
Dehinbo Sat, Nov 4, 9:00 - 9:25, Normandy B

 

Determining suitable programming language 

for the Bachelor of Technology (IT) curriculum 
 

Johnson Dehinbo 

jdehinbo@yahoo.com 
Department of Web & Multimedia Applications, Tshwane University of 

Technology, Pretoria, 0001, South Africa 

 
Abstract 

 
Various programming languages are being taught in tertiary institutions in South Africa lead-

ing to repetition. Also, there is a low pass rate for some of these languages. This study aims at 

identifying a suitable programming language. Previous studies have generally compared pro-

gramming languages without reference to specific use. Also, some comparisons did not use 

various criteria with various methodologies. Survey and programming experimentation were 

used in this study. Questionnaires were administered to respondents using any of the four 

languages: C++, Java, Visual Basic, and Pascal in different study groups. For the experimen-

tation the line of codes (LOC) for solutions to a given problem using each of the programming 

languages were determined. It was found that Pascal is simple to write for beginners, but not 

suitable for complex tasks. VB is found easy to use under pressure and has the smallest line of 

code (LOC) making it also easier to learn. C++ and Pascal also have reasonable LOC (8). Java 

however, has the longest LOC, making it more difficult for beginners to learn. Like VB, Java is 

found suitable for complex jobs and is considered very flexible. The study recommends C++, 

Java and VB, using a systematic combination to achieve the desired result. 

 

Keywords:  Programming languages, teaching, curriculum, classroom  

 

1. BACKGROUND OF THE STUDY 

Introduction 

The overall goal of this study is to determine 

a suitable programming language as part of 

the curriculum of the new Bachelor of Tech-

nology degree in Information Technology at 

tertiary institutions in South Africa. Ade-

quate consideration need to be given to the 

choice of a programming language that will 

be easy to learn and use for first year stu-

dents. This programming language should 

offer some prospects for future industrial 

use.  

This study aims to throw light in the choice 

of a programming language. The purpose is 

not to persuade users that one programming 

language is better than another but to assist 

users in making a more informed choice. 

 

 

The problem leading to the study 

Information Technology (IT) graduates need 

adequate knowledge of programming. There 

are various programming languages such as 

BASIC, FORTRAN, Pascal, C, C++, Visual 

Basic (VB) and Java, which are being taught 

in tertiary institutions. Vinoski (2004) indi-

cates that the many languages and vendors 

from which one can choose does not make 

choosing the one that will best solve one’s 

problem an easy task. This is important in 

view of Sebesta’s (1996, p.2) statement that 

the depth at which we can think is influ-

enced by the expressive power of the lan-

guage in which we can communicate our 

thoughts. Sebesta (1996, p.3) further illus-

trates that the language in which program-

mers develop software places limits on the 

kinds of control structures, data structures, 

abstractions and algorithms they can con-

struct. 
Proc ISECON 2006, v23 (Dallas): §3144 (refereed) c© 2006 EDSIG, page 1



Dehinbo Sat, Nov 4, 9:00 - 9:25, Normandy B

Kelleher and Pausch (2005) illustrate various 

systems that have been designed as a result 

of such barriers to programming. Similarly, 

Bishop (1999) mentions Trott (1997) stating 

that, "As time progresses, we see more and 

more new programming languages of all 

kinds appearing on the market". All aim to 

provide improved functionality. If the lan-

guage used does not have the necessary 

features it will not be a good choice to use to 

teach programming concepts, and will re-

duce the quality of designed systems. It will 

also result in students taking longer to de-

velop their programs, and time allocated for 

laboratory sessions is limited. Also, many 

programmers, when given a choice of lan-

guages for a new project, continue to use 

the language with which they are most fa-

miliar, even if it is poorly suited to the new 

project. It is therefore very important for 

student to be trained using a programming 

language that will be most suitable for their 

future tasks. 

This could be why Lim (2002) states that 

information systems / computer science de-

partments must reexamine their curricula in 

order to prepare students to face the chal-

lenge of being productive in a computing 

world that is now swamped with program-

ming technologies. Up to now, institutions 

teach various programming and scripting 

languages. These led to repetition and con-

fusion being reported by students. Some 

students resorted to absenteeism, stating 

that they had learnt the concepts now being 

taught in other programming languages. 

