
McKenzie Fri, Nov 3, 5:00 - 5:25, Normandy B

Introductory Programming with ALICE as a

Gateway to the Computing Profession

W. Brett McKenzie
wmckenzie@rwu.edu

Gabelli School of Business, Roger Williams University
Bristol, RI 02809, USA

Abstract

To help reinvigorate the Computer Information Systems (CIS) major in the face of declining

student interest, a new curriculum with more welcoming entering courses was implemented at

an undergraduate school of business. One of the courses, the introductory programming

course, was redesigned to focus on object-oriented, event driven, programming using ALICE,

a 3D programming environment developed at Carnegie Mellon University and funded by the

National Science Foundation (NSF). This presentation addresses the rationale for selecting

ALICE, the subsequent course design, and expectations for the future course developments.

Keywords: computer programming curriculum, Alice, introductory course description

1. INTRODUCTION

To combat the decline in enrollments in

computing fields, the faculty redesigned the

Computer Information Systems (CIS) cur-

riculum for the academic year 2005 to pro-

vide a set of core courses and two tracks,

one in web and systems development and

the other in networking and security

(McKenzie, 2005). The core courses begin in

the freshman year with a two sequence in-

troduction. This includes a course in building

a computer, which also allows for installing

different operating systems (Windows and

Linux) as well as configuring a IP network,

and an introductory programming course,

focused on object-oriented, event driven,

programming. These courses have no pre-

requisites. They are required of declared

majors and are designed as an open invita-

tion to the major or minor. They may also

be taken as an elective for students with a

general interested in computing.

The CIS program is housed in the school of

business. Similar to counterparts at other

institutions, it has an application focus and

usually draws examples and problems from

the business domain.

In recent years, however, content areas that

were once the purview of CIS alone have

been adapted and absorbed by other ma-

jors. For example, the HTML and web de-

sign courses originated in the CIS depart-

ment but have since been appropriated by

communications and design. Similarly, spe-

cialized database courses, such as offerings

in Accounting Information Systems or data

mining for Marketing courses, have cannibal-

ized the CIS database courses. These more

pragmatic, discipline centered courses, have

made CIS offerings seem more arcane, tech-

nical, and distant from day to day realities.

In this environment, a secondary goal of the

introductory sequence was to assert the

relevance of computing from the perspective

of inventive producers rather than mere

consumers of computing. This paper fo-

cuses on the programming course, providing

a rationale for the selection of the program-

ming environment, a description of the

course, and observations on the student pro-

jects.

Proc ISECON 2006, v23 (Dallas): §2743 (refereed) c© 2006 EDSIG, page 1

McKenzie Fri, Nov 3, 5:00 - 5:25, Normandy B

2. BACKGROUND

Teaching programming is central to the

computing curricula. Whether it is the more

theoretical computer science (CS), more

hardware focused computer engineering

(CE), or the more application centered com-

puter information systems (CIS), the gov-

erning curricula documents require instruc-

tion in computer programming (Shackleford,

R. et. al. 2005). While the number of rec-

ommended programming courses differs

among the various curricula from minimums

of two in the “Information” fields to four in

the “Computer” fields, the sequencing of

computer programming in the first or second

years usually makes programming the entry

point to the profession.

Perhaps even more important than the cur-

ricula requirements are the perceptions of

prospective students, who see computer

programming as central to the field (Carter,

2006). However, the reputation of pro-

gramming as socially isolating and hard

tends to discourage students. In the IS

field, in particular, students express a desire

to work with computing, but in areas other

than programming. Anecdotally, among the

recent offerings at the college, the network-

ing security and forensics courses are over-

subscribed while the traditional courses in

programming, database, and systems devel-

opment struggle to meet minimum enroll-

ments.

The course designers needed to consider the

incongruous forces which recognize that pro-

gramming is central to the computing disci-

pline, yet, in practice, many students

avoided the programming courses. In this

environment, the course designer must ask

whether programming courses should be the

gate-keeper course to weed out the undesir-

ables, similar to organic chemistry for the

pre-med student, or should the program-

ming course be structured as a compelling

gateway to a still developing and critical pro-

fession? To answer the question, the course

designers examined the traditional approach

to teaching programming and proposed an

alternative approach that might be more

relevant to the skills and experiences of

twenty-first century students who have

grown up with computing, gaming, and the

interactive, graphical user interface.

3. TRADITIONAL APPROACHES

Computing courses typically begin with

technical details and on a small scale. In

many ways, they follow a behaviorist para-

digm, where the solution steps are more

important than the content of the problem.

