
Werner and Frank Fri, Nov 3, 12:00 - 12:25, Bordeaux

What Dick and Jane Don’t Know About Integers

Laurie Werner
wernerla@muohio.edu

Charles Frank
frank@nku.edu

ABSTRACT

The integer data type is ostensibly very simple, but integers can easily overflow in a simple

program. A malicious user can manipulate an unchecked integer input to overflow which can

produce a security breach. An integer overflow can cause a program to crash. In recent

years, integer overflows resulted in more than two hundred recorded vulnerabilities. Integer

overflow is a challenging topic to address when teaching C/C++ or Java in an introductory

software development course. Most novice students are unaware that simple integer input or

calculations can generate errors, or worse yet, silently deliver vulnerability in a system. This

paper describes laboratory exercises that inform students about the nuances of integer

behavior and how these can lead to security vulnerabilities. We illustrate techniques that

educators can use to teach students to discover integer overflows and replace them with

robust code. Even at the introductory level, we can reinforce a secure coding frame of mind

such that our students will never blindly trust user input or perform calculations that generate

integer overflows.

Keywords: integer overflow, security education, introductory programming, secure
programming, Java, C, C++

1. INTRODUCTION

Howard, LeBlanc, and Viega (2005) devote a

chapter to integer overflows in their book on

the most common security programming

flaws. They cite several security problems

such as a flaw in the Windows script engine

that could allow an attacker to use an

integer overflow to execute arbitrary code

via a malicious web page or HTML e-mail.

Howard, et al (2005), quotes Theo de Raadt,

of OpenBSD fame, who claims that integer

overflows are “the next big threat.” A

search of The National Vulnerability

Database (2006) indicates that more than

200 vulnerabilities have been caused by

integer overflows since January 2003.

Liang (2005) and Savitch (2006) are typical

introductory Java programming textbooks.

Early in both texts, integer data types are

introduced, their ranges of valid values are

given, and arithmetic operations are

described. Neither textbook presents the

fact that an arithmetic operation on integers

may overflow its maximum value. Savitch

(2006) sprinkles the text with many useful

"pitfalls," which warn students about how to

avoid errors, but none of these alludes to

integer overflows.

Yet an integer overflow in Java occurs

silently, without throwing an exception.

Since the ISO C99 standard defines the

appropriate behavior for the integer overflow

case to be "undefined behavior," (Walden,

2005) presumably because most

programming languages provide no

mechanism to test the overflow bit of the

flags register, our students will need to be

aware of integer overflows even before they

are aware of the security vulnerabilities that

one may produce.

In his review of current security education,

Pothamsetty (2005) observes that writing

secure code “does not require a lot of

security training and knowledge” but

requires following correct software

development techniques. Coupled with the

Proc ISECON 2006, v23 (Dallas): §2325 (refereed) c© 2006 EDSIG, page 1

Werner and Frank Fri, Nov 3, 12:00 - 12:25, Bordeaux

well-documented success of various types of

laboratory activities in teaching

programming fundamentals (Beck 11;

McKinney, 2006), the next practical step to

incorporate security awareness in the

software development portion of the IS

curriculum is via early and frequent

laboratory experiences.

Programs that exhibit unexpected behavior

engage student interest, and provide

instructors with a valuable opportunity to

introduce the concepts of robustness and

trustworthy computing. When integers

overflow, results that should be positive

become negative. It is beneficial for

students to learn early not to trust user

input and to practice defensive programming

early. Laboratory activities are the perfect

setting to incorporate defensive

programming, while teaching basic concepts,

such as writing simple methods, learning

loop syntax and logic, or sampling the Math

class methods.

2. SECURITY VULNERABILITY: INTEGER

OVERFLOW

Howard, et al (2005), presents each of the

19 Deadly Sins of Software Security in a

two-part format. For each "sin”, they

describe with examples, they provide

"redemption steps." One of these nineteen

deadly sins is integer overflow. Because a

finite number of bits represents integer data

types, integers can overflow in all common

languages. The consequences of integer

overflows are more serious in C/C++ since

they can lead to buffer overflows and

arbitrary code execution. A common

problem is mixing signed and unsigned

integers. The conversion rules for integers

of different sizes and for signed and

unsigned integers are described in Howard

(2005) and Seacord (2006). Although the

rules are too detailed for an introductory

course, examples and explanations of

overflow behavior are appropriate for novice

programmers.

