
VanLengen and Haney Fri, Nov 3, 8:00 - 8:25, Normandy B

Creating Web Services for Legacy COBOL

Craig A. VanLengen
craig.vanlengen@nau.edu

John D. Haney

john.haney@nau.edu
College of Business Administration, Northern Arizona University

Flagstaff, AZ 86011-5066

Abstract

Billions of lines of COBOL code are executed on a daily basis, primarily in financial transac-
tions. With the presence of newer development environments these programs must be re-

written or accessed in a viable way. Placing legacy programs into web services is one way to
interface existing functional programs with contemporary interfaces, whether Windows or
Web. This study presents how a COBOL legacy program can be placed into a web service
and accessed from a COBOL client, a Windows client, and a web client. The inclusion of this
type of skill into the curriculum is highly desirable in order to address the skill loss due to the
retirement of COBOL programmers.

Keywords: web service, client, COBOL, .NET, legacy, Windows, web

1. INTRODUCTION

Business organizations have a large invest-
ment in software written in COBOL. Evelyn
(2002) estimates the investment in COBOL

“to be $3 trillion.” It is estimated that 70
percent of the world’s data is processed by
COBOL, that nine out of 10 ATM transac-
tions are done using COBOL with thirty bil-
lion online COBOL transactions processed
daily. This volume of COBOL based software
is significant considering that the programs

were written 10, 20, 30, or more years ago
and the programmers that wrote and main-
tained them are retiring (Evelyn, 2002).

 The loss of experienced COBOL program-
mers to retirement is compounded by the
fact that only a few colleges offer courses
and programs with COBOL skills (Mitchell,

2006b). Mitchell (2006b) estimates that the
COBOL software base will grow “3% to 5%
annually through 2010,” but mostly from
maintenance of the COBOL code.

Since the prognosis is a significant reduc-
tion in COBOL proficient programmers,
there must be alternatives to COBOL devel-
opment. One alternative would be to re-
place existing COBOL programs with pro-
grams written in more current languages.

This is not feasible in the short-term given
the amount of existing COBOL code. In-
stead of replacing this large software base,
alternatives to extending the life of the code
should be considered (Coyle, 2001) (Eve-
lyn, 2002). Provision should be provided

for enhancements without touching the
mostly stable COBOL code (Mitchell,
2006b). Haney (2005) presented a way to
wrap the legacy COBOL code with an ob-
jected-oriented COBOL proxy that could be
called from a C# program or any other pro-
gramming language written in a Microsoft

.NET environment. Another way is to mini-
mally modify the legacy COBOL by making
it a web service that can be called from cur-
rent environments including Windows and
web browser based software.

Proc ISECON 2006, v23 (Dallas): §2142 (refereed) c© 2006 EDSIG, page 1

VanLengen and Haney Fri, Nov 3, 8:00 - 8:25, Normandy B

The advantage of converting the legacy
COBOL to web services is that standards for
web services are provided (Evelyn, 2002)
which allow components to be developed

that can communicate over the Internet
without worrying about the operating sys-
tem or programming language (Micro,
2001). Other technologies such as, Com-
mon Object Request Broker Architecture
(CORBA), Enterprise Java Beans (EJB), or
the Distributed Component Object Module

(DCOM), are code-centric and in some
cases operating system dependent (Coyle,
2001). XML-based web services allow a
web service on one server to be executed
from an application on the same or a differ-
ent server by sending an XML message us-

ing standard HTTP (Coyle, 2001). The SOAP
messages, which are XML documents, are
carried as HTTP requests and responses and
can be used across organization firewalls
(Micro, 2001). Another XML document is
the Web Service Description Language
(WSDL) file. This document lays out the

contract between the web service and the
client, by exposing the methods as services
and defining data parameters (Micro,
2001).

Converting the legacy COBOL into web ser-
vices can also be part of a service-oriented
architecture (SOA) strategy for an organiza-

tion where the interface is exposed and new
developers are insulated from the COBOL
code (Mitchell, 2006a). Kanter and Mus-
carello (2005) conducted a study on effec-
tive ways to web-enable mission-critical
legacy systems. They compared the adapta-

tion of legacy COBOL systems using Fujitsu
Software migration tool and a full rewrite of
the legacy system using the Java program-
ming language. The migration tool solution
required “less than 3% of the time needed
to rewrite the application in JAVA” (Kanter
& Muscarello, 2005).

Figure 1 presents an overview of an exam-
ple COBOL web service. The COBOL web
service contains the legacy program, which
performs an update of an indexed sequen-
tial master file using a sequential transac-
tion data file. An object-oriented COBOL
proxy program, within the web service, acts

as an interface between the legacy program
and the client program (Haney, 2005). The
transference of data is through the Data
Object class. The client references the web
service.

