
Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

Integrating Service-Oriented Paradigm

Into Introductory IS Courses

Billy B. L. Lim

bllim@ilstu.edu

Chu J. Jong

cjong@ilstu.edu
School of Information Technology

Illinois State University
Normal, IL 61790-5150

USA

Abstract

Web services and SOA (Service-Oriented Architecture) are two buzzwords that have received
tremendous amount of attention in the software industry in recent years. While these tech-
nologies have been incorporated in many industries in the IT market place, they are only be-
ginning to appear in the academia, primarily in upper division and graduate curricula. In this

paper, the belief that Web services and SOA technologies can and should be introduced early
in an IS curriculum is shared. Several scenarios that Web services / SOA can be integrated
into introductory IS courses to make them more interesting and more importantly, make the
students better prepared for upper division classes and for the industry upon graduation are
presented. These scenarios can be incorporated without compromising the core materials
presently covered in many IS curricula.

Keywords: Web services, SOA (Service-Oriented Architecture), SaaS (Software as a Service),
Teaching Introductory IS, Emerging Trends in IS Curricula

1. INTRODUCTION

The computer industry has advanced tre-
mendously in the past several decades and
has impacted our lives greatly in its ad-
vancement. Many would agree that when
comparing the progress of hardware versus
software, the former has advanced more
noticeably than the latter. This is partly be-

cause there has been lack of standards for
developing software and thus it is extremely
difficult to reuse software components and
integrate disparate systems to form a larger
one to solve an organization’s problem.

Object-oriented (OO) technology has been
utilized to address the above with some suc-

cess over the years as a new software de-
velopment paradigm. However, while OO

technology has addressed some of the is-
sues such as reuse, it lacks interoperable,
cross-platform support for component inte-
gration. Also, in today’s Internet/Web world,
where security is of utmost importance and
firewall is prevalently used, OO technology
also lacks a standard protocol where com-

munication between geographically and
technologically diverse objects can be estab-
lished in a firewall-friendly manner.

Now, the software industry is embracing an-
other wave of change in software develop-
ment technologies. This time it involves ser-
vice-oriented architecture (SOA), particularly

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 1

Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

the use of Web services to speed up applica-
tion development and reduce costs to access
data on disparate systems. Web services
(Benfield, 2001; Curbera, 2002; Dyck ,

2001; Kiely, 2001; Lim, 2003) and SOA
(Colan, 2004; Erl, 2004; Gold, 2004) are the
latest buzzwords in the industry to address
the issues identified above. The service
model is one that utilizes loosely-coupled,
platform and language neutral framework for
designing the next generation distributed

systems. It is based on technologies stan-
dardized by the W3C, the international stan-
dard body that oversees various Web related
technologies. It also has strong support from
major industry players such as Microsoft,
IBM, Sun, HP, and Oracle. As such, it is pro-

jected to be a strong technology that many
IT organizations will investigate and adopt if
proven viable. In fact, Gartner Research
compared Web services with previous at-
tempts and stated that this time things may
be different because “With Web services, all
the major vendors are on board with their

support.” (Mcdougall, 2001)

Recent news and studies on Web services /
SOA have also shown the growth and accep-
tance of the technology. Accenture, a re-
nowned global management consulting com-
pany, just announced that it will invest $450
million during the next three years to accel-

erate growth of its SOA capabilities
(InformationWeek, 2006). According to Zap-
Think, a market research firm, the market
for Web services platforms, application de-
velopment suites, and management tools is
projected to expand from a $380 million

(US) market in 2001 to over $15.5 billion
(US) in 2005 (Seely, 2002). Also, recent
survey by market research firm TechMatrix
(of 450 IT professionals and consultants)
finds that 65% of small and midsize compa-
nies and 35% of large companies have
adopted Web services to automate business

processes between trading partners and for
internal application integration. Another im-
portant observation is that the use of Web
services is now widespread in many indus-
tries including retail, financial services,
homeland security, transportation, etc.

This trend is further evidenced by a “leaked

memo” entitled Internet Software Services
from Bill Gates, Chairman of Microsoft, the
largest software company in the world. Ex-
cerpts from an internal Microsoft correspon-
dence released by The Wall Street Journal

and Computerworld (Niccolai, 2005) show
that Bill Gates is calling on Microsoft to jump
with both feet into the trend toward software
applications being delivered as a service

over the Internet. Specifically, he describes
the need to transition from “The Internet
Tidal Wave” that he wrote in another memo
ten years ago to the “services wave” that
Microsoft needs to start engaging in. He fur-
ther says, “Today, the opportunity is to util-
ize the Internet to make software far more

powerful by incorporating a services model
which will simplify the work that IT depart-
ments and developers have to do while pro-
viding new capabilities.”