However, they usually ended up failing such 

subjects. 

Coupled with the above is the poor perform-

ance of students in C++ as a subject in the 

former Technikon Northern Gauteng (now 

Tshwane University of Technology) in the 

last few years. Therefore, the second prob-

lem relates to the possibility of low levels of 

comprehension of programming by students. 

Especially for novice or beginning program-

mers, comprehension is very important 

(Lahtinen et al., 2005; Wiedenbeck, 1999). 

Low levels of comprehension could arise if it 

takes students a long time to comprehend 

the logic and syntax of programming lan-

guage used. This is analogous to learning 

driving using manual car instead of auto-

matic. 

Unfortunately, choosing a suitable pro-

gramming language is not easy. Prechelt 

(2000) indicates that when it comes to the 

advantages and disadvantages of various 

programming languages, programmers and 

computer scientists alike usually hold strong 

opinions. Moreover, Apte et al. (2003) note 

that a study of existing literature showed 

varying conclusions about the superiority of 

one language over another. However, 

Wiedenbeck et al. (1999) indicates that ana-

lyzing programming languages, paradigms, 

and development platforms is still very im-

portant for understanding how different pro-

gramming styles affect the learning of nov-

ice programmers. 

The research questions 

In line with the above, the study seeks to 

address the following research questions: 

� How could we choose a language 

that is easy to use and easy to learn 

for first year students?  

� How could we choose a program-

ming language that is suitable for fu-

ture complex tasks? 

Objectives of the study 

In order to answer the research questions, 

the objectives of the study in clear, measur-

able and achievable/manageable terms are:  

1) Investigate related studies that compare 

similar programming languages and dy-

namic Web platforms. 

2) Investigate the ease of use, ease of 

learning and suitability for complex tasks 

of the programming languages.  

3) Establish experimentation for Computing 

the Line of Codes (LOC) for the selected 

programming languages. 

Importance and use of the study 

The study would enable tertiary institutions 

to offer a programming language that is 

easy for beginners to learn and of relevance 

and importance to current developments in 

Information Technology. In addition, Stu-

dents, professionals, software organizations, 

Web application developers, researchers, in 

the development of their applications might 

benefit. 

 

2. LITERATURE REVIEW 

Proc ISECON 2006, v23 (Dallas): §3144 (refereed) c© 2006 EDSIG, page 2



Dehinbo Sat, Nov 4, 9:00 - 9:25, Normandy B

Introduction 

The overall purpose of this section, accord-

ing to Marshall and Rossman (1989), cited in 

Creswell (2003), is to relate the study to the 

larger ongoing dialogue in the literature. 

This fills gaps and extends prior studies. 

Previous comparisons without criteria 

Various previous studies have compared 

programming languages. However, most of 

these studies did not use any criterion as a 

basis for the comparisons. Kruse (2003) il-

lustrates the differences in the strengths and 

weaknesses of Personal Home Page (PHP) 

and Java. Klopper (2003) compares Personal 

Home Page (PHP), Active Server Page (ASP) 

and Java Server Page (JSP) in terms of their 

advantages and architectures. Comparison 

must be based on a variety of factors sup-

ported by scientific facts and results. This is 

in line with Ashenfelter’s (1999, p.105) as-

sertion that before analyzing tools, it is 

worth discussing how to evaluate them. 

Bishop and Hurter (1999) examine some of 

Java’s competitors, namely the Scripting 

languages: Tcl/Tk, Perl and Python, with the 

following results. Python incorporated the 

features of Modula-3 into its scripting syntax 

thus making it suitable for "programming in 

the large", unlike Tcl and Perl. Some of the 

distinguishing features of Python as reported 

by Bishop and Hurter (1999) include the fact 

that programs written in Python are typically 

much shorter than equivalent C or Java pro-

grams for several reasons. Also, the high-

level dynamic data types allow you to ex-

press complex operations in a single state-

ment. Moreover, statement grouping is done 

by indentation instead of begin-end brack-

ets. Lastly, no variable or argument declara-

tions are necessary. 

The comparisons in these studies are based 

on intuition rather than scientific facts. Sci-

entific evidence is required to support this 

assertion. 