Consider the following C function (Wilson,

2006) that takes a filename as input,

removes the extension by removing the last

four characters, and displays results. For

example, the file “a.doc” would be displayed

as “a”.

void StripExtension (char * filename)

{

unsigned short int newSize = strlen(filename) - 4;

 char * buffer = (char *)malloc(newSize + 1);

 strncpy(buffer, filename, newSize);

 buffer[newSize] = ‘\0’;

 printf(“%s”, buffer);

 free(buffer);

}

What would happen if StripExtension were

called as follows, without the file extension?

StripExtension(“a”);

In this case, newSize = 0xffffd = (1 minus

4), which is the bit representation of -3.

Since newSize is an unsigned short integer,

this value is 65533. The function creates a

65534-byte buffer.

Novice students generally assume that users

enter data in the correct format. Without

instructor guidance, they are unaware that

when the user's input string does not end

with a period followed by a three-character

extension, StripExtension assigns newSize

an overflow value. At an introductory level,

the redemption step to prevent the overflow

could be to check for the extension, and

have the function display an error message

or return an error value if the extension did

not exist.

3. AWARENESS OF THE SIN: STUDENTS
GENERATE INTEGER OVERFLOWS

Here we introduce the budding potential of

defensive programming in laboratory

activities, while also teaching fundamental

programming concepts. Java is now more

common in beginning and intermediate

programming courses than C/C++.

Although Java is generally less vulnerable to

security problems, unsigned integers are still

subject to overflow. In a lab activity to

practice writing and calling Java 5 static

helper methods, it is possible to alert

students to the existence of integer

overflows.

A few pre-lab questions set the stage:

1. What is 232? 4,294,967,296

2. What is 231? 2,147,483,648

3. What is 32768 * 65536? 2,147,483,648

4. What is the largest int in Java?

2,147,483,647

Proc ISECON 2006, v23 (Dallas): §2325 (refereed) c© 2006 EDSIG, page 2

Werner and Frank Fri, Nov 3, 12:00 - 12:25, Bordeaux

5. What is the smallest int in Java?

-2,147,483,648

First, the students write a simple method to

display the powers of two from 20 to 232

using integers and doubles. The method has

no arguments and returns no values, but will

force the students to recall how Math.pow()

works and to use a loop in a method. Here

is an actual student pair’s solution, with line

numbers:

1. public static void displayPowers(){

2. double powerOfTwoAsDouble = 0.0;

3. int powerOfTwoAsInt = 0;

4. for (int power = 0; power <=32; power++){

5. powerOfTwoAsDouble = Math.pow(2,power);

6. powerOfTwoAsInt = (int)powerOfTwoAsDouble;

7. System.out.printf("%3d %5d ",power,

powerOfTwoAsInt);

8. System.out.printf("%13.0f\n",powerOfTwoAsDouble

);

9. }

10. }

11. public static void main(String[] args) {

12. displayPowers();

13. }

As the students observe the output, they are

astonished. The last few lines of output are:

 30 1073741824 1073741824

 31 2147483647 2147483648

 32 2147483647 4294967296

To some, it appears that the loop “sticks,” as

one student commented. Some students

suggest rounding instead of casting the

double in line 7. They soon realize that

Math.round() returns a long, but the lab

specifies using int data type. Thus, changing

line 6 to cast the result produces slightly

different, yet still startling output for the last
few lines. Changing line 6 to: powerOfTwoAsInt

= (int)Math.round(powerOfTwoAsDouble); changes

the last three lines of output to:

30 1073741824 1073741824

31 -2147483648 2147483648

32 0 4294967296

Second, students write a static method to

multiply two integers and return the result

and test it by calling it in a main method:

public static int mult(int a, int b){

 return a * b;

}

public static void main(String[] args) {

 Scanner kb = new Scanner(System.in);

 System.out.println("Enter two integers separated by

a space: ");

 int firstInt = kb.nextInt();

 int secondInt = kb.nextInt();

 int prod = mult(firstInt,secondInt);

 System.out.println("The product is "+prod);

 }

When the students enter the operand values

from preliminary question #3, the result is:

Enter two integers separated by a space:

65536 32768

The product is -2147483648

This is not what the students expect. They

are puzzled. They calculated the correct

answers by hand, so they know the output is

wrong. Before discussing why, they run the

program with a few more pairs of larger

integers:

Enter two integers separated by a space:

65535 65536

The product is -65536

Enter two integers separated by a space:

65535 65537

The product is -1

Students want to know “Why do both

programs produce such bizarre numbers?

