
Zant Sat, Nov 4, 11:00 - 11:25, Champagne

Model-View-Controller Architecture in a Sys-

tems Analysis and Design Course

Robert F. Zant

Illinois State University
Normal, IL 61790, USA

rfzant@ilstu.edu

Abstract

Information systems programs typically include a system analysis and design course that re-

quires students to develop a system for either a real or simulated firm. This is inherently a

less structured task than students have confronted in other courses. The Model-View-

Controller (MVC) paradigm has proven to be very useful in industry and also can be effectively

used in student projects. It is applicable to projects using either traditional or object-oriented

methodologies. The MVC paradigm is presented along with guidelines for its use in a systems

analysis and design course. A simple example of the code structure using a procedural script-

ing language is given.

Keywords: System Analysis and Design, MVC, Framework

1. INTRODUCTION

The IS 2002 Model Curriculum includes an

example implementation consisting of ten

courses that could be used to deliver the

curriculum (Gorgone, 2002). These ten

courses include a three-course sequence in

systems development and database design

(courses 7, 8, and 9). A recent survey of 50

schools indicates that this is a common pat-

tern used in curricula--48 schools reported

offering a database design course, 44 of-

fered one course in systems analysis and

design, and 25 reported offering a second

course (Waldman, 2005).

The content of each of the two courses in

systems analysis and design varies; but,

commonly, the first course emphasizes

analysis and design using cases and the sec-

ond emphasizes design and implementation

(Chen, 2005; Morien, 2005; Roggio, 2005).

The second course, typically, is a capstone

course requiring either a simulated project

or a real project. Both approaches offer

benefits. A simulated project allows more

control over the technology used to imple-

ment the project, does not have the issues

associated with working with a real client,

and, consequently, allows more focus on the

process. An actual project provides more

fidelity in accessing feasibility and in deter-

mining requirements (Chen, 2005; Helwig,

2005).

The systems development course sequence

at Illinois State University is a three-course

sequence that includes both a simulated pro-

ject and an actual project. The first course

covers systems analysis and design using

cases. Both the traditional structured sys-

tems methodology and the object-oriented

methodology are covered using a text such

as Systems Analysis and Design in a Chang-

ing World by Satzinger, Jackson and Burd

(Satzinger, 2004). For the second course,

students take one of two courses depending

on the track in the curriculum the student

has selected. One track is oriented towards

traditional methodology so the second

course taken by students in that track builds

on the introduction to traditional methodol-

ogy from the first course. The second track

is oriented toward web application develop-

ment so the second course in that track goes

more in depth into object-oriented method-

Proc ISECON 2006, v23 (Dallas): §3353 (refereed) c© 2006 EDSIG, page 1

Zant Sat, Nov 4, 11:00 - 11:25, Champagne

ology. Both of these courses require stu-

dents to implement a simulated project. The

third course is a capstone course requiring

student teams to develop a system for a real

client. Completing an actual project and

interacting with an actual client is an impor-

tant experiential learning activity to prepare

students for careers as an IS/IT professional

(McGann, 2005; Morien, 2005; Rebhun,

2005; Scott, 2004].

Since students from both tracks enroll to-

gether in the capstone course and may be

on the same team, the use of an implemen-

tation methodology in all three courses that

can be used in both the traditional and OO

approaches is advantageous. It facilitates

both the students' interaction on the project

and the instructor's mentoring process.

This paper describes a system design strat-

egy that may be used in either a simulated

or real project. It may be used with both

procedural-oriented and object-oriented lan-

guages. Consequently, the strategy, known

as the model-view-controller (MVC) para-

digm, is well suited for use in a multi-course

systems analysis and design sequence that

includes both traditional and object-oriented

methodologies and the implementation of a

project. An example of its use with a proce-

dural-oriented script language is given be-

low.

2. MODEL-VIEW-CONTROLLER PARA-

DIGM

The MVC paradigm dates to the late 1970's

when it was developed in conjunction with

the Smalltalk-80 programming language as

a means of solving problems arising from

developing systems with graphical user in-

terfaces (GUI) (Krasner, 1988). The para-

digm was based on the "input-processing-

output" view of a system with the goal of

separating a system into three parts. The

Controller handles the input portion control-

ling the interface with keyboard and mouse,

as well as controlling the interface between

the Model and associated Views. The Model

contains the application logic and accesses

persistent data. A View is responsible for

displaying output created by the Model. The

structure of a simple MVC system is depicted

in Figure 1 in the Appendix.

Since its development, MVC has proven to

be an important design pattern for facilitat-

ing the development, debugging, and main-

tenance of systems. And, while it was origi-

nally intended to more easily develop GUI

systems, it has been successfully applied to

the development of client-server and web-

based systems as well. For example, it is

the basis for the JSP "model 2" architecture

(Seshadri, 1999). Its usefulness has been

extended by the advent of software that en-

hances the de-coupling of the View from the

Model and the Model from the data store.

Tag libraries used with scripting languages

like JSP and PHP or the use of XML and XSLT

provide a degree of independence between a

View and Model. Models and databases can

be de-coupled through the use of ODBC or

JDBC drivers, the PHP Data Objects Inter-

face (PDO) (PDO, 2006), and object-

relational mapping packages (ORM) such as

Hibernate (Hibernate, 2006).

There are many advantages to be gained by

the use of the MVC paradigm (Parr, 2004).

In fact, a study by IBM of WebSphere "Best

Practices" places the use of the MVC para-

digm at the top of the list (Brown, 2004).