Other related studies emphasizing 
smaller codes 

In an empirical comparison of seven pro-

gramming languages, Prechelt (2000) ob-

served that designing and writing programs 

in the scripting languages, namely Perl, Py-

thon, Rexx or Tcl, takes no more than half 

as much time as writing it in C, C++, or 

Java. Moreover, the resulting program is 

only half as long. He therefore concluded 

that the scripting languages offer reasonable 

alternatives to other full programming lan-

guages, and they may offer significant ad-

vantages with respect to programmer pro-

ductivity for reasonably small programs. 

Bishop and Hurter (1999) also confirmed 

that a Java version of a server program in 

Bishop (1998) is nearly four times as long as 

its Perl's version. This is assumed to make 

Java difficult to learn. The lesson learnt here 

is simply that platforms that enable pro-

grams with smaller Lines of Codes will be 

easier to learn, but this needs to be within 

the context of other relevant criteria based 

on scientific facts.  

Moreover, most studies that compare plat-

forms concentrate on performance criteria 

(Vinoski, 2003) although some measure per-

formance using various factors. In the next 

section, we will examine the move towards 

frameworks for performance comparisons. 

Towards frameworks for performance 
comparisons without 

Vinoski (2003) realizes that various com-

parisons of programming languages concen-

trate on performance comparisons. Renaud, 

Bishop, Lo, van Zyl and Worrall (2003) re-

ported on some studies stating that various 

metrics can be used to measure perform-

ance of algorithms in distributed systems. 

These includes response or waiting time, 

synch delay, number of messages ex-

changed, throughput, communication delay, 

node fairness, Central Processing Unit (CPU) 

cycle usage, and memory usage. They how-

ever used response or waiting time. 

Cooper (2001) estimated the response time 

for Personal Home Page (PHP), Active Server 

Page (ASP), ColdFusion and Java Server 

Page (JSP), with ColdFussion having the best 

performance. In comparing the performance 

of Java Servlets, Java Server Pages (JSP), 

Active Server Pages (ASP) and PHP, Dehinbo 

(2005) also found PHP having the best per-

formance. Marshak and Levy (2003, p.3) 

also evaluated platforms only in terms of 

user-perceived latency. 

It should be pointed out however, that per-

formance has somehow been overempha-

sized in various studies. This view is shared 

by researchers such as Vinoski (2003), who 

agrees that a suitable framework for com-

parison should involve other relevant fac-

Proc ISECON 2006, v23 (Dallas): §3144 (refereed) c© 2006 EDSIG, page 3



Dehinbo Sat, Nov 4, 9:00 - 9:25, Normandy B

tors. Vinoski (2003) explains that people 

check only those qualities that are easily 

measurable, such as performance. He goes 

on to say that an interesting side effect of 

this is that it has unintentionally led many 

programming language users to presume 

that “high performance” is the same as “high 

quality”.  Meanwhile, such works could be 

entirely meaningless, depending on the na-

ture of your application. 

The need for criteria in comparisons 

Various comparisons of programming lan-

guages and Web-based platforms have been 

made in the past. Some of these studies 

propose the use of a combination of two or 

more factors for their comparisons. 

Although Van Hoff (1997) evaluates only 

Java as a programming language, he evalu-

ates it in terms of simplicity, familiarity, and 

object-oriented features with more emphasis 

on single inheritance. Hartman (2001) ex-

amines some tools for developing dynamic 

Web sites, namely ASP, PHP and ASP.NET. 

He mentions that one factor that complicates 

choosing a scripting environment is the issue 

of culture among developers. He believes 

this has a lot to do with the ideological 

camps to which they belong, such as Java 

versus PHP.  He mentions very few develop-

ers are equally willing to work in both 

camps, or who can talk about "the other" 

technology without a trace of disdain.  

According to Hartman (2001), the second 

factor that complicates choosing a scripting 

environment is the future scalability and 

functional requirements. Hartman’s study 

arrived at these conclusions; ASP is a com-

mercial technology while PHP is an open-

source technology. ASP is somewhat easier 

to learn whereas PHP enhances flexibility. 