What is happening here?” At the very least,

students are impressed with the

untrustworthiness of the output. From an

instructor’s viewpoint, this is value added to

the normal lab time intended to practice

writing methods with loops, formatting

output, and casting and to observe Math

method behaviors. Before the students leave

the lab, they attempt to answer three

questions from a Java perspective rather

than an algebraic one.

1.What two non-zero integers x and y satisfy

the equation x*y=0?

2.What negative integer (-x) has no

corresponding positive integer (x)?

3.List two positive integers x and y, such

that x + y < 0.

The following class meeting begins with the

three questions. Depending on the level of

the students' Java skills, the instructor can

take the discussion from the unusual lab

activity and three peculiar questions to

another level of defensive programming,

such as input validation: how to develop

Proc ISECON 2006, v23 (Dallas): §2325 (refereed) c© 2006 EDSIG, page 3

Werner and Frank Fri, Nov 3, 12:00 - 12:25, Bordeaux

methods for checking user input. Another

possibility is to use the activity as a

springboard for a dialogue about the details

of integer storage, or the complex issues of

integer arithmetic. (Seacord, 2006; LeBlanc,

2004; SafeInt, 2004)

4. REDEMPTION STEPS: TECHNIQUES
TO PREVENT INTEGER OVERFLOWS

Consistent with the "deadly sins" framework

of "redemption steps" and the knowledge

that input validation is one of the top two

vulnerabilities in a 2005 CERIAS report

(Pothamsetty, 2005; Gopalakrishna, 2005),

one of the first redemption steps is to

validate input before performing

computations. However, input validation is

only part of the Integer overflow story.

Computations can generate integer

overflows within unsuspecting programs. In

this section, we present a novice student

group’s attempt to validate integer input,

and describe three techniques that prevent

integer overflows. The first prevention

technique describes how to check the results

of integer arithmetic operations to insure

that overflow does not occur. The second

demonstrates Java’s BigInteger (Java, 2006)

class, which can represent arbitrarily large

integers. Finally, we illustrate David

LeBlanc’s SafeInt class (SafeInt, 2004) for

C++.

Check User Input

Students build some algorithm skills, and

practice using the String class methods by

developing a method that converts String

input to integer input. In Java, we use a

wrapper class method to convert string input

to an integer:

int value = Integer.parseInt(input);

However, this method call may cause an

exception if the variable input is not the

String representation of an integer. Even if

the input is all digits, it may not convert to a

valid integer. It is a worthwhile assignment

or lab exercise for novices to validate the

String input before sending it to

Integer.parseInt(). The following code block

is a lab group's first attempt at validating

the input. The students were in the eighth

week of their first programming course in

Java.

public static String validateIntegerInput(){

 System.out.print("Enter an integer: ");

 Scanner kb = new Scanner(System.in);

 String newIntString = kb.nextLine();

 boolean isNegative = false;//assume positive

 boolean lengthOK = true; // count the characters

 boolean allDigits = true; //

 // check for length

 if (newIntString.length()>11){

 System.out.println("Number is too many digits");

 lengthOK = false;

 }

 else if (newIntString.charAt(0) == '-'){

 isNegative = true;

 }

 else if (newIntString.length()==11

 &&isNegative == false){

 lengthOK = false;

 }

 if (lengthOK){

 int i = 0;

 if (isNegative)

 i = 1;

 for (; i<newIntString.length();i++){

 char temp = newIntString.charAt(i);

 if(Character.isDigit(temp) == false){

 allDigits = false;

 }

 }// end for

 }

 if (allDigits && lengthOK)

 return newIntString;

 else

 return "error";

}

Although this attempt is not entirely robust,

the lab group integrated the expertise they

had at the time. Once we introduce

defensive programming, we can encourage

an attitude of competition among the lab

groups throughout the semester to generate

the most robust program possible for the

students’ expertise at the time. We are

hopeful that the defensive programming

posture endures as the students’ skill set

increases in later courses. At this writing,

students' program solutions were more

robust than expected for eight weeks into an

introductory course. With some

encouragement in the form of a better

grade, most students began to import and

use the above static method that was

collaboratively developed in class in their

program assignments.