With the above stunning growth, it is inevi-
table that Web services and SOA will be in-

tegrated into IS, CS, and other IT related
curricula sooner or later, if history is of any
indication. It is thus a natural evolution for
these curricula to begin exposing the begin-
ning students with these burgeoning tech-
nologies early on given the current trend of
software development. This will not only fas-

cinate the students with its interesting col-
lection of activities (see Section 3), but also
inspire and prepare them for real-world
software development scenarios when they
graduate. First-year and second-year under-
graduates rarely get the exposure to these
technologies because of the need to get to

the fundamentals first. This paper describes
strategies that can be employed without
compromising these fundamentals.

It should be noted that efforts to introduce
SOA and Web services are beginning to sur-
face in some CS and IS curricula. Just re-

cently, Georgetown University and IBM
Corp., together with George Mason Univer-
sity and the College of Charleston, are col-
laborating on developing academic programs
to address the demand for information tech-
nology skills, specifically SOA as a way of
using a company’s existing technology to

more closely align with business goals (cam-
pus-tech, 2006). Also, literature shows that
there are other integration efforts in the
form of upper-division/graduate, seminar
type class (e.g., (Connolly, 2005; Hum-
phrey, 2004; Lawler, 2005; Subramanian,
2004; Weaver, 2004)). In this paper, how-

ever, it is our belief that ideally one should
start to lay the foundation of SOA and Web
services in introductory programming and
system analysis and design courses. Eyeing
on the popularity and importance of the ser-

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 2

Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

vice paradigm, its economic argument
(Booch,2001), the need to keep IS curricula
as up-to-date as possible, and the impor-
tance of laying the right foundation early on,

it is thus the goal of this paper to describe
scenarios that are viable for integrating Web
services and SOA into introductory IS
courses.

This paper is based on a framework we pre-
viously built for the CS discipline that inte-
grates Web services technology into its in-

troductory courses, CS1/CS2 (Lim, 2005).
Applying the same concepts, it now presents
a different view of the framework that tar-
gets IS courses. This effort notes the fun-
damental differences between IS and CS, as
given in Figure 1 below, which depicts both

CS and IS discipline range coverage in one
unified diagram. It represents a merge of
the CS and IS coverage diagrams given in
(ACM, 2005). From theory/principles to ap-
plication configuration (horizontal range)
and from hardware architecture to organiza-
tion issues (vertical range), it can clearly be

seen that CS and IS are focusing on funda-
mentally different fields of study. However,
there is a small overlap that exists in both
the disciplines, as indicated in the intersec-
tion area.

Figure 1: CS/IS discipline range, repro-
duced from Figure 2.4 (ACM, 2005, page
18) and Figure 2.5 (ACM, 2005, page 19)

The remainder of the paper is organized as
follows. Section 2 gives a brief overview of
the underlying technologies behind Web ser-
vices and SOA. The aforementioned scenar-
ios for integration are detailed in Section 3.
Section 4 provides a discussion of the im-
plementation of the scenarios, and finally

the summary and conclusions are given in
Section 5.

2. WEB SERVICES AND SOA: THE

SERVICE-ORIENTED PARADIGM

To understand the service paradigm, the
term “service” should first be defined. While

there are many definitions of what a service
is, the following definitions are representa-
tive ones. The first emphasizes on lower
level computation unit as a service whereas
the second one focuses on higher level busi-
ness process.

“Services are self-describing, plat-

form-agnostic computational elements
that support rapid low-cost composi-
tion of distributed applications.” (Pa-
pazoglou, 2003)

“[A service] is an application function
packaged as a reusable component

for use in a business process. It either
provides information or facilitates a
change to business data from one
valid and consistent state to another.”
(Bennett, 2002)

The above definitions show that a service
can be viewed from different levels of granu-

larity. Service suppliers can assemble their
services out of existing ones, or develop and
evolve atomic services using traditional soft-
ware development techniques.