Moreover, ASP is limited to IIS/PWS on Win-

dows while PHP runs on a multitude of serv-

ers and platforms. In terms of the compari-

son, it is important to note that Hartman 

(2001) uses terminology or factors such as 

perception of developers, performance and 

efficiency of platforms, ease of learning, and 

cost and scalability of the platforms. These 

factors are not, however, exhaustively inves-

tigated. 

In a study comparing the performance of 

programming platforms for generating dy-

namic Web content, Cecchet et al. (2003) 

evaluate three dynamic Web platforms, 

namely PHP, Java Servlets and Enterprise 

Java Beans (EJB). It was found that EJB had 

higher latency values (worse performance) 

than that both PHP and Java Servlets, while 

Java Servlets had higher latency values than 

PHP which has lowest latency giving best 

performance out the three (Cecchet et al., 

2003).   

In terms of ease of development, Cecchet et 

al. (2003) explain that PHP scripts are easy 

to write because they can be seen as an ex-

tension of the HTML language that embeds 

code directly into an HTML page.  However, 

they voice the concern that the database 

interfaces of PHP are ad hoc and code main-

tenance for database is awkward as new 

code must be written for each new database 

access. 

Thus, Cecchet et al. (2003) evaluated plat-

forms in terms of performance and ease of 

development. Their focus however is not 

aimed specifically at determining suitability 

based on specific use, such as teaching 

specified concepts. Moreover, they com-

pared EJB along with other non-EJB architec-

tures. Therefore, Cecchet et al. (2003) did 

not compare platforms with similar architec-

tures, as EJB’s architecture is more special-

ized than that of PHP and Java Servlets. 

Summary  

Choosing the appropriate tool should involve 

exhaustive evaluations of various options 

based on various relevant criteria that are 

backed by scientific facts and results. Some 

previous comparisons are based on intuition, 

while others use some criteria. In some 

cases, the recommended criteria have not 

been exhaustively tested. Other comparisons 

were not aimed at a specific need. This 

study fills this gap in the body of knowledge 

by being unique in the following ways: 

This study does not agree that it is sufficient 

to list the advantages and strengths of each 

programming language. Rather, the advan-

tages and strengths of each programming 

language should be examined and ranked in 

the light of certain desired qualities relevant 

to that specific use.  

Most importantly, this study attempts to 

solve the research problems using survey 

and experimentation, thereby providing sci-

entific evidence and exploiting the strengths 

of both methodologies.  

Proc ISECON 2006, v23 (Dallas): §3144 (refereed) c© 2006 EDSIG, page 4



Dehinbo Sat, Nov 4, 9:00 - 9:25, Normandy B

3. RESEARCH DESIGN AND METHODS 

This study uses a combination of two differ-

ent approaches to obtain the data. According 

Dix et al. (1998, p.440), the best way to find 

out how a system meets users' requirements 

is to “ask the user”. Therefore, survey will 

be used in this study. This will be supple-

mented with a programming experimenta-

tion which in line with McMillan and 

Schumacher (2001, p.32), will involve ma-

nipulating an algorithm by implementing it 

using the syntax of selected languages. 

Programming Experimentation 

For the experimental part, respondents were 

given a small problem to be solved using 

each of the programming languages; C++, 

Java, Visual Basic, and Pascal. The Line of 

Codes (LOC) for each solution in each lan-

guage was measured. 

 Establishing validity and reliability 
of the experimentation:  It is important 
that a measuring scale or instrument be 

consistent and reliable. It should produce 

more or less the same accurate results every 

time it is applied, even by different persons 

(Coertze & Heath, 1997, p.78). To increase 

the validity of this experimentation, all inac-

tive command statements are removed from 

the programs. 

 Scope and assumption of the ex-
perimentation:   The programming for the 

experimentation will be limited to simple 

programming. It is assumed that most re-

spondents would be able to write program to 

answer such question. 

Survey 

The stratified survey approach was used. 

The questionnaires contain closed questions. 

This is necessary in order to solicit informa-

tion including: ease of learning, ease of use 

under pressure, suitability for complex jobs, 

problems commonly encountered, program-

ming language preferences, flexibility and 

efficiency. 

