
Mehta, Lee, and Shah Fri, Nov 3, 12:00 - 12:25, Normandy A

Service-Oriented Architecture:

Concepts and Implementation

Mayur R. Mehta
mm07@txstate.edu

Sam Lee
sl20@txstate.edu

Jaymeen R. Shah
js62@txstate.edu

Department of CIS & QMST
Texas State University–San Marcos

San Marcos, Texas 78666, USA

Abstract

In today’s increasingly competitive and technology-driven business environment, ability to

quickly adapt its business processes in response to both internal and external changes is a

must for any organization. Service-Oriented Architecture (SOA), along with its programming

models, is one strategic option to accomplish this. SOA enables an organization’s business to

drive its information systems design by enabling the organization to align its business proc-

esses with information technology (IT). SOA is an architectural style that supports integration

of business processes as linked services that may be accessed when needed over a network.

From the perspective of application developers, SOA is a set of programming models and tools

for building, accessing, and assembling services that implement business design. This paper

examines the role and benefits of an application development framework built on SOA founda-

tion. In addition, it presents a programming model to build Web services, which is the most

common approach used to implement SOA.

Keywords: Service-oriented architecture, Web services, J2EE

1. Introduction

Applications developed in the past were usu-

ally standalone applications that performed a

specific task(s) such as accounts receiv-

ables/payables. Such applications were not

integrated with other applications. Use of

such standalone applications created islands

of automation within an organization, which

usually led to duplication of business logic

and data redundancy. In most organizations

today, both intra- and inter-organizational

business processes are enabled by informa-

tion technology (IT). As business processes

Proc ISECON 2006, v23 (Dallas): §2335 (refereed) c© 2006 EDSIG, page 1

Mehta, Lee, and Shah Fri, Nov 3, 12:00 - 12:25, Normandy A

2

usually require the use of functionalities that

are embedded within standalone applications

that may have been developed during differ-

ent time periods using different technolo-

gies, it has become necessary to integrate

these existing standalone applications. In-

tegration of these applications must be such

that, if necessary, it should allow the organi-

zation to quickly adapt business processes in

response to regulatory and/or environmental

changes, and also create new business proc-

esses by assembling existing business logic

that may exist in different applications. The

need of these capabilities precludes the use

of point-to-point tight integration between

applications that are usually difficult and

time consuming to manage and adapt. Fur-

ther, the complexity and cost of managing

point-to-point tight integrations tend to in-

crease significantly as the number of appli-

cations that are integrated increase. The

use of service-oriented architecture (SOA)

will enable an organization to use standards-

based, vendor agnostic approach to easily

and cost-effectively integrate existing dispa-

rate standalone applications (Sanchez,

2006). It will make it easier to integrate

existing applications with new business func-

tionalities that are implemented as services,

and also enhance the ability to integrate in-

ternal applications with business partners’

applications. Successful integration of inter-

nal business applications and their integra-

tion with business partners’ application will

enable organizations to use collaborative

business models. Technology integration

and use of collaborative business models are

considered to be important strategic busi-

ness technology investments in today’s

global and competitive business environment

(Andriole, 2006).

In the following Section we present an over-

view of application development models.

Then in Section 3, we discuss SOA and the

importance of SOA in the current business

environment. In Section 4, an overview of

Web services is presented along with discus-

sion regarding its role in SOA. An example of

successful SOA implementation is briefly dis-

cussed in Section 5. In Section 6 we discuss

the use of IBM WebSphere Studio Applica-

tion Developer (the new version of this soft-

ware is offered under the Rational badge as

Rational Application Developer) for imple-

mentation of web-services which is an im-

portant component of a service-oriented ap-

plication. Finally, Section 7 contains con-

cluding comments as part of the Discussion

section.