Now on to the definition of service-oriented
paradigm, which seems to be the next para-
digm to follow component-based and OO

paradigms, made popular during the 90’s.
One can define a service-oriented paradigm
as one that utilizes services as fundamental
building blocks for developing applications.
It can be thought of as being reincarnated
from the concept of ASP (Application Service

Provider), another popular software concept
of the 90’s, where an application is served
over a network. ASP is “a third-party entity
that manages and distributes software-
based services and solutions to customers
across a wide area network from a central
data center.” (Webopedia) This resembles

what service computing is trying to achieve,
where services are published (by the sup-
plier), discovered (from a directory), and
bound and used (by the consumer). For
more on this, detailed comparisons of ASP
and service-oriented computing are given in
(Gold, 2004).

Note that similar concepts of the above are
described in SaaS (Software as a Service)

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 3

Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

(Turner, 2003) and service-based model of

software (Bennett, 2002). The core concepts
are that the users of a service do not own or
buy the service. Instead, they use and pay

for the use of the service in an on-demand
basis. Namely, the separation of the posses-
sion and ownership of software from its use
is the key to distinguishing this new para-
digm from the traditional software paradigm.
Another key factor is the dynamic customi-
zation of the use of the service at runtime

and the disengagement of the service upon
completion.

Now on to the definition of SOA, which W3C
defines as “a set of components which can
be invoked, and whose interface descriptions
can be published and discovered”. (WS-

gloss) The components referred to here are
the aforementioned services and an example
of the publication and discovery of the ser-
vice interface can be found in the discussion
of Web services, given below. It should be
noted that although SOA and Web services
are built on similar principles, they are not

exactly the same. As explained below, Web
services comes with a baggage of technolo-
gies (e.g., XML, SOAP, WSDL) but SOA is
more than a set of technologies and runs
independent of any specific ones. In fact,
W3C defines Web services as:

“A Web service is a software system

designed to support interoperable
machine-to-machine interaction over
a network. It has an interface de-
scribed in a machine-processable for-
mat (specifically WSDL). Other sys-
tems interact with the Web service in

a manner prescribed by its description
using SOAP-messages, typically con-
veyed using HTTP with an XML seriali-
zation in conjunction with other Web-
related standards.” (WS-gloss)

Under the hood, Web services relies on XML-
based SOAP (Simple Object Access Proto-

col), WSDL (Web Service Description Lan-
guage), and UDDI (Universal Description,
Discovery, and Integration) as the underly-
ing technologies for involved parties to
communicate and produce/consume a Web
service, as shown in Figure 2. Here, a sce-
nario that shows the National Weather Ser-

vice registering its weather service with a
registry and a portal application finding and
consuming the service is depicted.

Furthermore, standard-based and firewall-
friendly HTTP is commonly used as the un-
derlying transfer protocol. Given that all the
technologies involved are non-proprietary,

corporations are more willing to invest in

this new service model. More importantly,
this model allows for interoperable services
and the interoperability and scalability of

Web services means that developers can
rapidly create larger applications and Web
services from smaller ones. This adds an-
other dimension to the Web—instead of just
person-to-person or person-to-system, it
also handles system-to-system. The IT soft-
ware industry is now banking on this new

way of application development as it mimics
how hardware vendors have been producing
hardware components for years.

3. INTEGRATION SCENARIOUS FOR

INTRODUCTORY IS COURSES

Our previous work on integrating Web ser-
vice into CS1/CS2 (Lim, 2005) lists five sce-

narios that cover various introductory Com-
puter Science topics. They provide an envi-
ronment for students to expose themselves
to the burgeoning Web services state-of-the-
art Internet technology. The five scenarios
are: 1) Method Invocation, 2) Sequence,

Iterative, and Decision Structure, 3) Sorting
and/or Searching, 4) Miscellaneous Data
Structure, and 5) Use Different OS. Each of
them includes a topic in question, compari-
son between typical and Web service deliv-
ery mechanisms, and an example.

This section extends the aforementioned five

scenarios by adding the SOA concept and
alternating the delivery mechanism to ac-
commodate the IS discipline, being mindful
of the fundamental difference between the

� find

service

� bind to

service
Service Provider
(e.g., National

Weather Service)

Service Registry (e.g.,

IBM UDDI service)

� publish

service

Figure 2: Life Cycle of a Web Service Execu-
tion (Registry, Lookup, and Consumption)

Figure 2: Life Cycle of a Web Service
Execution (Registry, Lookup, and Con-

sumption)

Service Re-

quester (e.g., My

Google Portal)

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 4

Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

IS and CS disciplines as discussed in Section
1. In addition to the five scenarios, three
new scenarios, File vs. DBMS, System Con-
cepts, and EDI/System Integration, are

added to address various IS disciplinary ar-
eas.