At the same time, these small problems di-

minish the central feature of massive scale

that makes computers so critical to complex

tasks such as DNA sequencing or data min-

ing. The features of a traditional approach

to teaching programming are below and can

be confirmed by skimming the table of con-

tents of common entry level texts in .NET or

C++.

First, many of the early programs are trivial

and painfully more challenging for a novice

to write than simply figuring out the results.

Common entry level programs in schools of

business involve money, such as creating a

cash register that will multiply quantity of

purchase by the cost of items, add the pur-

chases to get the total, compute the tax,

then display a grand total. Programming the

solution is much more complex than “work-

ing it out in your head” as many students

are capable of, as witnessed by their being

able to compute a bar bill close to closing

time.

Second, many of the entry level programs

are decontextualized. In the example

above, the usefulness of the cash register

program is within the larger context of a

store where it can track multiple purchases

that become too burdensome to track

manually. The register is used both to assist

in more quickly computing the total sale as

well as keeping the cashiers honest (the

original motivation for the bar owner, James

Ritty, to invent the cash register). Cash reg-

isters also now assist in keeping the busi-

ness honest as the register provides a record

of the sales for the tax authorities. In a

more complex instantiation, the register

serves as a conduit to a database, to query

and post a price derived from a UPC code

and to update the status of inventory. Forc-

ing students to program a single part of a

system, without explanation of its purpose

and merely as a demonstration of the task,

frequently serves to frustrate students and

make the problems seem trivial.

Third, model programs often draw from

mathematical areas, and usually include

probability problems. These problems often

Proc ISECON 2006, v23 (Dallas): §2743 (refereed) c© 2006 EDSIG, page 2

McKenzie Fri, Nov 3, 5:00 - 5:25, Normandy B

require the student programmers to exam-

ine their own mental process for tasks they

may have ill learned or not learned system-

atically. Computing percentages, for exam-

ple, can challenge a student’s grounding in

either ratio arithmetic or decimal represen-

tation. It is surprising how few students can

explain why a 10% discount is the same as

90% of the original, although many are ca-

pable of arriving at the solution with the ra-

tionalization, “It just works like that.”

4. ALTERNATIVE APPROACH

The mathematical-logic problems are the

most common in the traditional program-

ming language instruction, although com-

puter capability has long outstripped its nas-

cent tabulating function. Consequently, this

approach misses the critical perspective that

computer programming is a means of re-

presenting the world (Graham, 2004). I use

the term re-present rather than represent

because re-present emphasizes that com-

puting may be thought of as a medium to

provide a unique representation of the

world. Just as movies derived from novels

based upon the real world represent differ-

ent views of the same events, it is helpful to

think of computing as providing another per-

spective on events.

For example, the cash register program al-

luded to earlier, re-presents the day’s trans-

actions in a store, just as the simulation of a

craps game re-presents the throw of dice in

its output. Unlike the rich natural language

and the interpretive power of the brain, the

re-presentation of a computer program uses

a language of limited expressive power

which is executed in an explicit environment.

An adept programmer can create a richer

world than a novice can imagine, just as a

visual artist can render a scene with a pal-

ette of a few selected colors. But program-

ming is rarely introduced as a means of re-

presenting the real world.

In lieu of using a traditional language, such

as JAVA, dominant in CS curricula, or Visual

Basic, long a standard to introduce computer

programming in business schools (Haney

and Lovely 2003), the revised curriculum

uses ALICE (Alice, 2003). ALICE is a 3D

programming environment where the ob-

jects are characters (human, animal, or fan-

tasy) that inhabit worlds (real or imaginary).

Programming in ALICE can be either as an

animation, for example telling a story

through the character’s actions, or interac-

tive, as in a computer game. The notion

above of re-presentation is embedded in

ALICE as the ALICE worlds recreate a real

world or a world of its own.

In addition to ALICE providing a compelling

environment for students who have grown

up in the “gaming generation” (Beck and

Wade, 2005), writing code is via dragging

and dropping tiles into an interactive editor

(Fig 1). The tiles often contain modifiers

and areas to include arguments. This pro-

vides an easier access to the programming

environment than typing and echoes the

intelligent editors, such as those in Microsoft

Visual Studio which use Intellisense.

Figure 1: ALICE Development Environment

showing (from top left to bottom right) Tool-

bar, Object Tree, World Window, Events Edi-

tor, Detail Area, Program Editor

The challenges of learning the syntax ac-

count for some of the difficulty in program-

ming. The drag and drop method has been

reported as an advantage in using ALICE

(Moskal et. al. 2004). However, as Radne-

ski (2006) demonstrates, even a simple text

program in JAVA requires not just an under-

standing of the syntax, but to stretch the

metaphor, also the grammar. A simple JAVA

program beings with either students glossing

over the meaning of the first line “public

class ClassName” to get to writing the first

method or it requires extensive explanations

prior to any programming as shown in Figure

2.