2. Application Development Models

Application development models have

evolved over the last few decades. Most of

these changes in the application develop-

ment models are a result of the technologi-

cal evolutions that preceded them. For ex-

ample, emergence of the personal com-

puters made it possible to develop cli-

ent/server applications. The major applica-

tion development models include the mono-

lithic host-centric model, client/server

model, n-tiered model, and service-oriented

model.

Monolithic host-centric model was dominant

during the 1960s and 1970s. In this ap-

proach, monolithic applications were devel-

oped using programming languages such as

COBOL and FORTRAN. These applications

were developed mainly to run on mini- and

mainframe computing platforms. All of the

application processing was performed on the

host computer. Mainframe-based monolithic

applications are still being used in banking,

airline, insurance, telecomm, and other in-

dustries as these applications support critical

business processes. Although overall cost of

mainframe applications is usually high,

mainframe based applications’ strengths in-

clude high availability and scalability. Thus,

they are used in high-volume transaction

processing environments.

Availability of PCs and networks led to the

development of the client/server or 2-tiered

application development model. One of the

major driving forces for the popularity of this

model was the enhanced graphical user in-

terface that was made possible by the use of

PCs as clients. In an application designed

using this model, the database is usually

deployed on an organizational server and

the presentation is performed on client PCs.

The rest of the application consisting mainly

of the application logic can be split between

the server and client PC in many different

configurations. In a ‘fat’ client environment

a large portion of the application logic is

executed on the client PC, while in a ‘thin’

client environment most or all of the applica-

tion logic resides on the server (Watt et al.,

2002).

Proc ISECON 2006, v23 (Dallas): §2335 (refereed) c© 2006 EDSIG, page 2

Mehta, Lee, and Shah Fri, Nov 3, 12:00 - 12:25, Normandy A

3

The client/server (2-tiered) model was ex-

tended to three-tiered model consisting of

three distinct application components,

namely, presentation, business logic, and

data. These three components could reside

on three different platforms. With the emer-

gence of the Internet in the 1990s, the

three-tiered model evolved into the n-tiered

architecture used in distributed Web-enabled

applications. Applications developed using

this approach provide more-agile software

architecture, and are easier and cost-

effective to maintain compared to main-

frame based applications (Mitchell, 2006).

Many of the software development projects

today use this software development model

to develop Web-enabled distributed applica-

tions.

3. Service-oriented architecture (SOA)

In today’s competitive business environ-

ment, ability to quickly adapt automated

business processes in response to external

and/or internal changes is a must. Many

business applications that exist today in

large organizations were developed within

departmental boundaries and had functional

instead of business-process focus. Such

functional focus based application develop-

ment resulted in existence of heterogeneous

stovepipe applications that have interopera-

bility issues. To automate business proc-

esses, functionalities embedded within these

heterogeneous stovepipe departmental ap-

plications have to be weaved together. In

the past, this was usually achieved by tightly

integrating these applications using point-to-

point solutions. Such integration is accept-

able as long as the business processes are

stable and integration of additional applica-

tions is required rarely.

In today’s business environment, business

processes are more likely to be dynamic and

collaborative, making it necessary to adapt

business processes more often, and inte-

grate processes across organizational

boundaries with business partners. Further,

organizations also need to expose the busi-

ness-critical functionalities embedded within

the millions of lines of mainframe code de-

veloped over the past four decades (Mitchell,

2006), and integrate these functionalities

with new business applications being devel-

oped using current technologies. Service-

oriented architecture can enable organiza-

tions to develop and support dynamic, com-

plex, and collaborative business processes

that may span within and/or across organ-

izational boundaries using existing hetero-

geneous application assets and new applica-

tions. It provides a cost-effective and effi-

cient alternative to tight integration of het-

erogeneous applications to support organiza-

tional business processes (Janssen, et al.,

2006). SOA has been effectively used by

organizations to transform complicated het-

erogeneous information system infrastruc-

ture into seamless, streamlined, easy to

maintain infrastructure, thus helping organi-

zations in controlling their integration costs

(Sanchez, 2006).