Method Invocation

Web Services / SOA Based Delivery: Instead
of merely invoking the methods that are on
the same system, introduce the notion that
some methods may have been written by

others and that these methods (i.e., Web
services) are scattered all over the world.
The method invocations are delivered to the
service providers via the Web.

Example: The Web service method say-
Hello() may be coded to return "hello" if

called from a local system in the United
States, but it may return hello in the respec-
tive foreign language if the called method is

housed in a foreign country (e.g., "你好 (ni

hao)" from China, "hola" in Mexico, "kon-
nichiwa" in Japan). This “hello world” of Web
services allow the students to be exposed to
the new world of Web services and technol-
ogy with minimal complexity.

Other: The introduction of Web services in

this scenario opens up many opportunities to
discuss various other subject areas as well.
In addition to Web services (SOA in gen-
eral), one can discuss distributed computa-
tion via grid computing systems, e-business,
mobile commerce, data communication, and
networking in general. Also, because the

returned result may contain foreign charac-
ters, one can talk about an abstract layer on
hiding character encoding schemes. Lastly,
the concept to polymorphism can also be
tied to the above when one considers how
the objects from different countries are re-

acting in their own ways (of saying hello) to
the same message.

Sequence, Iterative, and Decision Struc-

tures

Typical Delivery: These topics are typically
covered by traditional discussion of scenar-
ios that (1) impose a certain order to solve a

problem (e.g., read the rate of pay and
hours worked before calculating the weekly
salary), (2) require a loop be used (e.g.,
finding the minimum, maximum, and aver-
age among a set of integer objects), and (3)
need a decision based on the condition (e.g.,

granting a withdrawal request provided that
there is enough money in the account—a
classical if-then-else construct).

Web Services / SOA Based Delivery: Instead

of merely processing a collection of objects
that carries some meaning but may be bor-
ing to the students, one could present a sce-
nario where the goal is to solve a problem
by using the three fundamental control
structures and some existing Web services
that can be composed to form a solution for

the problem.

Example: A plausible scenario here is to dis-
cuss a problem where one wishes to find out
the coldest temperature in all the U.S. by zip
codes, within a given radius, at a particular
moment in time. Further, the coldest area of

the country needs to be plotted on a map
(see Figure 3).

Figure 3: A Web service application to
find and plot the coldest location within a

specified area (by zipcode)

This scenario, which is much more interest-
ing for today's freshmen, may seem intrac-
table in a traditional introductory program-
ming course environment. But there exist
various publicly available Web services that
can be composed together to solve this

problem rather effortlessly. There exists one
that retrieves all the US zip codes (GetZip-
Codes) (Remotemethods), another one that
finds the temperature given a zip code
(Xmethods), and yet another one that plots
a particular area on a map given a zip code
(MapPoint Web service) (Mappoint). Thus,

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 5

Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

one can cover the sequence, iterative, and
decision structures all in one shot in the
above example.

Other: Variations of the above can easily be

done if one wishes to get "closer to home" to
find temperatures that are in one's
neighborhood. There are Web services that
retrieve all the zip codes within a given ra-
dius mile of another (e.g., GetNearbyZip-
Codes (Teachatechie)) and ones that calcu-
late the distance between two given zip

codes (e.g., (Imacination)). With these Web
services, one can for example create exer-
cises that require two different computations
of all the areas that are within, say, 50 miles
radius of a city like Chicago given the zip
codes.

Sorting and/or Searching

Typical Delivery: This topic is typically cov-
ered by discussions on various sorting and
searching methods and their respective
complexities in terms of their speed and
sizes. This is typically followed by examples
of applying the algorithms on records of in-

terest such as ranking the top 10 NCAA
teams and searching for a team given some
criteria.

Web Services / SOA Based Delivery: Web
services call can be made to return the re-
sult of a sort or search, whether this is via
publicly available or internally developed

Web services. Combining the searching,
sorting, and others allow students to learn
how to put pieces together to form a service
architecture.

Example: Web services that implement dif-
ferent searching and sorting algorithms may

be provided for the students to experiment
with and gather the performance of the al-
gorithms. A discussion of the different com-
plexities for the implemented algorithms
may be reinforced here. Also, applying the
same search on different searching engines
such as Google, MSN, etc. and comparing

their performance may initiate more discus-
sions on the topics. Lastly, students may be
asked to observe any network latency as
part of the experiments and discuss how the
delays compare to the overall performance.