Check Integer Arithmetic

Validating input as integer provides the first

step, but what about simple calculations

Proc ISECON 2006, v23 (Dallas): §2325 (refereed) c© 2006 EDSIG, page 4

Werner and Frank Fri, Nov 3, 12:00 - 12:25, Bordeaux

such as x + y? How do we prevent a result

from overflow? Students typically assume

that x and y are positive, and thus test

x+y> MAX_INT, without realizing that they

have already caused the overflow if x added

to y is larger than the maximum integer. In

Java, beginning students typically produce a

code snippet something like this when asked

to error check the addition of two very large

integers.

 int x = Integer.MAX_VALUE;

 int y = 1;

 if ((x+y) > Integer.MAX_VALUE){

 System.out.println("Sum is too large. ");}

 else{

 int sum = x+y;

 System.out.println("Sum is "+sum);}

Students assume that the output will be

"Sum is too large." But the above code

segment surprises the novice programmer

with:

Sum is -2147483648

If we introduce the concept that for two

unsigned valid integers, we can check the

sum by checking x > Integer.MAX_VALUE –

y, then we have a better result. Modifying

the above if statement to

if (x > (Integer.MAX_VALUE - y))

 System.out.println("Sum is too large ");

else{

 int sum = x+y;

 System.out.println("Sum is "+sum);

}

produces this output:

Sum is too large

For multiplication of Java integers, this

example demonstrates an algorithm that

provides some protection from integer

overflow:

 int x = Integer.MAX_VALUE/2;

 int y = 3;

 if (x > (Integer.MAX_VALUE/y))

 System.out.println("Product exceeds maximum

 allowed integer. ");

 else{

 int prod = x*y;

 System.out.println("product is "+prod);

 }

These two algorithms work nicely for

unsigned integers, which we foster whenever

possible. Alas, Java provides no unsigned

integers. Given that these two defensive

steps are not the entire solution to integer

overflow when adding or multiplying, they

provide a petite step in the trek to the

defensive programming summit.

Java’s Big Integer Class

Another example of integer overflow that

novice programmers can easily understand

is the following Java program that prints

factorials. Factorials grow rapidly in size.

Although this program uses a 64-bit long

integer, 21! overflows and the output values

become negative. Here is a simple iterative

program to compute factorial:

public class Factorial{

 public static void main(String args[])

 {

 long product = 1;

 for(int i = 1; i <= 21; i++){

 System.out.print(i);

 System.out.print("! = ");

 product *= i;

 System.out.println(product);

 }// end for

 }// end main

}// end factorial

As expected, the program's output overflows

at 21!:

1! = 1

2! = 2

3! = 6

….
20! = 2432902008176640000

21! = -4249290049419214848

Java provides a BigInteger class (Java,

2006), which has a capacity for as large an

integer as necessary to accommodate the

results of an operation. The following Java

program is a revision of the factorial

program using the BigInteger class. It

correctly displays 21!. A solution using

BigInteger follows:

import java.math.BigInteger;

public class BigFactorials{

 public static void main(String args[]) {

 BigInteger product = BigInteger.ONE;

 BigInteger index = BigInteger.ONE;

 for(int i = 1; i <= 21; i++){

 System.out.print(i);

 System.out.print("! = ");

 product = product.multiply(index);

 System.out.println(product);

 index = index.add(BigInteger.ONE);

 }//end for

 }//end main

}//end class

Proc ISECON 2006, v23 (Dallas): §2325 (refereed) c© 2006 EDSIG, page 5

Werner and Frank Fri, Nov 3, 12:00 - 12:25, Bordeaux

The program's output correctly displays 21!:
1! = 1

2! = 2

3! = 6

…

20! = 2432902008176640000

21! = 51090942171709440000

In situations like this, where very large

integer values are possible, Java

programmers can avoid integer overflows by

converting to the BigInteger class. Once

students are familiar with using more of the

basic Java classes, it is reasonable to

introduce and encourage use of the

BigInteger class as an application may

warrant.