An SOA is an enterprise architecture that

supports organizational business processes

via the use of solutions conceived from the

composition of distributed services, where a

service is a well-defined, repeatable busi-

ness task that can be performed by an appli-

cation (Uleman, 2006). A service is usually

implemented as a coarse-grained software

unit that exists as a single instance, and in-

teracts with other services and/or applica-

tions by using a loosely coupled, message

based communication model (Brown et al.,

2005).

SOA paradigm presents an approach in

which modular, accessible, self-describing,

implementation-independent, interoperable,

and reusable components are published as

services which can be remotely invoked and

consumed by other applications or combined

with other services (Fremantle et al., 2002;

Stencil, 2002). Thus at the heart of SOA is a

collection of services that communicate with

each other, and these services are used as

building blocks of applications. SOA pro-

vides an approach for how to describe and

organize services to support their discovery

and use. Each component in a SOA may per-

form one or more of the following three roles

that are essential for services to be discov-

ered and used: (1) service provider – pub-

lish the availability of services, (2) service

broker – register and categorize published

services and provide search capabilities, and

(3) service requester – use service broker to

find a service and use it to build an applica-

tion (IBM, 2004).

Few of the characteristics that are associ-

ated with SOA include the following: (1) use

of open standards based technologies, (2)

the basic building blocks are coarse-grained

Proc ISECON 2006, v23 (Dallas): §2335 (refereed) c© 2006 EDSIG, page 3

Mehta, Lee, and Shah Fri, Nov 3, 12:00 - 12:25, Normandy A

4

services that can be published and are dis-

coverable, (3) services are loosely coupled

with other services to implement solutions to

satisfy business needs, (4) reuse of existing

software assets, and (5) higher level of ab-

straction in design (Uleman, 2006). Loose

coupling between services make solutions

developed using this approach to be more

flexible and scalable compared to those de-

veloped using tight coupling between soft-

ware components. This allows IT to react

quickly to the changes in business require-

ments, which enhances an organization’s

ability to compete effectively and efficiently.

Also, the higher level of abstraction used in

this approach ensures that the focus is on

the business tasks that constitute various

business processes.

Finally, one of the distinctive features of SOA

is the concept of top-down policy based ap-

proach of governance throughout the lifecy-

cle of services at the enterprise level. This is

necessary to effectively manage services

within the enterprise in terms of functional-

ity, interoperability, quality (service levels),

security, regulatory compliance, reusability,

maintainability, retirement, etc. Use of such

governance structure allows IT to enforce

uniform standards across the organization to

introduce new services, and maintain and

retire existing services. This governance

structure permits creation of a library that

lists available services, and will prevent

creation of redundant services and improve

reuse of services.

4. Web Services

W3C Web Services Architecture Group de-

fines a Web service as a software system

identified by a universal resource identifier

(URI), whose public interfaces and bindings

are defined and described using XML. Its

definition can be discovered by other soft-

ware systems. These systems may then

interact with the Web service in a manner

prescribed by its definition, using XML based

messages conveyed by Internet protocols

(W3C Web Services Architecture Group,

2004). Although it is possible to implement

SOA without the use of Web services, Web

services have been suggested to be the pre-

ferred approach to implementing SOA as its

use significantly simplifies loose coupling

between business components (Bloomberg,

2005; IBM, 2004).

The Web services framework at the mini-

mum consists of a collection of three stan-

dards - standard to support communication

between interacting services, standard to

describe services, and standard to publish

and discover services. The three main stan-

dards that enable implementation of Web

services are the Simple Object Access Proto-

col (SOAP), Web Services Description Lan-

guage (WSDL), and Universal Description,

Discovery, and Integration (UDDI). These

three standards are briefly discussed below:

• SOAP is an XML-based protocol to sup-

port communication between a Web service,

its clients, and UDDI registry. It facilitates

communication between Web services and

interacting application components across

heterogeneous platforms without requiring

the use of custom binaries or other platform-

specific information (Fremantle et al., 2002;

Joshi et al., 2004). It provides a mechanism

to invoke a Web service.