Miscellaneous Data structures

Typical Delivery: This topic is typically cov-

ered by discussing scenarios that require the
use of compound data structures (e.g.,

structures such as stacks, queues, and trees)
to effectively produce results for certain
problems. For example, one may discuss a
business model implementation of super-

market queues using simulation based on
queuing theory (e.g., to create express lanes
or otherwise, how many such lanes). The
typical scenarios generally do not involve the
use of Web services to present the queue
and related data structures.

Web Services / SOA Based Delivery: To

make the discussions and potential exercises
more interesting, students can be required
to consume Web services that directly pro-
duce the data structures of interest. Alterna-
tively, they may be asked to create such
data structures from the results of Web ser-

vices themselves to handle the application
requirements.

Example: A plausible scenario is to expose
the students to the Google Web services API
at http://www.google.com/apis/ where in-
stead of going to www.google.com to do
searching, a customized version (e.g., an

enhanced version of GUI for searching, rep-
resenting a level of abstraction on top of the
search engine) can be built to serve their
own interests. Here, we are still relying on
Google's powerful search engine to scour the
Web, but we can add the bells and whistles
(e.g., add spell check, format the input data

or the searched results to exercise the
methods of compounded data structures) to
make the search experience more fruitful.

A discussion of how Google or other search
engines typically organizes its data can then
follow. For example, Google Directory reuses

the data provided by the Open Directory
Project and constructs a hierarchical list of
Web sites (Ntoulas, 2004). Instead of gen-
erating a compound data structure and con-
structing a traversal algorithm, the service
traverses up and down the already con-
structed directory tree to get the information

to the caller.

Other: How Web services are at the core of
designing and implementing Web portals can
be discussed to elaborate the key concepts
of the metadata data structures used by the
Web services.

Use of Different OS

(Not So) Typical Delivery: In some curricula,
part of the introductory sequence needs to

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 6

Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

expose students to an environment that is
other than the "main" one. For example,
Windows environment that runs Java may be
the main environment that supports the

main course activities while an alternate one
may be any of the Unix/Linux platforms,
Mac, or even z/OS mainframes that runs
Java. Here, the rationale is to expose the
students to multiple OSes and the students
may be given a small program to do in the
alternative environment.

Web Services / SOA Based Delivery: Instead
of developing just another program that
runs on an alternative environment, stu-
dents may be shown how to develop a Web
service and be challenged to create a useful
Web service in an open system compliance

environment, e.g., the Java virtual machine
approach. In fact, many of the virtual ma-
chine approaches (Smith, 2005) allow the
applications to port from one platform to the
others without changing a single line of their
code. Then, one possibility is to require the
students to consume the Web service that

they have just built. This allows for a discus-
sion of cross-platform interoperability when
the consumer interoperates with the pro-
ducer. Students would realize that the Web
services do not have to be tightly coupled
with the hardware and operating system
platform.

Example: A Web service on the aforemen-
tioned GetZipCodes may be developed and
the same service consumer discussed earlier
may then be used to consume the newly
created Web service. This service may, for
example, read from a file that contains all

the zip codes and return them to the caller.

File vs. DBMS

Typical Delivery: File and database process-
ing are two topics that are often presented
in a disconnected manner, possibly in two
different courses.

Web Services / SOA Based Delivery: One

viable delivery method is to hide the two
data access techniques behind Web services
and then reveal the techniques after ex-
periments are carried out.

Example: Via black box approach and easily
using two different Web services, students
can be interacting with one Web service that

implements a sequential file access to, say,
a collection of customers, and another one

that implements a database access to the
same collection on, say, Microsoft Access.
With this, an instructor can methodically re-
veal the underlying access approach and

discuss the cost and benefits of using each.

Other: Much like Scenario 3.3, one can dis-
cuss the pros and cons of different access
methods and the performance metrics here.

System Concepts

Typical Delivery: System concepts and the
components and relationships of a system

are typically covered in an introductory Sys-
tem Analysis and Design course. Structured
and/or OO system analysis and design are
the usual paradigms covered.

Web Services / SOA Based Delivery: In addi-
tion to the above two paradigms (or in place

of some of the portions, to some degree),
service paradigm can be introduced as a
burgeoning computing approach.

