
Felice and Fernandez Fri, Nov 3, 3:30 - 3:55, Bordeaux

 
The use of Games to teach Programming  

Algorithms 
 

Laura Felice 
lfelice@exa.unicen.edu.ar 

 
Martín Fernandez 

ofernand@exa.unicen.edu.ar 
Departamento de Computación y Sistemas. Facultad de Ciencias  

Exactas. UNCPBA 
Tandil. 7000. Buenos Aires. Argentina 

 
 
 

Abstract 
 
 
Using real world problems as examples to solve with different design techniques of algorithm 
emphasizes how the learned concepts of design (Backtracking, Divide and Conquer, Greedy 
and Dynamic Programming) help to create good algorithms.  
When we analyze the contributions of a typical course of analysis and design of algorithms, we 
can observe the students trying to improve their aptitudes in the programming areas. How-
ever, the jobs we propose for our courses, could give students with a more enriching experi-
ence by providing them a way to work with problems (more precisely, games) building a "real" 
framework for users and thereby creating the necessary tools.  
This paper introduces the author's experiences teaching this course with a system develop-
ment project as a means to evaluate the applications of the introduced concepts and tech-
niques on assignments and projects. 
 

Keywords: algorithm design techniques, programming teaching, games, complexity, C++ 

language. 
 

1.   INTRODUCTION 

The Computer Science Department of Uni-
versidad Nacional del Centro de la Provincia 
de Buenos Aires, specifically the computer 
science curriculum, offers an extensive ex-
posure to the discipline through two intro-
ductory courses of analysis and design of 
algorithms, “Analysis and Design of Algor-
tithms I” and “Analysis and Design of Algo-
rithms II”, which could be termed ADA1 and 
ADA2. We teach these courses at the second 
year of the career, and their home page can 
be found at  

 
<http://www.exa.unicen.edu.ar/catedras/ay
dalgor> and 
<http://www.exa.unicen.edu.ar/aydalgo2>.  

ADA1 starts with an imperative approach of 
programming, referencing the traditional 
bibliography like (Aho, et.al., 1985; Aho, et. 
al., 1995, Baase 1993; Cormen 1990; 
Horowitz 1997; and Sedgewick 1999), while 
the second part of the course adopts an ob-
ject-oriented approach.      

In two previous courses of programming 
(“Introduction to Programming I” and “In-
troduction to Programming II”), the students 

Proc ISECON 2006, v23 (Dallas): §2525 (refereed) c© 2006 EDSIG, page 1



Felice and Fernandez Fri, Nov 3, 3:30 - 3:55, Bordeaux

have covered the basics of creating pro-
grams using imperative programming with 
Pascal language. 

Mainly, ADA1 course provides students with 
the fundamental concepts of analysis and 
design of algorithms like complexity, giving 
emphasis on design techniques of algorithms 
(Backtracking, Divide and Conquer, Dynamic 
Programming and Greedy strategies). A 
knowledge of design will help students to 
create good algorithms. The number of basic 
design strategies teached is limited, so the 
students can develop a good understanding 
of each techniques.  

Also, we introduce the concepts of abstract 
data types as a basic concept for object-
orientation. The object classes that are in-
volved in a problem are identified and speci-
fied in an algebraic style. Thus, students 
learn how to be precise and mathematically 
rigorous in the type declarations. The speci-
fication describes object classes in an ab-
stract way, free from most implementation 
details. The object class specifications are 
constructed from previous existing ones by 
applying mechanisms provided by the alge-
braic language: generalization, specializa-
tion, parameterization, and instantiation. 
The language used is NEREUS (Favre, 2006).  

ADA2 course deals with Graph Theory, 
Searching problems, NP-C problems, and the 
basic strategies and algorithms to their reso-
lution, always working with the complexity 
concepts and linked with abstract data 
types. 

  
By the other hand, working with a large-
scale project has the advantages of doing 
typical textbook exercises. Based on our own 
observation, students that have made these 
assignments have had a better understand-
ing of the techniques and complexity con-
cepts than those students who have not de-
veloped this kind of projects. An additional 
benefit of making projects is that students 
feel a real sense of accomplishment in com-
pleting them. They use of the benefits of 
using modular design, incremental imple-
mentation and complexity analysis, so their 
work could grow not only in the functionality 
of the system but also in reusability. 
 