Figure 1. System Overview

This example demonstrates how to create a
web service using a legacy COBOL program,
and then consume the web service using a

COBOL, Windows, and web application cli-
ent. Modifications of the legacy program,
other than changes to enable interfacing for
the web service, are outside the scope of
this study.

2. The Legacy Program

Some modifications must be made to the

legacy program in order to interface prop-
erly within the web service. A linkage sec-
tion must be added to communicate be-
tween the legacy program and the proxy
class within the web service. The Procedure
Division statement must be modified to ref-

erence the linage section. The Stop Run
statement is replaced with an Exit Program
statement. At the beginning of the program
values being sent to the legacy program
must be moved from the linkage section.
At the end of the program logic, values be-
ing passed from the legacy program are

placed into the linkage section.

Figure 2. Legacy Program

Linkage Section.
01 lnk-FileName Pic X(80).
01 lnk-addCount Pic 9(6).
01 lnk-chgCount Pic 9(6).

01 lnk-delCount Pic 9(6).
01 lnk-txtMessage Pic x(50).

Procedure Division using lnk-FileName
 lnk-addcount
 lnk-chgCount
 lnk-delCount

 lnk-txtMessage.

Proc ISECON 2006, v23 (Dallas): §2142 (refereed) c© 2006 EDSIG, page 2

VanLengen and Haney Fri, Nov 3, 8:00 - 8:25, Normandy B

3. DEVELOPMENT ENVIRONMENT

The following tools were used in this pro-
ject: Microsoft Visual Studio .NET 2003,
ASP.NET, IIS, and Micro Focus Net Ex-

press®. Net Express was used to develop
the web service containing the legacy CO-
BOL program and also to generate the CO-
BOL client. The legacy COBOL code can be
found in the reference for Haney (2005).

Creating the Web Service Using Micro

Focus Net Express

The first step is to create a Net Express
project with the legacy COBOL program,
cblUpdate.cbl. Once the project is created,
an interface is created using the Service
Interface to map the legacy COBOL as a
web service using the current project and

specifying the name of the COBOL source
file (cblUpdate.cbl). Using the Default Map-
ping option of the Interface Mapper map
the COBOL data types from the legacy CO-
BOL program into XML. Figure 3 shows that
the Interface Mapper generates an input
and an output for each of the data fields

from the COBOL program. The COBOL data
fields are shown on the left side of the dia-
log and the operation CBLUPDATE along
with the “Interface Fields” on the right side
of the dialog.

Figure 3. Interface Mapper

From the Interface Mapper it is possible to
modify the default mappings. Operations
can be added, changed, or deleted along

with interface fields, Reusable Mappings,
and Preset COBOL Values.

In this example, the name of the transac-
tion file is sent to the web service and it
returns to the client the counts of records
added, changed, and deleted along with a
message. The “Input” fields for addcount,

chgcount, and delcount and the “Output”
field for filename are deleted. Once editing

of the interface is completed the service is
ready for deployment.

The web service is deployed using the Micro
Focus enterprise server. The first step is to

configure and start the Enterprise Server
Administration tool. Figure 4 illustrates that
the server administration tool runs in a web
browser so that the administration functions
can be performed from any location of an
enterprise.

Figure 4. Enterprise Server Administration

Tool

In this example the default configuration
named ESDEMO is used. In Figure 4, under
current status, started is indicated directly
above the Details button. If the server is
not currently running the button will be la-

beled Start instead of Details. By clicking on
the “Start” button the server is started and
the browser will appear similar to that
shown above.

Next, the deployment settings of the service
are set. This is accomplished using Net Ex-
press Service Interfaces and selecting the

mapping file that is generated when per-
forming the mapping, CobolServer.mpr.
During this process the enterprise server
(ESDEMO) is selected, and the enterprise
server run-time environment is enabled.
The application files needed for deployment
are identified, along with two other files

that are generated as part of the mapping,
cblUpdate.idy and cblUpdate.int. cblUp-
date.int is the executable file and cblUp-
date.idy is required for debugging.

Proc ISECON 2006, v23 (Dallas): §2142 (refereed) c© 2006 EDSIG, page 3

VanLengen and Haney Fri, Nov 3, 8:00 - 8:25, Normandy B

Figure 5. Deployment Settings

The web service is now ready for deploy-
ment by making sure the service, Cobol-
Server.mpr, is selected and then clicking
Service > Deploy. Several files are created
during this process. CobolService.wsdl is an
important file when creating clients. This

file, which provides for interaction with the
web service, is what defines the web ser-
vice. The top part of the file is shown below.
Notice the definitions of CBLUPDATEInput
and CBLUPDATEOutput. These are created
based on the interface mapping. The WSDL
is the file that is used when the client is

created.