 Population:  The population for the 
survey is all programmers and students us-

ing the four programming languages in their 

works and studies. Due to financial and time 

constraints, this was limited to respondents 

in software organizations within the eco-

nomically vibrant Gauteng region as well as 

web lecturers, programmers, researchers in 

major higher institutions in the Gauteng re-

gion in South Africa.  

At an estimated value of 3 programmers per 

organization, and 100 software organizations 

in the Gauteng region, we have about 300 

subjects. At an estimated value of 20 lectur-

ers per institution, and 25 higher institutions 

in the region, we have about 250 subjects in 

South African higher institutions. These give 

a total of about 800 subjects. The intended 

population is stratified into 8 groups consist-

ing of the group of students and the group 

of experienced programmers currently using 

C++, Java, Visual Basic and Pascal. This is 

necessary in order to have an adequate rep-

resentation of students and experienced us-

ers of the various programming languages. 

 Sampling method:  As stated by 
Corbetta (2003, p.211), sampling should 

enable the results obtained by studying the 

sample to be extrapolated to the whole 

population. The population is divided into 

strata and samples taken by randomly ad-

ministering questionnaires to respondents in 

major tertiary institutions and industries in 

the Gauteng region. 

According to Corbetta (2003:216), for a 

95% confidence level, a population size of 

about 800 requires a sample size of 120. 

Therefore a sample size of about 100 to 120 

would suffice. 

 Data collection:  A total of 160 ques-
tionnaires were distributed. In all, a total of 

110 questionnaires were duly completed and 

returned.  

 Questionnaire’s measuring scale:  
Dhyani et al.(2002) states that when one 

can measure what one is speaking about, 

and express it in numbers, one has demon-

strated tangible knowledge about it. There-

fore, using close-ended questions, the 

measuring tool will have values on a scale of 

1 to 5. 

 Establishing reliability and valid-
ity of the survey:  The research assistants 

were trained before starting to collect data. 

The questionnaire was piloted on computer 

lecturing staff, to ensure it is clear and un-

ambiguous. Sampling groups were chosen to 

include both the practicing programmers and 

learners. The study was concluded within the 

time frame of 6 months as information ob-

tained after such period may no longer be 

valid due to technological changes. 

Proc ISECON 2006, v23 (Dallas): §3144 (refereed) c© 2006 EDSIG, page 5



Dehinbo Sat, Nov 4, 9:00 - 9:25, Normandy B

 Scope of the survey:  The sampling 
groups were chosen to include respondents 

from the Pretoria, Midrand, Sandton and Jo-

hannesburg areas. These areas form a sig-

nificant part of the IT driving hub in South 

Africa. 

Overall analysis to achieve the result 

The average scores for the responses will be 

obtained for each of the questions in the 

survey, as well as the score assigned in the 

experimentation. The language with the 

highest total score is selected. 

4. DISCUSSION OF THE RESULTS 

The survey results are first presented. This 

is followed by the results for the experimen-

tation to estimate the Line of Code (LOC) for 

a simple programming exercise written in 

the various languages. To obtain a clearer 

picture of the responses, the scaling system 

is grouped. The information is then pre-

sented in the form of bar charts as given 

below: 

Ease of Learning 

From Figure 1 below, we can see that a total 

of 95 respondents indicate VB to be either 

very easy, relatively easy or okay to learn as 

compared to 75 responses for each of C++ 

and Java. This is probably true because VB 

has the "drag and drop program generating" 

facility in which you simply drag an object 

such as a Combo box unto the desktop, and 

VB then translate to equivalent program 

codes. Pascal however, tops in the “Don’t 

know + No response” bar.  This could be due 

to the fact that it is outdated by now and so 

only few people know about it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ease of use under pressure 

From Figure 2 below, more respondents (90) 

indicate VB to be easier to use under pres-

sure, followed by Java and then C++. This is 

due to the “drag and drop facility” in VB as 

well as the windows development environ-

ment for both VB and Java which, in addi-

tion, also has Microsoft Disk Operating Sys-

tems (MSDOS) executing modes. Pascal 

however runs mostly from the MSDOS 

prompt. 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

EASY/OKAY NOT OKAY Don’t know+no response
Scale

N
u
m
b
e
r 
o
f 
re
s
p
o
n
d
e
n
ts

C++

JAVA

VB

PASCAL

 