The games development can be a good topic 
for teaching these techniques. It gives stu-
dents a real project where they can apply 

the techniques they are studying. Further, 
they have the added benefit and the chal-
lenge of developing a “real system”.  
 
The main goals of this kind of practice in-
clude:  
• To explore and define best practices in 

design techniques of algorithms and 
apply those from traditional games, 

 
• To integrate a theoretical and empiri-

cal reasoning using a methodological 
approach of development not only for 
the resolution of the game but also for 
the whole design of the project. 

 
Thus, students get an opportunity to apply 
these strategies on assignments and pro-
jects. 

This paper is organized as follow: in section 
2 we explain why we propose games devel-
opment to teach the core concepts of ADA1 
and ADA2. In section 3, we present a case 
study that covers the learning concepts of 
ADA1 and ADA2. This work has obtained an 
award at EST 2005 simposium (Fernandez,  
2005) as an innovative way to resolve the 
navigation of video-games. Section 4 deals 
with the languages and tools used in the 
courses and to projects development. Fi-
nally, conclusions are made in Section 5. 

2.   WHY GAMES? 

Concluding ADA1 course, the first issue with 
which students are confronted when writing 
programs is the problem. Typically, students 
are confronted with "real-life'' problems, and 
they provide a program for the problem. 

However, real-life problems are nebulous 
and the first thing they have to do is to try 
to understand the problem separating nec-
essary from unnecessary details. So, they 
obtain their own abstract view, or model, of 
the problem. This process of modeling is 
called abstraction of the design.  

Designing proper, efficient, and implement-
able algorithms for real-world problems is a 
tricky task, because the successful algorithm 
designer needs access to the main aspects 
of knowledge: the techniques. Good algo-
rithm designers understand several funda-
mental algorithm design techniques includ-
ing backtracking, divide and conquer, 

Proc ISECON 2006, v23 (Dallas): §2525 (refereed) c© 2006 EDSIG, page 2



Felice and Fernandez Fri, Nov 3, 3:30 - 3:55, Bordeaux

greedy, dynamic programming, heuristics 
and data structures.  

We have found that projects based on game 
development are a good way to introduce 
the core concepts of ADA1 and ADA2.   

Many physical systems can be represented 
by rules and relationships. Games are also 
systems based on simple rules and relation-
ships. Many of them can be applied to differ-
ent situations, so the opportunity of reuse is 
present many times. For example, in games 
where players role play strategic situations, 
like GO game, 1914 wargame or TEG game, 
a similar intuitive understanding can be de-
veloped using heuristics algorithms. The TEG 
game is an Argentine risk-based board game 
created during the 1970s. The name is an 
acronym of Táctica y Estrategia de la 
Guerra, Spanish for War Tactics and Strat-
egy. Similarly, in games like Scrable game, 
Rubik Cube resolution, Calculum, etc., a 
similar reasoning to construct a backtracking 
scheme can be developed. It’s true that 
these algorithms can potentially take expo-
nential time to run. This can be avoided us-
ing heuristics, but in the worst case it might 
not find a solution. It is important to remark 
that all of these games have been developed 
by our students building real interfaces and 
obtaining a very good behavior of their exe-
cutions.  

However, games are only an instructional 
resource for us, and teachers can adapt the 
requirements to meet the course objectives 
and to evaluate the students. Another ad-
vantage of this kind of project is that games 
have the capability to change the scale, and 
developers (i.e. students) can use them as 
opportunities for players to share and cri-
tique strategies, then they appreciate this 
way of learning and they are motivated to 
get quality results.  

Teachers provide the techniques so that the 
game design could be good, and offer a 
broad range of conditions to be truly inter-
esting. In general, when we investigate 
game development through several web 
sites, we can observe that no matter how 
good an algorithm is, it has a limited regime 
of applicability. Sometimes, our students 
must frequently design a number of algo-
rithms and switch from one to another as 
conditions change because the odds are that 
a specific algorithm will work best under a 
narrow range of conditions. Our intentions 

as regards game development is that the 
resulting prototypes have design informa-
tion, original and creative work accompany-
ing a methodological rationale. Several stu-
dents have had the experience with dialogue 
among the game developer communities, 
and the interest has grown among them-
selves.  In the last year, two works devel-
oped by students of ADA1 and ADA2 courses 
were presented and published at a tradi-
tional student workshop (Fernandez, 2005) 
and (Ridao, 2005). The first gets an award 
one of the best in the algorithms area. 