• WSDL is an XML-based standardized

interface definition language used to de-

scribe what a Web service can do, where it

resides, and how it can be invoked. A WSDL

file associated with a Web service contains

important details about the Web-service in-

terface for client-service interaction. WSDL

is used to provide definition of a Web service

and interface specification for it.

• UDDI standard is used to publish, dis-

cover, and manage Web services in an UDDI

registry. UDDI registry is like Yellow Pages

that list available Web services that can be

discovered by an application. Creation of a

registry that contains available services al-

lows service consumers to discover and in-

voke Web services that are published within

the UDDI registry.

As shown in Figure 1, a service provider can

publish a Web service and register it in a

service registry. A Web services requestor,

which can be an application running on any

type of computing platform, can discover a

Web service that has been published in the

service registry. After discovering the Web

service, the client interacts with it by send-

ing and receiving SOAP messages. Each

Web service entry published in the service

registry points to a WSDL file that contains

information for invoking and binding a Web

service.

Proc ISECON 2006, v23 (Dallas): §2335 (refereed) c© 2006 EDSIG, page 4

Mehta, Lee, and Shah Fri, Nov 3, 12:00 - 12:25, Normandy A

5

Figure 1 - Web Services Framework

5. Example of successful SOA imple-

mentation

While many companies have benefited from

the use of SOA, Wachovia’s implementation

is perhaps one of the best illustrations of a

successful SOA implementation. SOA has

been deployed by many financial institutions

to transform their complicated technology

infrastructures into streamlined and easy to

maintain technology infrastructure (Sanchez,

2006). Wachovia Bank’s Corporate and In-

vestment Banking division spent multi-

hundred million dollars to revamp its exist-

ing software architecture to transform it into

a service-oriented architecture (Margulius,

2006). They moved to software develop-

ment strategy that revolved around a core of

reusable frameworks, components, and ser-

vices that can be leveraged by each of its

business unit. The final outcome of this

transformation process was an end-to-end,

service-oriented development and delivery

platform that was supported by a business-

focused, product management culture within

the information technology department.

Some of the resulting benefits included, in-

creased IT productivity due to reduction in

development of similar software components

by different groups within the bank, faster

development of applications that end-users

need due to the reuse of existing compo-

nents, and above all, a standards-based ap-

plication development framework. It has

also allowed Wachovia Bank to win several

multimillion dollar contracts, where the key

selling point to the customer was the bank’s

superior technology architecture that permit-

ted easy integration with customers’ dispa-

rate systems (Margulius, 2006).

6. Implementation of service-oriented

application using IBM WebSphere

Studio Application Developer

To demonstrate the process of building a

service-oriented application, we will demon-

strate development of a simple inventory

search application. The application will be

designed and implemented using the Model-

View-Controller (MVC) solution framework

(see Figure 2). The MVC enforces the sepa-

ration of presentation logic and business

logic, and has been suggested as the blue-

print that application developers should use

to design and implement Web solutions (Ta-

kagiwa et al., 2002). The entire application

will be developed using IBM WebSphere Ap-

plication developer Studio (WSAD) version

5.1.2. For the database environment, we

will use an Oracle 9i database server.

Figure 2 – Model-View-Controller Solution

Framework

6.1 Model-View-Controller

Models are meant to serve as a computa-

tional abstraction of real entities. For exam-

ple, a model of a product in an e-commerce

application contains the identity and quantity

of the inventories that are available for the

product and offers functions to add and re-

move inventories. In J2EE (Java 2 Platform

Enterprise Edition) space, the model compo-

nents are typically written as Java Beans

and represented by a Unified Modeling Lan-

guage (UML) class diagram. In a service-

oriented architecture, a Web service is cre-

ated to transports the model components to

the Web service clients.