Example: The transition from structured
(SA/SD) to OO (OOAD) approach to system
development has taken a long while (and it
is still happening) and many curricula use

the dual paradigm approach to teaching the
concepts if they are not completely transi-
tioned from the traditional approach. Text-
books also exist to support such an approach
as authors see the market for the balanced-
approach, as used in the authors’ institution.

A switch to a trio paradigm approach to sys-

tem analysis and design will certainly be
challenging, to say the least. There are no
textbooks to support such an endeavor and
the research and theory behind service para-
digm, with respect to system related issues
(e.g., SOA management), is still too imma-

ture to warrant a significant coverage of the
topic at an introductory level. A recom-
mended delivery is to simply expose the
students to the service paradigm at a high
level, discuss its benefits (e.g., ones pre-
sented in Section 2) and challenges (e.g.,
when dynamically finding and negotiating for

a service, how does the consumer “negotiate
with” and “trust” the producer? Others in-
clude service composition, orchestration,
service transaction management, etc.).

Other: When covering UML (Unified Modeling
Language), one can opt to discuss how UML
can be used the model the new world of SOA

and Web services. This can be done by using
its Component Diagrams to model the ser-

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 7

Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

vices in question, for example, a legacy
COBOL billing subsystem (Smith, 2006). Al-
ternatively, one can also use a UML profile to
extend the standard UML elements (e.g.,

class, association) so that domain or applica-
tion specific concepts can be modeled more
precisely. A profile that specifies the func-
tional aspects (i.e., business logic) in SOA
can be found in (Marcos, 2003).

EDI / System Integration

Typical Delivery: Electronic Data Interchange

(EDI), which is “the computer-to-computer
exchange of structured information, by
agreed message standards, from one com-
puter application to another by electronic
means and with a minimum of human inter-
vention” (Wikipedia), is a topic that is typi-

cally covered as a B2B commerce standard,
probably in a 200-level e-Commerce course.

Web Services / SOA Based Delivery: As
given in Section 2, Web services are quickly
becoming the preferred means of machine-
to-machine communication. Together with
the various standard XML derivatives (see

below), Web services can be introduced as a
more cost effective, value-added, more sim-
plistic, and better quality provider of infor-
mation than EDI, which has been around for
more than 2 decades.

Example: Instead of discussing EDI and its
ANSI X12 official standard, one can discuss

the Electronic Business XML (ebXML) initia-
tive, which represents a technical framework
that enables XML to be utilized in a consis-
tent manner for the exchange of all elec-
tronic business data. ebXML and Web ser-
vices hold the promise of realizing the origi-

nal goals of EDI, making it simpler and eas-
ier to exchange electronic documents over
the Internet. Note that the ebXML messag-
ing specification is based on SOAP with At-
tachments. Also, one can discuss various
other industry efforts to standardize data
interchange, such as FpML (Financial Prod-

ucts Markup Language), which is the XML-
based, freely licensed, e-commerce standard
supporting OTC trading of financial deriva-
tives.

4. DISCUSSION

First and foremost, it should be noted that
the scenarios and activities discussed in Sec-

tion 3 are merely intended to be ones that
can be used to integrate Web services and

SOA into introductory information systems
courses and expose students to an increas-
ingly important topic without compromising
the core of the courses. They are not in-

tended to replace any of the core topics and
their use should be considered experimental
at this point in time.

Such an experiment has been investigated in
the 2nd IS programming course at the au-
thors' institution. The overhead of introduc-
ing Web services was minimal for the in-

structor and would be minimal for many
others who wish to try given that in many of
the scenarios, "black-box" approach would
be used. The underlying details are not ex-
pected to be fully disclosed until the stu-
dents are at an upper division course that

hopefully has a segment that reveals the
details and components of Web services and
SOA.

Also, with today's technologies, consuming
an existing Web service or developing a new
one is a relatively easy proposition. For ex-
ample, to consume a Web service in the Mi-

crosoft Visual Studio.NET environment, one
needs to simply provide the URI (Uniform
Resource Identifier) of the Web service and
include it as a Web reference in the Solution
of the project being built, all of which can be
accomplished via point-and-click. Then, to
invoke a service, one simply instantiates an

object from the associated proxy class
(automatically generated and included in the
Web reference) and makes a method call,
like how one would normally make a call to a
regular object.

Similarly, to develop a Web service, one

needs to simply create a Web Service pro-
ject in VS.NET and tag the method that is to
be exposed using the [WebMethod] attribute,

i.e., just insert this attribute before the
method! When done, the method is now ex-
posed and is callable as a Web service.