SafeInt class for C++

Since handling an integer safely is quite

complex, David LeBlanc (2004) provides

redemption for C++ integer overflows in his

SafeInt class for C++. He describes the

issues involved in safe integer arithmetic in

depth, and concurs with Theo deRaadt about

the importance of eliminating integer

overflows. LeBlanc comments "As we

reduce our dependency on unsafe string

handling calls, the arithmetic used to

determine buffer lengths becomes the weak

link, and thus the area attackers will attempt

to exploit. It is also possible for integer

overflows to result in logic errors not related

to string handling—the effects of the logic

errors have historically ranged from crashes

to escalation of privilege." (2004)

Seacord (2006) presents this illustration of

the SafeInt class. When an integer

operation overflows, the SafeInt code throws

an exception. Here is an example of

addition using the SafeInt class:

SafeInt<T> operator +(SafeInt<T> rhs) {

return SafeInt<T>(addition(m_int,rhs.Value()));

}

int main(int argc, char *const *argv) {

 try {

 SafeInt<unsigned long> s1(strlen(argv[1]));

 SafeInt<unsigned long> s2(strlen(argv[2]));

 char *buff = (char *) malloc(s1 + s2 + 1);

 strcpy(buff, argv[1]);

 strcat(buff, argv[2]);

 }

 catch(SafeIntException err) {

 abort();

 }

}//end main

}

5. CONCLUSION

Introducing integer overflows early in

programming courses persuades students to

think carefully about the validity of user

input, and to question results of

computations. It demonstrates and

reinforces several concepts that are

generally desirable in an introductory

course, while simultaneously contributing to

a methodology of defensive software

development that is essential to decreasing

the vulnerabilities in the software of the

future. In his analysis of whether the

content of current specialized security

courses can mitigate security vulnerabilities,

Pothamsetty (2005) concludes that current

security courses "provide plaster around the

sore but will not contribute towards

preventing the disease." Since security

specialists do not write most commercial

software, the true prevention is in core

undergraduate courses that teach secure

software practices. Let us start with the

awareness and control of integer overflows

and move forward.

6. REFERENCES

Beck, L., Chizhik, A., McElroy, A. (2005)

"Cooperative Learning Techniques in

CS1: Design and Experimental

Evaluation", Proceedings of the 36th

SIGCSE Technical Symposium On

Computer Science Education, St. Louis,

Missouri, USA, March 1-5, Pp 470-474.

Gopalakrishna, Rajeev and Eugene H.

Spafford (2005) "A Trend Analysis of

Vulnerabilities" Technical report,

CERIAS, Purdue University. CERIAS TR

2005-05.

Howard, M., LeBlanc, D., and Viega, J.,

(2005) 19 Deadly Sins of Software

Security: Programming Flaws and How

to Fix Them. McGraw-Hill/Osborne,

chapter 3.

Java 2 Platform Documentation (2006)

http://java.sun.com/j2se/1.5.0/docs

/api/.

LeBlanc, D, (2004) “Integer Handling with

the C++ SafeInt Class”

http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/dncode

/html/secure01142004.asp

Proc ISECON 2006, v23 (Dallas): §2325 (refereed) c© 2006 EDSIG, page 6

Werner and Frank Fri, Nov 3, 12:00 - 12:25, Bordeaux

Liang, Y. (2005) Introduction to Java

Programming: Comprehensive Version,

5th edition, Pearson/Prentice Hall.

McKinney, D., Denton, L. (2006)

"Developing Collaborative Skills Early in

the CS Curriculum in a Laboratory

Environment", Proceedings of the 37th

SIGCSE Technical Symposium On

Computer Science Education, Houston,

Texas, USA, March 1-5, Pp 138-142.

National Vulnerability Database, (2006)

http://nvd.nist.gov/nvd.cfm

Pothamsetty, Victor (2005) "Where Security

Education is Lacking", Proceedings of the

2nd Annual Conference on Information

Security Curriculum Development,

Kennesaw, GA, 2005, Pp 54-58.

SafeInt Class Code (2003)

http://msdn.microsoft.com/library/en-

us/dncode/html/secure01142004_sampl

e.txt

Savitch, Walter (2006) Absolute Java, 2nd

Edition, Addison Wesley.

Seacord, R. (2006) Secure Coding in C and

C++, Addison Wesley, chapter 5.

Tsipenyuk, K., Chess, B., McGraw, G. (2005)

"Seven Pernicious Kingdoms: A

Taxonomy of Software Security Errors",

IEEE Security and Privacy, Vol. 3, No. 6,

Pp 81-84

Walden, James., Charles Frank, and Laurie

Werner (2005) “Secure Programming

Workshop”, Journal of Computing

Sciences in Colleges, Vol. 21, No. 1, Pp

134-135

Wilson, B. (2006) “Under the Hood: How an

Attack Works”, Dayton RISC 2006,

March 15, Dayton, Ohio

Proc ISECON 2006, v23 (Dallas): §2325 (refereed) c© 2006 EDSIG, page 7