Figure 1.  Ease of Learning chart 

 

Proc ISECON 2006, v23 (Dallas): §3144 (refereed) c© 2006 EDSIG, page 6



Dehinbo Sat, Nov 4, 9:00 - 9:25, Normandy B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suitability for complex jobs 

From Figure 3 below, 90 respondents indi-

cate VB to be best suitable for complex jobs, 

followed by Java and then C++. This is due 

to the fact that VB and Java can connect to 

other software tools like internet web pages 

and databases via javascript, servlets, and 

middlewares. Again, Pascal is considered 

less suitable for complex jobs, as those new 

tools were not yet available when Pascal 

came to being. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

Not

Suitable+Manageable

Suitable+ok+v.suitable No response

Sc a l e

N
u
m
b
e
r 
o
f 
re
s
p
o
n
d
e
n
ts

C++

JAVA

VB

PASCAL

 
Figure 2.  The ease of use under pressure 

 

0

20

40

60

80

100

120

Not

Suitable+Manageable

Suitable+ok+v.suitable No response

Scale

N
u
m
b
e
r 
o
f 
re
s
p
o
n
d
e
n
ts

C++

JAVA

VB

PASCAL

 
Figure 3.   Suitability for complex jobs 
 

Proc ISECON 2006, v23 (Dallas): §3144 (refereed) c© 2006 EDSIG, page 7



Dehinbo Sat, Nov 4, 9:00 - 9:25, Normandy B

Overall rating for the languages 

From Figure 4 below, C++ and Visual Basic 

are considered to be equally best by 80 re-

spondents. Java comes next with 70 re-

sponses, probably due to the fact that in 

comparison with the other programming 

languages, it is newly being introduced in 

most schools and in the industry. With re-

spect to the overall rating above, here again 

Pascal is rated the lowest as a programming 

language. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line of Code (LOC) estimation 

From the completed questionnaires, the line 

of code was estimated for each program-

ming language’s solution to the given prob-

lem.  The minimum line of code for each so-

lution is given below: 

 

Java: LOC = 10 

 

import java.lancs.*; 

public class CalculateArea 

{public static void main (String[]args)throws 

Exception 

{int length, breath; 

BasicIo.prompt("PLEASE ENTER THE 

LENGTH OF THE AREA"); 

length=BasicIo.readInteger(); 

BasicIo.prompt("PLEASE ENTER THE BREATH 

OF THE AREA"); 

breath=BasicIo.readInteger(); 

System.out.println("THE AREA OF RECTAN-

GLE =" + length * breath +  "|"); 

}//end of method main 

}//end of class CalculateArea 

 

 

VB: LOC = 8 

 

Private Sub cmdCalculate_Click() 

Dim intLength As Integer, intbreadth As In-

teger 

Dim lngArea As Long 

intLength = Val(txtLength.Text) 

intbreadth = Val(txtBreadth.Text) 

lngArea = intLength * intbreadth 

txtarea.Text = lngArea 

End Sub 

 

 

C++: LOC = 9 

 

#include <iostream.h> 

main () 

{ int length, breadth; 

 cout << “Enter length of triangle”; 

 cin >> length; 

 cout << “Enter breadth of triangle”; 

 cin >> breadth; 

 cout << “The area of the triangle is 

“<< length * breadth<<endl; 

 return 0; 

} 

 

0

10

20

30

40

50

60

70

80

90

OKAY NOT OKAY NO RESPONSE

Sc a l e

N
u
m
b
e
r 
o
f 
re
s
p
o
n
d
e
n
ts

C++

JAVA

VB

PASCAL

 
Figure 4.  The overall rating for the programming languages 
 

Proc ISECON 2006, v23 (Dallas): §3144 (refereed) c© 2006 EDSIG, page 8



Dehinbo Sat, Nov 4, 9:00 - 9:25, Normandy B

Pascal: LOC = 10 

 

Program calcArea (input, output) 

var  

   length, breadth, area  : integer; 

begin 

  writeln ( 'Enter length of triangle') 

  readln ( length ); 

 writeln ( 'Enter breadth of triangle') 

 readln ( breadth ); 

 write ( 'The area of the triangle is  ',  length 

* breadth); 

end 

 

VB has the smallest LOC. C++ and Pascal 

also have reasonable LOC (8) minus the 

“begin” and “end” statement, making them 

easy to learn. Java however, has the longest 

LOC, making it more difficult for beginners 

to learn. However, it is considered suitable 

for complex jobs. 