Both the consumption and the development
of Web services can also be achieved easily

using technology from the other camp, i.e.,
Java. Many Java IDEs (e.g., Eclipse with its
Web Tools Platform, Oracle JDeveloper, IBM
WebSphere, Sun Java Studio, etc.) provide
functionality that is comparable to Microsoft
VS.NET and allow for simple integration of
Web services technology.

As for the coverage of SOA and the general
topic of Web services (this is a true over-

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 8

Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

head as this topic is not known to be cov-
ered in any courses before the advent of the
burgeoning technologies), this can conceiva-
bly be introduced when the general introduc-

tion to software development is given. An
estimate is that about 1-week of coverage
(in a 16-week semester) should be dedi-
cated to this introduction with SOA / Web
services being a major component here.
SOA and Web services are changing the
landscape of software construction and their

technologies are at the heart of software
evolution and thus deserve the spotlight and
time coverage.

5. SUMMARY AND CONCLUSION

With computers becoming commodity prod-
ucts and software becoming more and more

complex to support their abundance and
ubiquity, the software development tech-
nologies utilized by the software industries
have evolved continuously over the decades
to address challenge. SOA and Web services
are the latest collection of technologies that
are at the center of attention in recent years

for addressing this challenge of developing
interoperable, cross-platform software com-
ponents that can be integrated easily. While
the industries and IT businesses are working
toward utilizing these technologies to en-
hance their software development practices,
the demand of trained professionals in this

field is on the horizon.

To produce graduates who are knowledge-
able about these technologies, many educa-
tional institutions have already started to
integrate SOA and Web services technolo-
gies into their upper level courses. Presuma-

bly, their arguments for integrating the
technologies at the upper level are such that
the undergraduates need to acquire basic
computing foundation first before they can
proceed to the advanced technologies. We,
on the other hand, believe that the integra-
tion of these new technologies should be

done as earlier as possible, once proper in-
tegration mechanisms are carefully formu-
lated.

With that belief as our guide, we extracted
the spirits of SOA and Web Services and
synthesized them to form numerous scenar-
ios for the IS majors. Blending in with the

fundamentals of IS, we generated examples
from these scenario to fit the first few
courses of IS curricula based on the criteria

depicted in Computing Curricula 2005 (ACM,
2005). This resulted in the presentation of
eight scenarios with examples for integration
in this paper. They are intended to serve as

guidelines for others to consider and more
importantly as examples for many other top-
ics that we did not cover in this paper.

6. REFERENCES

ACM, AIS, IEEE-CS (2005). “Computing Cur-
ricula 2005 – The Overview Report”,
September 30, 2005.

Benfield, S. (2001). “Web Services: XML’s
Killer App.” Java Developers’ Journal,
Vol. 6, No. 4.

Bennett, K.H., et al. (2002). “Prototype im-
plementations of an architectural model
for service based flexible software.” Ha-

waii Int’l Conf on System Sciences.

Booch, G. (2001). “Web Services: The Eco-
nomic Argument.” Software Develop-
ment, Vol. 9, No. 11, November.

Campus Technology (2006). “G-town, IBM
Develop Curricula to Address IT Skills
Shortage.” http://www.campus-

technology.com/news_article.asp?id=19
242&typeid=150, September, 2006.

Colan, M. (2004). “Service-Oriented Archi-
tecture expands the vision of Web ser-
vices, Part 1.” http://www-
128.ibm.com/developerworks/webservic
es/library/ws-soaintro.html, April.

Connolly (2005). “A Funny Thing Happened
on the Way to the Form: Using Game
Development and Web Services in an
Emerging Technology Course.” Informa-
tion Systems Education Journal, 3 (38).
http://isedj.org/3/38/. ISSN: 1545-

679X. (Also appears in The Proceedings
of ISECON 2004: §2442. ISSN: 1542-
7382.)

Curbera, F., et al. (2002). “Unraveling the
Web Services Web.” IEEE Internet Com-
puting, march/April.

Dyck, T. (2001). “Web Services Wave (the

Cover Story: Web Services Wake-Up
Call).” eWeek, Vol. 18, No. 35, Sept.

Erl, T. (2004). “Service-Oriented Architec-
ture: A Field Guide to Integrating XML
and Web Services.” Prentice Hall.

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 9

Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

Gold, N. and A. Mohan, C. Knight, M. Munre
(2004). “Understanding Service Oriented
Software.” IEEE Software, March/April.