Views present (render) the information that

is contained in a model. For example, a

 Service

registry

Service

requestor

Service

provider

Bind

Find Publish Service description

Service description

Java Enabled

Web Browser HTTP Server

Java

Servlet

s

Java

Server

Pages View

Interaction

Controller

Client Web Application Server

H
T
M
L

J
a
v
a

A
p
p
lets

JVM

J
a
v
a
 S

crip
t

Reques

Response

Database

DB

(JDBC)

SQL

Processing

F
o
rw

ard

Web

Service

(Facade)

Java

Bean

s

Model

Proc ISECON 2006, v23 (Dallas): §2335 (refereed) c© 2006 EDSIG, page 5

Mehta, Lee, and Shah Fri, Nov 3, 12:00 - 12:25, Normandy A

6

graphical view may render a product with a

list that shows the quantity and location of

inventories, with a “remove” button next to

each inventory. Views are rendered by a

Web browser using HTML, which in J2EE

space is typically produced by Java Server

pages (JSPs).

A controller component controls the applica-

tion flow. It accepts input from the user,

interprets the input, and invokes the appro-

priate operation in the model in response to

the input. For example, when the controller

receives a request from the “remove” button

of an item, it invokes the remove operation

for that item to remove it from inventory.

The controller then forwards the JSP view

that displays the updated product without

the item removed from inventory. In J2EE

space, the controller is normally imple-

mented as a Java Servlet.

6.2 An example of a service-oriented

application

The inventory search application is a simple

application that runs on the Web. The appli-

cation is illustrated in Figure 3. The user

enters search parameters for product iden-

tity and quantity fields, and then clicks the

search button. The application responds by

displaying a message to inform the user

whether there is adequate inventory.

This application may be designed as a ser-

vice-oriented application by implementing

two Web projects: Web Service and Web

Service client using WSAD; and it is devel-

oped using the following steps:

• The Web service project is first cre-

ated in WSAD.

• Develop model components (Java

Beans) to represent data returned

by the Web service in the Web ser-

vice project.

• Develop a facade bean that is a part

of the model to define operations

provided by the Web service. The

facade is a J2EE design pattern to

encapsulate business logic and busi-

ness data and expose their inter-

faces, and thus the complexity the

distributed services, to the clients

(Alur et al., 2001).

• In WSAD, a wizard is provided to

generate the Web service and the

Web service client project using the

facade.

• Develop the JSP page and Servlet in

the Web service client project.

Figure 3 – Inventory Search Application

6.3 UML class diagram for represent-

ing model components

The class diagram illustrated in Figure 4 is

created in a Web project using the IBM

WSAD UML (Unified Modeling Language)

visualization feature. The diagram consists

of a few classes and associations. These are

described as below:

• Product: a product of the system.

There are many products.

• Inventory: a product inventory

available in a warehouse location. A

product may be inventoried at multi-

ple warehouse locations.

• ProductAccess: a facade bean pro-

vides the service interfaces for find-

ing all products or a product by a

product identity number. This ac-

cess bean executes queries against

the database tables, populates prod-

uct beans using the query results,

and returns the product beans to the

clients.

Inventory Search JSP

Proc ISECON 2006, v23 (Dallas): §2335 (refereed) c© 2006 EDSIG, page 6

Mehta, Lee, and Shah Fri, Nov 3, 12:00 - 12:25, Normandy A

7

This Java package

includes the Web

service proxy bean.

Figure 4 – Class Diagram

6.4 Generating Web service using a

WebSphere wizard

IBM WSAD provides a wizard to generate a

Web service from a Java Bean. We create a

Web service using the facade bean (e.g. Pro-

ductAccess) that defines the Web service

interface. After the wizard guides us

through the Web service generation steps,

the Web service is produced and a client

project is created. The following files are

included in the client project (see the Figure

5):

• WSDL document: this standard

document uses XML to describe the

Web service (what it does, interface

it supports, etc.). The WSDL docu-

ment also specifies the data (e.g.