Figure 6. CobolService.WSDL file

4. The COBOL Client

The next step creates the COBOL client.
Again using Net Express, a simple COBOL
client is created to interact with the web

service. Net Express allows the generation
of a client directly from the mapping or
from the WSDL file. Either way it generates
the same files. In this example the WSDL

file is used.

Figure 7. Create COBOL Client

A wizard window opens where the WSDL file
is selected from the web service deploy-
ment. Net Express generates a simple client
interface program and executes it as shown

below.

Figure 8. Client generated using Net Ex-
press and executed with the

 Micro Focus Enterprise Server

5. The Windows Client written in C#

Next, using Visual Studio .NET, ASP.NET,
and IIS a Windows client written in C# is
created. Also a web browser based client
written in C# can be written. The IIS ad-
ministration tool is used to create a virtual
directory for the web server pointing to the

physical directory where the .wsdl file for
the web service was located. In this way

 <!--
 Micro Focus NetExpress 4.0 auto-generated
WSDL document

 -->
types>
schema elementFormDefault="qualified"
targetName-
space="http://tempuri.org/cblUpdateSe
rv"

xmlns="http://www.w3.org/2001/XML
Schema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soa
p/encoding/"
xmlns:tns="http://tempuri.org/cblUpdat
eServ" />

 </types>
message name="CBLUPDATEInput">
part name="lnk_filename_in"
type="xs:string" />

 </message>
message name="CBLUPDATEOutput">

Proc ISECON 2006, v23 (Dallas): §2142 (refereed) c© 2006 EDSIG, page 4

VanLengen and Haney Fri, Nov 3, 8:00 - 8:25, Normandy B

the .wsdl file can be located from within
Visual Studio .NET.

Using Visual Studio .NET a new project
named COBOLWSClient is created as a Vis-

ual C# Windows application. The user inter-
face allows the user to click a button to dis-
play the basic Windows file dialog to select
the transaction file. Once the transaction
file is selected the “Update” button to call
the legacy web service is clicked. This calls
the web service and passes the name of the

transaction file to the web service. After the
update is competed, counts for records
added, changed, and deleted along with a
completion message are returned from the
web service to the client program.

Figure 9. Visual Studio Dialog with the Win-

dows UI

Before completing the code, to call the web
service, a web reference must be added.
This is accomplished by right-clicking on the
project name in the Solution explorer, and
then clicking on the Add Web Reference
option. This brings up the following dialog

showing the available web services. In this
example, the Web Services on the Local
Machine is selected.

Figure 10. Add Web Reference Dialog

From the list of services presented the web
service is selected, which brings up the fol-
lowing dialog. Notice the URL is for the
.wsdl file. The web service is added into the
project by clicking on the Add Reference
button.

Figure 11. Add Web Reference Showing the
Web Service

With the web reference included in the Vis-
ual Studio .NET project the IntelliSense fea-
ture of Visual Studio .NET provides access
to the properties, methods, and data pa-

rameters of the web service class, to assist
in writing the code. Figure 12 illustrates the
code that executes when the user clicks on
the Update button. cblUpdateServ is the
name of the Web service and CBLUPDATE is
the method called. The file name is passed

from the client to the web service and the
client receives back the counts for added,
changed, and deleted along with an update
message.

Proc ISECON 2006, v23 (Dallas): §2142 (refereed) c© 2006 EDSIG, page 5

VanLengen and Haney Fri, Nov 3, 8:00 - 8:25, Normandy B

Figure 12. C# Client Code

To execute and test the Windows C# client,
the Enterprise Server must be running. If
the server is not running it can be started
as shown under the COBOL client example

shown previously.

Figure 13. Results from Execution of the
Windows Client

6. The Web Client written in C#

For developing a client for a web application
a new Visual C# project is created using the
ASP.NET Web Application Template. In this
example the project is named WebCli-
entCBLUpdate. In this example the default
WebForm1.aspx page is used for the client.
Normally this page would be renamed or

removed and a new page added with a
more meaningful name. A user interface is
created that is similar to the Windows inter-
face presented previously. Modifications
must be made for the selection of the
transaction file since the file commands for

Windows are different from those used in

the web environment. A web reference is
added the same way as for the Windows
client. The C# code that is executed when
the “Update” button is clicked is basically

the same as that used for the Windows cli-
ent.