Humphrey, M. (2004). "Web Services as the

Foundation for Learning Complex Soft-
ware System Development." 35th
SIGCSE Technical Symposium on Com-
puter Science Education, Norfolk, Vir-
ginia USA March 3–7.

Imacination,
http://webservices.imacination.com/dist

ance/

InformationWeek (2006). July 24, pp. 17.

Kiely, D. (2001). “WSDL for Defining Web
Services,” Cover Story, XML Magazine,
Vol. 2, No. 4, August/September.

Lawler, et al (2005). “A Study Of Web Ser-

vices Strategy In The Financial Services
Industry.” Information Systems Educa-
tion Journal, 3 (3). http://isedj.org/3/3/.
ISSN: 1545-679X. (Also appears in The
Proceedings of ISECON 2004: §3443.
ISSN: 1542-7382.)

Lim, B. L. Billy and H. J. Wen (2003). “Web

Services: An Analysis of the Technology,
its Benefits, and Implementation Difficul-
ties.” Information Systems Management,
Vol. 20, No.1, Spring, pp. 49-57.

Lim, B. L. Billy and Chu J. Jong, Pruthikrai
Mahatanankoon (2005). “On Integration
Web Services From the Ground Up Into

CS1/CS2.” Proceedings of ACM SIGCSE
2005, February, 2005

Mappoint,
http://www.microsoft.com/mappoint/def
ault.mspx

E. Marcos, V. de Castro, and B. Vela. (2003)

“Representing Web services with UML: A
Case Study,” Int’l Conference on Service
Oriented Computing, December.

Mcdougall, Paul (2001). “Decoding Web Ser-
vices.” InformationWeek,
http://www.informationweek.com/story/
IWK20010928S0008.

Niccolai, J. (2005). “Gates memo puts online
services at heart of Microsoft.”
http://www.computerworld.com/develop
menttopics/development/webservices/st
ory/0,10801,106069,00.html, November
09.

Ntoulas, A. and J. Cho, C. Olston (2004).
"What’s New on the Web? The Evolution
of the Web from a Search Engine Per-
spective." WWW2004, May 17-24, New

York, NY, USA.

Papazoglou, M. and D. Georgakopoulos
(2003). Guest editor introduction: “Ser-
vice- Oriented Computing.” ACM
SIGSOFT Software Engineering Notes
46, 24-28.

Remotemethods,

http://www.remotemethods.com/home/
valueman/validati/zipcodes

Seely, R. (2002), “Analysts: bull market for
Web services,” Application Development
Trends,
http://www.adtmag.com/article.aspx?id

=5956&

Smith, R. (2006), “Modeling in the Service
Oriented Architecture,”
http://www.devx.com/javaSR/articles/s
mith1/smith1-1.asp, retrieved Sept.,
2006.

Smith, James E. and Ravi Nair (2005). “The

Architecture of Virtual Machines,” IEEE
Computers, May 2005.

Subramanian and White (2004). “Three
“Hot” Emerging Technologies: What
They Are, and What They Mean for IS
Education.” Information Systems Educa-
tion Journal, 2 (7). http://isedj.org/2/7/.

ISSN: 1545-679X. (Also appears in The
Proceedings of ISECON 2003: §4122.
ISSN: 1542-7382.)

Teachatechie,
http://teachatechie.com/GJTTWebServic
es/ZipCode.asmx

Turner, M. and D. Budgen, P. Brereton
(2003). “Turning software into a ser-
vice.” IEEE Computer, 36, pp. 38-44.

Weaver, A. and J. Peden (2004). “Integrat-
ing Web Services into the Undergraduate
Computer Science Curriculum.” National
Science Foundation, CISE Education Re-

search and Curriculum Development
Program, January 12.

Webopedia,
http://www.webopedia.com/TERM/A/Ap
plication_Service_Provider.html

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 10

Lim and Jong Sat, Nov 4, 10:30 - 10:55, Champagne

Wikipedia, “Electronic Data Interchange.”
http://en.wikipedia.org/wiki/Electronic_
Data_Interchange

WS-Gloss, “Web Services Glossary.”

http://www.w3.org/TR/ws-gloss/

Xmethods,
http://www.xmethods.net/sd/2001/Tem
peratureService.wsd

Proc ISECON 2006, v23 (Dallas): §3352 (refereed) c© 2006 EDSIG, page 11