Proc ISECON 2006, v23 (Dallas): §2743 (refereed) c© 2006 EDSIG, page 3

McKenzie Fri, Nov 3, 5:00 - 5:25, Normandy B

Figure 2: A minimal JAVA program (from

Radenski, p. 197)

In comparison, Figure 3 shows the code and

the result for a Hello World program written

in ALICE where a penguin character provides

the output.

Figure 3 Hello World in ALICE

The Penguin class comes from the collection

of characters. A new method is invoked and

named penguin.helloWorld and a single line

of code, created with a tile for a primitive

method, “say”, which contains in itself the

argument, completes the program.

The ease of running a program in ALICE

complements the ease of programming, due

to the reduction in complexity of the syntax

and more explicit nature of the grammar,

and facilitates debugging. For example,

when a character’s wing detaches from its

body because a “move” method rather than

a “turn” method is called, students immedi-

ately recognize the error. Unexpected be-

haviors in ALICE worlds, such as the chal-

lenge of getting a ball to roll realistically by

considering both rotational and translational

motion, encourage students to consider the

difficulties of representing the real world.

Techniques, such as problem decomposition

and step-wise refinement, fall naturally from

resolving these issues.

5. COURSE DESIGN

Following current trends, the course is used

to introduce object-oriented programming

concepts and event driven programming.

The course was designed in a modular fash-

ion, where the first module focused on pro-

gram planning, introduced the ALICE pro-

gramming environment, and basic control

structures such as conditional statements,

functions and expressions. The second

module centered on classes, objects, inheri-

tance, and methods as well as events and

event handling. The final two modules ex-

amined loops, recursion, arrays, lists, and

advanced debugging techniques. A final

section was included to introduce students to

Visual Studio so that they would have some

familiarity with the future programming en-

vironment and be able to apply the concepts

from ALICE in a traditional language.

The major assignments included three stu-

dent projects. Following the first module

students completed a solo project to create

an animated card (similar to a Blue Mountain

e-card). To complete the second module,

students worked in teams to create an inter-

active experience, generally a game. Fi-

nally, students completed a third project,

either as a team or alone, that could be ei-

ther an animation or an interactive experi-

ence. Each of the assignments had broad

expectations, such as at least one instance

of a new class, one user defined function,

and one control structure, but did not re-

quire all students to complete the identical

problem as is common in traditional pro-

gramming courses. Additionally, each pro-

ject included a planning process. An evalua-

tion of the planning documents submitted

with the program was included in the grade.

Students were free to implement the re-

quirements in any context, which they cer-

tainly did, producing among other things a

St. Patrick’s Day card, a beer-pong game, a

helicopter rescue game, and an interpreta-

tion of “West Side Story” set on the univer-

sity campus.

While not mentioned in other research and

reports on the implementation of ALICE, its

ability to import sound increased the appeal

for students. Their projects could include

either music or their own recorded informa-

tion. Including audio added complexity, re-

quiring students to consider the timing and

pacing within their programs to coordinate

with the sound track. Interestingly, there

were no requirements to use audio, but stu-

dents chose to of their own accord. The

combination of audio, ease of programming,

and freedom to build self-designed programs

to meet broad goals resulted in highly en-

gaged students.

Proc ISECON 2006, v23 (Dallas): §2743 (refereed) c© 2006 EDSIG, page 4

McKenzie Fri, Nov 3, 5:00 - 5:25, Normandy B

6. CRITIQUE

There was some criticism for adopting

ALICE, primarily because it is not a “useful”

language; rather it is a teaching language.

Interestingly, a common justification for se-

lecting a language, when confronted with the

criticism that one should teach, for example

C and not VB, has long been that the lan-

guage being challenged is used to teach the

larger issues of programming and not to

train students in a specific language. Using

ALICE highlights the importance of teaching

essential programming concepts devoid of

arguments for a specific language. The criti-

cism was further blunted by the involvement

of the students, the relative complexity of

the programs, and the length of the code

generated. In writing studies from the hu-

manities, it has been shown the length of

writing often correlated with better perform-

ance. By similar measure, a working pro-

gram of longer length and greater complex-

ity exhibits greater engagement by the stu-

dents.

The second criticism was that ALICE moves

students away from business programming.