Figure 14. Visual Studio showing the Web
Application Client

As in the case of the Windows Client, prior
to executing and testing the web client, it

must be verified that the Micro Focus En-
terprise Server is running.

Figure 15. Verification that the Enterprise
Server is running.

The web project is built and the web appli-
cation is then viewed in a web browser. This
is accomplished by clicking on the “Browse”
button to locate the file. This process util-
ized the file dialog box.

Proc ISECON 2006, v23 (Dallas): §2142 (refereed) c© 2006 EDSIG, page 6

VanLengen and Haney Fri, Nov 3, 8:00 - 8:25, Normandy B

Figure 16. File Dialog for selecting the
transaction file

Once the file is selected and the “Open”
button is selected the window shown in Fig-
ure 17 appears.

Figure 17. Web Browser Interface showing
the Update Interface

Clicking on the “Update” button executes
the Client program and produces the follow-
ing results in the web browser.

Figure 18. Web Browser Interface showing
the Results

This example has demonstrated the process
of creating a web service written in COBOL
for the .NET environment. The functionality
of the legacy COBOL program, within the

web service, updates an Indexed Sequential
master file. The consumer of the web ser-
vice is a client written in COBOL, and repli-
cated in both a Windows and a web applica-
tion. Modification of the functionality of the
legacy program is not addressed in this
study.

7. CONCLUSION

By creating web services, organizations will
be able to extend the life of their COBOL
software investment while providing a con-
temporary interface for the legacy software.
The “exposed” web services will then be

available to be “consumed” by various ap-
plication clients.

The billions of lines of COBOL code that ex-
ist in these legacy programs, primarily in
financial institutions, will remain for some
time. However, the retirement of COBOL
programmers will generate a skill vacuum

of legacy COBOL programmers. This study
has addressed this concern in one area,
that of placing legacy COBOL programs into
web services. The ongoing maintenance is
another concern that this study did not ad-
dress specifically. However, the placement
of legacy programs into web services has

an implied reference to the need for current
functionality of the legacy programs.

The combination of skills to maintain legacy
programs, develop web services from
COBOL programs, and develop Client pro-
grams to use the web services is necessary.

This study has focused on one aspect of the
overall skill package. A focus on the de-
velopment of building web services and the
client programs that reference them can be
part of the curriculum. This can be accom-
plished by either a required or elective
course that also provides some exposure to

the COBOL code that exists in the legacy
programs.

Proc ISECON 2006, v23 (Dallas): §2142 (refereed) c© 2006 EDSIG, page 7

VanLengen and Haney Fri, Nov 3, 8:00 - 8:25, Normandy B

8. REFERENCES

Coyle, F. P. (2001) “Breathing Life into Leg-
acy,” September/October 2001, retrieved
April 25, 2006,

http://www.cobolportal.com/resources/artic
les/20010910_001.asp?bhcp=1.

Evelyn, R. (2002) “COBOL’s Revenge: When
Programs Outlive the Programmers,” re-
trieved May 19, 2006,
http://www.devx.com/devx/editorial/16357
.

Haney, J. D. (2005) “Running Legacy CO-
BOL Programs by Proxy with COBOL.NET.”
Information Systems Education Journal.
Volume 4, Number 28. July 2006.
ISSN: 1545-679x.
http://isedj.org/4/28/index.html

Kanter, H. A. & Muscarello, T. J. (2005)
“Reuse versus Rewrite: An Empirical Study
of Alternative Software Development Meth-
ods for Web-enabling Mission-critical CO-
BOL/CICS Legacy Applications,” retrieved
May 30, 2006,
http://www.adtools.com/info/whitepaper/R

euse-vs-Rewrite_final.pdf.

Micro Focus (2003) “MICRO FOCUS NET
EXPRESS® GETTING STARTED,” Issue 1,
October 2003.

Micro Focus (2001) “Web Services and Mi-
cro Focus COBOL," retrieved April 25, 2006,
http://www.microfocus.com/files/whitepape

rs/webservices2.pdf.

Mitchell, R. L. (2006a) “Rebuilding the leg-
acy – modernizing mainframe code,” re-
trieved April 25, 2006,
http://www.computerworld.com/action/artic
le.do?command=viewArticleBasic&articleId

=110717.

Mitchell, R. L. (2006b) “The Cobol brain
drain,” retrieved April 25, 2006,
http://www.computerworld.com/softwareto
pics/software/story/0,10801,110716,00.ht
ml?source=NLT_APP&nid=110716.

Proc ISECON 2006, v23 (Dallas): §2142 (refereed) c© 2006 EDSIG, page 8

