Configuration of Test Environment

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 10

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

Transaction Response Time

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60

TPS

A
v
g
 R
e
s
p
 T
im
e
 (
m
s
)

Payment

History

AnimalData

Visit

Figure 3. Transaction Response Time (ms)

Transaction Success Rate

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40 50 60

TPS

P
e
rc
e
n
t
S
u
c
c
e
s
s
fu
l

Payment

History

AnimalData

Visit

Figure 4. Transaction Success Rate (ms)

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 11

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

Purpose # Tables Read # Tables Modified

Retrieve client/animal data 2 0

Retrieve animal history 5 0

Record Visit 4 6

Record Payment 2 2

Table 1. Test Transaction

Total Attempted Transactions Total Successful Transactions

Total Unsuccessful Transactions Total Aborted Transactions

Attempted Transactions/Sec Successful Transactions/Sec

Unsuccessful Transactions/Sec Aborted Transactions/Sec

Total Attempted TCP Connections Total Established TCP Connections

Min Time To TCP SYN/ACK Max Time To TCP SYN/ACK

Avg. Time To TCP SYN/ACK Min Round Trip Time

Max Round Trip Time Avg. Round Trip Time

Avg. Retransmit Timeout Min Time To First Data Byte

Max Time To First Data Byte Avg. Time To First Data Byte

Min Est. Server Response Time Max Est. Server Response Time

Avg. Est. Server Response Time Min URL Response Time

Max URL Response Time Avg. URL Response Time

Min Page Response Time Max Page Response Time

Avg. Page Response Time

Table 2. Available Test Summary Results (time in ms)

Total Attempted Transactions Total Successful Transactions

Total Unsuccessful Transactions Total Aborted Transactions

Attempted Transactions/Sec Successful Transactions/Sec

Unsuccessful Transactions/Sec Aborted Transactions/Sec

Total Attempted TCP Connections Total Established TCP Connections

Min Time To TCP SYN/ACK Max Time To TCP SYN/ACK

Avg. Time To TCP SYN/ACK Min Round Trip Time

Max Round Trip Time Avg. Round Trip Time

Avg. Retransmit Timeout Min Time To First Data Byte

Max Time To First Data Byte Avg. Time To First Data Byte

Min Est. Server Response Time Max Est. Server Response Time

Avg. Est. Server Response Time Min URL Response Time

Max URL Response Time Avg. URL Response Time

Min Page Response Time Max Page Response Time

Avg. Page Response Time

Table 3. Available Test Summary Results (time in ms)

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 12

Anderson, Jafar, and Abdullat Fri, Nov 3, 9:00 - 9:25, Bordeaux

 Table 4. Available Test Run-Time Results (time in ms)

Seconds Elapsed Desired Load (Transactions/sec)

Current Load (Transactions/sec) Cumulative Attempted Transactions

Cumulative Successful Transactions Cumulative Unsuccessful Transactions

Cumulative Aborted Transactions Attempted Transactions/Second

Successful Transactions/Second Unsuccessful Transactions/Second

Aborted Transactions/Second Incoming Traffic (Kbps)

Outgoing Traffic (Kbps) Incoming Packets (Packets/sec)

Outgoing Packets (Packets/sec) Current Attempted TCP Connections

Attempted TCP Connection Rate Current Established TCP Connections

Established TCP Connection Rate Min Time to TCP SYN/ACK

Max Time to TCP SYN/ACK Current Time to TCP SYN/ACK

Min Round Trip Time Max Round Trip Time

Current Round Trip Time Current Retransmit Time Out

Min Est. Server Process Time Max Est Server Process Time

Current Est. Server Process Time Min Time to TCP First Byte

Max Time to TCP First Byte Current Time to TCP First Byte

Min Response Time Per URL Max Response Time Per URL

Current Response Time Per URL Min Response Time Per Page

Max Response Time Per Page Current Response Time Per Page

Proc ISECON 2006, v23 (Dallas): §2124 (refereed) c© 2006 EDSIG, page 13