Product and Inventory) returned

from the Web service and operations

(e.g. findAllProducts and findPro-

ductByID) to access the Web ser-

vice.

• Proxy bean: this bean runs in the

client, and provides Java methods to

call the remote operations on the

Web service as if the methods were

local.

• Test JSP: this JSP page runs in a

Web browser and enables us to test

the designed Web service. We se-

lect a method, enter the parameter,

click the Invoke button, and inspect

the result.

Figure 5 – Web Services Generation in Web-

Sphere

6.5 Developing a Web service client

A Web service client project contains views

and controllers. Using the Inventory Search

JSP in Figure 3, this example demonstrates

the views’ common features of providing a

user input form and displaying property val-

ues of Java Beans. The InventorySearchAc-

tion controller receives the input data, per-

forms a Web service operation, and passes

result Java Beans to the view. The details of

the JSP and Servlet controller are described

below.

After opening the JSP page, the user enters

a product ID and a quantity to check the

availability of the product. The page shows

an out-of-stock message if no Product Java

Bean is returned; otherwise, it receives a

Product Java Bean and its Inventory Java

Bean for which available quantity is greater

than the input quantity. For the successful

search, the page displays the product name

and the warehouse location that maintains

the adequate inventory.

The InventorySearchAction controller that is

implemented by a Servlet is activated when

the user submits the JSP form. First the

controller receives the product ID and quan-

tity. Second, it instantiates the Web service

proxy bean, obtains a remote ProductAccess

WSDL document

Test JSP file

Proc ISECON 2006, v23 (Dallas): §2335 (refereed) c© 2006 EDSIG, page 7

Mehta, Lee, and Shah Fri, Nov 3, 12:00 - 12:25, Normandy A

8

facade bean using the proxy, and calls the

findProductByID method of the facade by

the product ID (see the Figure 6). Third, if a

product Java Bean were found to contain a

list of Inventory Java Beans, the controller

Figure 6 – Servlet Implementation

checks all of the list elements to see if there

is an Inventory Java Bean with quantity

greater than the input quantity. Finally, if

both the Product and Inventory Java Beans

were found, they are passed back to the JSP

page.

7. Discussion

Use of SOA provides organizations with

greater flexibility and control of the solutions

they deploy (Brown et al., 2005). The foun-

dation of SOA is the use of standards based

approach for description, publication, dis-

covery, selection, and binding of basic ser-

vices (Papazoglou and Georgakopoulos,

2003). SOA promotes the idea of using

loosely coupled services, each of which rep-

resent a block of business functionality, that

can be assembled together to support a

business process. Thus, SOA can be used by

organizations to support business process

driven application integration within and

across organizational boundaries. This will

enable organizations to quickly adapt their

business processes in response to changes

in business requirements, and also allow

them to integrate their applications relatively

easily with their business partners’ applica-

tions.

When adopted at an enterprise level, SOA

can provide an organization with a compre-

hensive plan regarding how IT can support

business. However, it is important to note

that SOA is an architecture, which is well

reflected in the following note – “Never for-

get that SOA is architecture – you can’t buy

it from a vendor, and you can’t build it with

programming code. Architecture is a set of

best practices that guide your implementa-

tions, regardless of the technologies you

choose to implement them” (Bloomberg,

2005).

Many organizations have begun implementa-

tion of SOA and have reaped significant

benefits. Implementation of SOA may re-

quire organizations to invest significant dol-

lar amount, as indicated in Wachovia Bank’s

example (Margulius, 2006), and most likely

will also necessitate a change in the organ-

izational IT culture and practices (Brown et

al., 2005).

8. References

Alur, D., Crupi, J., and Malks, D. (2001).

“Core J2EE Patterns: Best Practices and De-

sign Strategies.” Palo Alto, California: Sun

Microsystems Press.