3.   CASE STUDY. AN EXPERIENCE 

 
One of the topics of ADA2 course was 
searching problems. During the course, the 
student had been assigned a project were he 
implemented the artificial intelligence (AI) of 
the computer in the game of Othello using 
the alpha-beta variant of the min-max 
search algorithm. To be accomplished the 
student had done little investigation and 
evaluation of the two algorithms and the 
possible heuristics. The positive experience 
while doing this first project motivated the 
student to do a final project of similar char-
acteristics instead of taking the traditional 
written final exam of the course. When the 
student approached the teacher, he pro-
posed to continue to study advanced heuris-
tic search algorithms in the context of 
autonomous navigation. The student wanted 
to know which search algorithms were used 
in applications like robot navigation or the AI 
in real time strategy games. It was clear to 
the student that the basic algorithms he had 
learned weren't suitable for the real time 
requirements of these kind of applications, 
and he was eager to learn how the search 
concept was adapted for these problems. 
 
The new project started with the develop-
ment of a video game like application that 
would allowed to test the search algorithms. 
The game would consist on a maze with ob-
stacles that could be pushed and destroyed 
in real time and where players could be con-
trolled by the user and the computer.  
 
At the same time, he started the search of 
information on Internet sites about robot 
navigation and pathfinding in video games, 
as well as in a few books with information on 
advanced search that were available. In the 
short run the student was able to confirm 

Proc ISECON 2006, v23 (Dallas): §2525 (refereed) c© 2006 EDSIG, page 3



Felice and Fernandez Fri, Nov 3, 3:30 - 3:55, Bordeaux

that there was a whole another class of 
search algorithms called “on-line search al-
gorithms” or “real-time search algorithms”, 
in contrast to the “off-line search algo-
rithms” that he had studied during the 
courses.  Through bibliographical references 
he came to know about the work of Richard 
E. Korf, a researcher who has many publica-
tions on the search topic and developed one 
the most popular real time search algo-
rithms: the Learning Real Time A* (LRTA*) 
(Korf, 1990) and (Korf, 2000). As most the 
publications weren't available on-line, the 
student asked professor Korf for some pa-
pers, who in turn, very kindly, sent copies of 
them. With those papers the student had all 
the information on real time search to finish 
his research, together with a detailed de-
scription of two representative real time 
search algorithms: Real Time A* (RTA*) and 
LRTA*. 
 
Once the application was finished, the stu-
dent added the AI for the computer. Three 
modules were implemented with different 
navigation algorithms. The algorithms were 
the traditional A* (which implements off-line 
search), and the RTA* and LRTA*.  The in-
teractive environment allowed to see how 
the real time nature of the search algorithms 
adapted to the modifications in the maze, 
and how the learning variant of the RTA* 
actually improved its performance as the 
iterations passed. This experience allowed 
the student to compare the off-line and on-
line search paradigms in a very visual and 
interesting way.  
 
The application was developed in C++ stan-
dard. The main idea is that the application 
runs in many platforms, so the used libraries 
are multi- platform. The proved platforms 
were Linux, that was the main development 
platform and all of Windows versions (9x 
and NT). 

 

4.   LANGUAGES AND TOOLS 
      
In ADA1 and ADA2 courses, we intent to use 
the right mix of languages and language fea-
tures so, the solution to a problem is much 
easier to describe and implement, with bet-
ter results. C++ remains an essential tool 
for project developments not because any-
body thinks it's the best possible language, 

but because it's a single, portable language 
that works better than any alternative in 
each of several areas.  Students select the 
appropriate tools according to the projects. 
In the most cases, they use visual frame-
works. 
 
For many uses, C++ is not the ideal lan-
guage. Some more experienced students 
prefer Tcl/Tk for writing a user interface for 
example. In our courses, C++ is used be-
cause it works well when the ideal language 
is (for whatever reason) not available, and 
because it interfaces easily with the libraries 
and the other languages the students use.  
Students rarely develop a big program writ-
ten all in one language, or without using li-
braries, so easy integration with other lan-
guages and libraries was a key design goal. 
C++ was designed with libraries always in 
mind, and its most useful features are those 
that help to write portable, efficient, easy-
to-use libraries.  
 