For example, it does not allow for reading

from and writing to files, a central aspect of

traditional business programming. Close to

mid-term, a student expressed concern

about its usefulness. Interestingly, they had

just completed a programming exercise to

cause a randomly swimming fish to swim

down if it approached within a certain dis-

tance of the ocean surface and up if it were

too close to the ocean floor, or to continue

moving randomly forward, up, and down.

When asked to produce a logic diagram for a

program to assist in stock sales or purchase

based upon Bollinger bands, all students

were able to chart the logic of the nested

control structures. This provides some evi-

dence that the students are able to transfer

the skills from the ALICE environment to

more mainstream problems.

6. FUTURE DEVELOPMENTS

While ALICE has been adopted in whole or in

part for a number of CS programs, its use in

schools of business seems rare, especially

for a whole course. Courte et. al. (2006)

reported using ALICE for a programming

module in a survey course in CS, but an in-

formal survey of area schools of business

does not show any extensive use. The re-

vised programming course sequence now

has a full semester of programming in ALICE

followed by .NET programming using C#. As

yet, it is too early to evaluate the success of

ALICE as preparation for the more main-

stream C# because the first students to take

ALICE are currently enrolled in the follow-on

.NET course. A major question will be

whether the expected advances in student’s

understanding of the fundamental concepts

will allow for a more accelerated pace in the

subsequent course so that the instructor can

focus more explicitly on the business do-

main.

It is expect that the second time the course

is offered in Spring 2006, it will be modified

to provide a more focused introduction to

Visual Studio and a traditional language. In

this modification, the modular structure will

be retained, and the target language will be

introduced at the end of each module to

demonstrate its similarity to ALICE. Among

the ALICE community, this course design is

referred to as a blended course and there is

currently work underway on an ALICE/JAVA

curriculum model. The proposed

ALICE/Visual Studio blended course may find

an audience among undergraduate schools

of business.

In summary, the revised course with ALICE

appeared to be a success based upon the

engagement of students and the quality of

their programs. Anecdotal comments, such

as one student, who noted that his experi-

ence with ALICE helped him finally under-

stand both how to diagram and code more

complex program branches, have persuaded

the faculty that the course appears to be

achieving its goals. The most compelling

evidence, however, is that all freshman and

sophomore students taking the course in

spring have elected to take the follow-on

programming course this fall.

8. REFERENCES

Alice V2.0 (2005), http://www.alice.org/

Beck, John C. and Mitchell Wade (2004) Got

Game, How the Gamer Generation is Re-

shaping Business Forever. Cambridge,

MA: Harvard Business Press.

Carter, Lori (2006) “Why Students with an

Apparent Aptitude for Computer Science

Don’t Choose to Major in Computer Sci-

ence”, SIGCSE ’06, 38:1, p27-31

Proc ISECON 2006, v23 (Dallas): §2743 (refereed) c© 2006 EDSIG, page 5

McKenzie Fri, Nov 3, 5:00 - 5:25, Normandy B

http://doi.acm.org/10.1145/1121341.11

21352

Courte, Jill. Elizabeth Howard, and Cathy

Bishop-Clark (2006), “Using Alice in a

Computer Science Survey Course”, In-

formation Systems Education Journal, 4

(87). http://isedj.org/4/87/

Graham, Patrick (2004) Hackers and Paint-

ers: Big Ideas from the Computer Age,

Sebastopol, CA: O’Reilly Media, Inc.

Haney John and John Lovely (2003), “.NET

as a Teaching Tool”, Information Sys-

tems Education Journal, 1 (16)

http://isedj.org/1/16

McKenzie, W. Brett (2005) “Information Sys-

tems Curriculum Revision in a Hostile

Environment: Declining Interest, Threats

from Offshore, and Proprietary Certifica-

tion” Information Systems Education

Journal, 4 (105) http://isedj.org/4/105

Moskal, Barbara, Deborah Lurie, and Steve

Cooper (2004). “Evaluating the effec-

tiveness of a new instructional ap-

proach", SIGSE ’04.

http://doi.acm.org/10.1145/971300.971

328

Radenski, Atanas (2006), "Python first": a

lab-based digital introduction to com-

puter science”, ITICSE '06. p. 197-201.

http://doi.acm.org/10.1145/1140124.11

40177

Shackelford, Russell et. al. (2006), “Comput-

ing Curricula 2005: The Overview Re-

port”, SIGCSE '06.

http://doi.acm.org/10.1145/1121341.11

21482

Proc ISECON 2006, v23 (Dallas): §2743 (refereed) c© 2006 EDSIG, page 6