Andriole, S.J. (2006). “The Collabo-

rate/Integrate Business Technology Strat-

egy.” Communications of the ACM, Vol. 49,

No. 5, pp. 85-90.

Bloomberg, J. (2005). “The SOA Pilot Pitfall.”
www.zapthink.com, available at:

http://www.zapthink.com/report.html?id=ZAPFL

ASH-2005711

Brown, A.W., Delbaere, M., Eeles, P., Johns-

ton, S., and Weaver, R. (2005). “Realizing

Service-oriented Solutions with the IBM Ra-

tional Software Development Platform.”

IBM Systems Journal, Vol. 44, No. 4, pp.

727-752.

Fremantle, P., Weerawarana, S., and Khalaf,

R. (2002). “Enterprise Services.” Communi-

cations of the ACM, Vol. 45, No. 10, pp. 77-

82.

IBM (2004). “Service-oriented Architectures

and Web Services.” IBM Developerworks

Technical Presentation, Texas State Univer-

sity, Fall 2004.

Janssen, M., Gortmaker, J., and Wagenaar,

R.W. (2006). “Web Service Orchestration in

Public Administration: Challenges, Roles,

and Growth Stages.” Information Systems

Management, Spring, Vol. 23, No. 2, pp.

44–55.

//get parameters
int productID = new Integer(

req.getParameter("productID")).intValue();

int qty = new Inte-

ger(req.getParameter("qty")).intValue();

//instantiate a web service proxy

ProductAccessProxy proxy = new ProductAccessProxy();

ProductAccess access = proxy.getProductAccess();

//find a product

Product product = access.findProductByID(productID);

...

Proc ISECON 2006, v23 (Dallas): §2335 (refereed) c© 2006 EDSIG, page 8

Mehta, Lee, and Shah Fri, Nov 3, 12:00 - 12:25, Normandy A

9

Joshi, P., Singh, H., and Phippen, A.D.

(2004). “Web Services: Measuring Practi-

tioner Attitude.” Internet Research, Vol. 14,

No. 5, pp. 366-371.

Margulius, D.L. (2006). “Banking on SOA.”

InfoWorld, July 13, Available at:
http://www.infoworld.com/article/06/07/13/29FE

wachovia_1.html

Mitchell, R.L. (2006). “Morphing the Main-

frame.” Computerworld, Vol. 30, No. 5, pp.

29-31.

Papazoglou, M.P. and Georgakopoulos

(2003). “Services-oriented Computing.”

Communications of the ACM, Vol. 46, No.

10, pp. 25-28.

Sanchez, F. (2006). “The SOA Approach to

Integration and Transformation.” U. S.

Banker, Vol. 116, July 2006, pp. 12-13.

Stencil (2002). “The Laws of Evolution: A

Pragmatic Analysis of the Emerging Web

Services Market.” The Stencil Group:
http://www.stencilgroup.com.

Takagiwa, O., Korchmar, J., Lindquist, A.,

and Vojtko, M. (2002). “WebSphere Studio

Application Developer Programming Guide

(1st ed.).” San Jose, California: IBM Corpo-

ration, International Technical Support Or-

ganization.

Uleman, R. (2006). “Service Oriented Archi-

tecture Unveiled.” Geospatial Solutions, Vol.

16, No. 6, pp. 30-33.

Watt, E.R., Denoncourt, D., Lee, S., Ste-

vens, R., and Cancilla, B. (2002). “Under-

standing e-Business Application Integra-

tion.” Double Oak, Texas: MC Press, LLC.

W3C Web Services Architecture Group

(2004). “Web Services Architecture Re-

quirements.” Editors: Austin, D., Barbir, A.,

Ferris, C. and Garg, S., Available at:

http://www.w3.org/TR/2004/NOTE-wsa-

reqs-20040211/

Proc ISECON 2006, v23 (Dallas): §2335 (refereed) c© 2006 EDSIG, page 9