We use a methodology linked with formal 
specifications of abstract data type and Ner-
eus is the used language for the early phase 
of a project development. Nereus is an alge-
braic language where the basic unit of speci-
fication is the class. Classes may declare 
types, operations, and axioms that are for-
mulae of first-order logic. They are struc-
tured by three different kinds of relations: 
importing, inheritance, and subtyping. Fig-
ure 1 shows the syntaxis  of a Nereus class. 
The keypoint of this way of specifying ab-
stract data types into a rigorous approach 
was published in (Favre et. al., 2000). 
 
 
 

 

Proc ISECON 2006, v23 (Dallas): §2525 (refereed) c© 2006 EDSIG, page 4



Felice and Fernandez Fri, Nov 3, 3:30 - 3:55, Bordeaux

Figure 1. NEREUS basic specification syn-
tax's  

 

5.   CONCLUSIONS 

  

It is widely known that the study of algo-
rithms is not an end in itself. We intend to 
teach the topics in a framework that empha-
sizes factors of good design and quality such 
as correctness, extensibility, reusability, effi-
ciency, maintainability, etc.  Also, the ability 
to use a systematic, precise, and mathe-
matically rigorous approach to design effi-
cient algorithms is the keypoint in both of 
courses. 
 
The experiment of algorithms teaching with 
games has been very satisfactory and has 
helped us reach some interesting conclu-
sions in relation to the effectiveness of this 
approach. This kind of works enriches the 
learning not only of the student but also of 
the teachers who have to investigate and 
have to plan an appropriate framework to 
develop the projects and to make a creative 
job. We consider that it could be reproduced 
in any Computer Science study program and 
we think it is an innovative approach that is 
interesting to be applied. The necessary pre-
requisites can be provided by introductory 
courses on programming, computer science, 
and mathematics. 

6.   REFERENCES 

 
Aho, A., Hopcroft, J; Ullman, J. (1983) Data     
      Structure  and Algorithms.  J.Addisson-    
      Wesley  

Aho, A., Ullman, J. (1995) Foundations of 
Computer Science. C Edition. Computer 
Science Press.  

Baase, Sara (1993) Computer Algorithms. 
Introduction to Design and Analysis. 
Second Edition. 

Cormen, T; Lierserson, C; Rivest, R.  (1990) 
Introduction to Algorithms. Ed. The MIT 
Press. 

Favre, L; Felice, L; Martinez, L; Pereira, C.  
(2000) “On Teaching a Data Structures 
and Algorithms Course through a Rigor-
ous Approach” In Proceedings of 
'ISECON 2000: Information Systems 
Education' - Philadelphia 9-12 Noviem-
bre 2000. 

Favre, L; (2006) “A Rigorours Framework for 
Model-Driven Development” In Advanced 
Topics in Database Research Series. Vol 
5. Chapter 1. IGP (Idea Group Publish-
ing). Keng Siau Ed. USA. Pp: 1-27.  

Fernandez, Martin; (2005) “Algoritmos de 
búsqueda heurística en tiempo real. Ap-
licación a la navegación en los juegos de 
video.” EST 2005 (Concurso de Trabajos 
Estudiantiles): 34 JAIIO. Jornadas Ar-
gentinas de Informática e Investigación 
Operativa. Rosario. Argentina.  

 
Horowitz, E;Sahni, S; Rajasekaran, S.(1997)   
     Computer Algorithms/C++. 
 
Korf, Richard (2000) “ Real - Time Heuristic     
     Search” In “Artificial Intelligence”, 42.  
 

Ridao, I; Vidal, S; (2005) “ Algoritmos de       
Resolucion para el cubo de Rubik”. EST       
2005 (Concurso de Trabajos       Estudi-
antiles): 34 JAIIO. Jornadas        Argen-
tinas de Informática e       Investigación 
Operativa. Rosario.       Argentina. 

 
Sedgewick, R. (1999) Algorithms in C++.     
     Addison-Wesley. 
 
 
 
 
 

  

CLASS className [<parameterList>]
IMPORTS  <importList>
BASIC

CONSTRUCTORS<constructorList>

EFFECTIVE

TYPES <typeList>

FUNCTIONS

<FUNCTIONSList>
AXIOMS <varList>
<axiomList>
END-CLASS

Proc ISECON 2006, v23 (Dallas): §2525 (refereed) c© 2006 EDSIG, page 5