5. CONCLUSIONS 

It was found that Pascal is simple to write 

for beginners, but not suitable for complex 

tasks. VB is easy to use under work pressure 

possibly due to the "drag and drop program 

generating" facility. Additionally, VB has the 

smallest LOC. In addition to the “drag and 

drop facility”, this makes it easier to learn 

and use under pressure. C++ and Pascal 

also have reasonable LOC (8) minus the 

"begin" and "end" statements, making them 

easy to learn. Java however has the longest 

LOC, making it more difficult for beginners 

to learn. Like VB, Java is suitable for com-

plex jobs and is considered very flexible as it 

interfaces with other web technologies like 

Java Servlets, and other middleware plat-

forms.  

The above findings therefore show that no 

single language can adequately satisfy all 

the requirements. But a careful combination 

of the languages can achieve the desired 

result. The study therefore concluded that 

the low pass rate for C++ is not due to C++ 

being an exceptionally difficult language, as 

there is no significant difference in the fac-

tors studied for C++, Visual Basic and Java. 

6. RECOMMENDATIONS 

From the above findings and conclusion, 

C++, Java and VB are all recommendable. 

VB is recommended for its ease of use under 

pressure due to the "drag and drop program 

generating" facility.  C++ is recommended 

because of the fact that for simple pro-

grams, C++ has few lines of code (LOC), 

which would make it easer to learn. Java is 

recommended for its flexibility and suitability 

for complex jobs. 

This study recommends a systematic combi-

nation of the programming languages to 

achieve the desired result of enhanced com-

prehension and potential capacity for future 

complex challenges. Since C++ and Java 

have similar constructs (Hamilton, 1996), it 

will be alright for students to start with C++ 

in the first year and at the second year level, 

they should move to Java which can do all 

C++ can do and more with a "gentle" lan-

guage constructs (Bergin, 1996). Visual Ba-

sic can be taught parallel to either C++ or 

Java in either first or second year respec-

tively. 

7. REFERENCES 

Apte, V., Hansen, T. and Reeser, P. (2003) 

“Performance comparison of dynamic 

Web platforms.” Computer Communica-

tions. 26 (8)  pp. 888 – 898. 

Ashenfelter, J. Paul (1999) Choosing a Data-

base for Your Web Site. Wiley Computer 

Publishing, New York.   

Bergin, J. (1996) “Object Technology in the 

Classroom: Java as a Better C++.”  

ACM SIGPLAN Curricular Patterns.  1 (2) 

pp. 21-27.  

Bishop, J. (1998) Java Gently: Programming 

principles explained. 2nd edition. Addi-

son-Wesley Longman, London. 

Bishop, J. and Hurter, R. (1999)  “Competi-

tors to Java: Scripting languages.”  Pro-

ceedings of the South African Computer 

Lecturers Association (SACLA) confer-

ence.  Golden Gate, South Africa, 5-8 

September 1999, pp. 88-95. 

Cecchet, E., Chanda, A., Elnikety, S., Mar-

guerite, J. and Zwaenepoel, W. (2003) 

“Performance Comparison of Middle-

ware Architectures for Generating Dy-

namic Web Content.” Lecture Notes in 

Computer Science: Middleware.  2672 

(2003) pp. 242-261.  

 Coertze, D. and Heath, R. (1997) Research 

Methodology for Technikon Students: A 

practical Approach. Technikon Natal 

publishing, South Africa. 

Proc ISECON 2006, v23 (Dallas): §3144 (refereed) c© 2006 EDSIG, page 9



Dehinbo Sat, Nov 4, 9:00 - 9:25, Normandy B

Cooper, R. (2001) “Software for managing 

Web sites.”  Proceedings of the South 

African Institute of Computer Scientists 

and Information Technologists (SAIC-

SIT) Annual conference. September 

2001. Pretoria, South Africa. 

Corbetta, P. (2003) Social Research: Theory, 

Methods and Techniques. Sage Publica-

tions, London. 

Creswell, J. Will (2003) Research Design: 

Qualitative, Quantitative and Mixed 

Methods Approaches. 2nd edition. Sage 

Publications, New York. 

Dehinbo, O. Johnson (2005) “The perform-

ance of Web-based 2-tier middleware 

systems.” Journal of Issues in Informing 

Science and Information Technology. 2 

(2005) pp. 757-769. Web site. 

http://2005papers.iisit.org/I59f23dehin.

pdf  Retrieved 13 May, 2005. 

Dix, A., Finlay, J., Abowd, G. and Beale, R. 

(1998) Human-Computer Interaction. 

2nd edition. Prentice Hall, Hertfordshire. 

Dhyani, D., Ng, W.K., and Bhowmick, S.S.  

(2002)  “A Survey of Web Metrics.” ACM 

Computing surveys. 34 (4) pp. 469-

503. 

Hamilton, M.A. (1996)  “Java and the Shift 

to Net-Centric Computing.” Computing 

Practices IEEE.  1 (2) pp. 31-39. 

Hartman, H.  (2001)  “Tools for dynamic 

Web sites: ASP vs PHP vs ASP.NET.” 

Seybold Report Analysing Publishing 

Technologies, 15339211 (12) pp. 1-12. 

Kelleher, C., and Pausch, R.  (2005)  “Low-

ering the barriers to programming: A 

taxonomy pf programming environ-

ments and languages for novice pro-

grammers.” ACM Computing surveys. 

37 (2) pp. 83-137. 

Klopper, S. (2003) “Comparing the three 

scripting languages: PHP, ASP and JSP 

with each other, in order to use the best 

option for a specific application.” B.Tech 

Articles, Faculty of ICT, Technikon  Pre-

toria. 1 (2003) pp. 17-22. 

Kruse, W. (2003) “A comparing of PHP and 

J2EE.”  B.Tech Articles, Faculty of ICT, 

Technikon Pretoria. 1 (2003) pp. 110-

117. 

Lahtinen, E., Ala-Mutka, K. and Jarvinen, H. 

(2005) “A study of the difficulties of 

novice programmers.”   Proceedings of 

the 10th annual SIGCSE conference on 

innovation and technology in computer 

science education. Caparica, Portugal. 

pp. 14-18. 

Lim, B.L. (2002) “Teaching Web develop-

ment technologies: Past, present, and 

(near) future.” Journal of Information 

Systems Education. 13 (2). pp. 117-

123. 

Marshak, M. and Levy, H. (2003), “Evaluat-

ing Web user perceived latency using 

server side measurements.” Computer 

Communications. 26 (8) pp. 872-887.  

McMillan, J.H. and Schumacher, S. (2001) 

Research in education. 5th edition. Addi-

son Wesley Longman, Inc, New York. 

Prechelt, L. (2000), “An Empirical Compari-

son of Seven Programming Languages.” 

Computer. 33 (10) pp. 23-29.  

Renaud, K., Lo, J., Bishop, J., Van Zyl, P and 

Worrall, B.  (1999)  “Algon: A frame-

work for supporting comparison of dis-

tributed algorithm performance.” Pro-

ceedings of PNDP conference.  February 

2003. Genoa, Italy. 

Sebesta, R.W. (1996) Concepts of Program-

ming Languages,  3rd edition. Addison-

Wesley Publishing Company, New York. 

Van Hoff, A.  (1997),  “The case for Java as 

programming language.” IEEE Internet 

Computing. 17 (1) pp. 51-56. 

Vinoski, S.  (2003)  “The performance pre-

sumption.” IEEE Internet Computing. 7 

(2) pp. 88-90. 

Wiedenbeck, S., Ramalingam, V., Sarasam-

ma, S. and Corritore, C.L. (1999) “A 

comparison of the comprehension of ob-

ject-oriented and procedural programs 

by novice programmers.” Interacting 

with Computers. 11 (3) pp. 52-282. 

Proc ISECON 2006, v23 (Dallas): §3144 (refereed) c© 2006 EDSIG, page 10