Among the most noted advantages, devel-

opment and maintenance are facilitated by

the separation of components that are pro-

gramming oriented (Controllers and Models)

from components that are design oriented

(Views). This allows for the better match-

ing of skills to tasks on project teams

(Brown, 2004; Kojarski, 2003; Parr, 2004).

The factoring of the system also aids in de-

bugging allowing the causes of undesirable

behavior to be more quickly isolated, and

then resolved without producing unintended

system-wide effects. The separation of com-

ponents in the MVC approach also allows

multiple Views to be easily associated with

the same Model. Thus, a Model's results can

be displayed in multiple formats (screen,

print, PDF) or in multiple languages.

Of course, the components of a system can-

not be completely de-coupled or they would

cease to be a system. Since "models and

views are intrinsically coupled," we seek only

to "de-couple them as much as possible"

(Hanson, 2005). The problem is that it is

not always easy to decide where to draw the

line between related components (Parr,

2004). For example, user prompts might

rightly be considered a part of user input

Proc ISECON 2006, v23 (Dallas): §3353 (refereed) c© 2006 EDSIG, page 2

Zant Sat, Nov 4, 11:00 - 11:25, Champagne

action and, hence, part of the controller

function. But, often prompt screens contain

persistent data generated by a Model, such

as when displaying a record for update. This

would place the screen in the scope of a

View. Clearly guidelines are needed, par-

ticularly for novices learning to develop sys-

tems.

3. GUIDELINES

Controllers are responsible for system-level

control and navigation to the appropriate

Model and View component. These respon-

sibilities are often divided between one (or a

few) Front Controller and many Page Con-

trollers. The Front Controller accepts all in-

put from the user (except perhaps the log on

response that may require special handling),

sets system variables, checks security, and

invokes the appropriate Page Controller.

More than one Front Controller is used in

distributed sites or in otherwise segmented

sites such as a site with a secure and an un-

secured area.

Each Page Controller is related to one Model

and to one View component. Page Control-

lers are typically "lightweight," simply invok-

ing the appropriate Model and then View

component. A Page controller should con-

tain no application logic. It may only contain

logic required to Invoke an appropriate

Model and View.

A Model contains the application logic for a

page including data access for persistent

data. The Model's results are made avail-

able to a View through some intermediate

device, e.g., an XML file or an array object.

Since a Model may be invoked by many dif-

ferent Page Controllers, the results may be

presented by different Views (screen, print,

PDF, etc.). A View is related to only one

Page Controller. It accesses data created by

the Model and creates the source for presen-

tation (XHTML, PDF, text, etc.).

These guidelines may be summarized for

students as follows:

• All responses from users are processed

first by a Front Controller (except the log

on response)

• A Front Controller invokes a Page Con-

troller, not a Model or View

• A Page Controller invokes one Model and

one View

• A Model executes application logic and

accesses data stores (contains no HTML)

• A Model creates an XML file or object

containing its results

• A View creates a presentation stream

• A View contains no application logic

• A View obtains all non-constant text data

from the XML file or result object pro-

duced by the Model

• A View does not directly reference any

data in a Model or URL for the site

• Communication of user responses to the

Front Controller is by name (e.g., field

names on HTML forms)

• Communication of Model results to a

View are by name (e.g., in XML DTD)

4. FRAMEWORKS

The MVC architecture is often implemented

with a software framework such as Web-

Sphere, Struts, or Spring. Frameworks pro-

vide structure by enforcing naming conven-

tions (directories, files) and rules for con-

structing a system (Shiflett, 2006). They

also provide components that aid in the con-

struction of a system. For example, Spring

contains over 1500 classes that may be used

for such functions as transaction manage-

ment or database access.

MVC is also often implemented without a

framework, but you must still create naming

conventions and follow certain rules in order

to maintain the de-coupling that is the goal

of the approach. This framework-less or

lean approach is recommended by Rasmus

Lerdorf, the Infrastructure Architect at Ya-

hoo! and creator of the PHP language (Ler-

dorf, 2006). He notes that frameworks, in

order to be widely applicable, tend to pro-

vide many functions that are not needed for

each system. This can actually introduce

overhead and complicate the code for small

systems. For student use, frameworks in-

troduce a steep learning curve into a course.

It has been noted by others that the use of

complex software in a systems analysis and

design course can detract from the core con-

cepts (Luce, 2005; Hanson, 2005). For this

reason, frameworks are not used in the

courses described in this paper.

Proc ISECON 2006, v23 (Dallas): §3353 (refereed) c© 2006 EDSIG, page 3

Zant Sat, Nov 4, 11:00 - 11:25, Champagne

5. MVC EXAMPLE

The MVC paradigm can be used with proce-

dural as well as object-oriented languages.

Many examples that apply MVC--using lan-

guages such as PHP, Python, Perl, and Java,

can be found in the literature (Davies, 2004;

Hanson, 2005; Lerdorf, 2006; Seshadri,

1999; Shiflett, 2006). In the courses sited

herein, one uses a procedural script lan-

guage, ODB Script (ODB Script, 2006), and

the other uses Java. Figure 2 in the Appen-

dix depicts the data flow in the example sys-

tem. Figures 3 through 7 in the Appendix

are examples of MVC components for the

system written in ODB Script.

Figure 3 shows the Front Controller. A DE-

FAULT command is used to provide default

values for system variables. Then the SES-

SION statement checks to see if there is an

active session (i.e., if there is a cookie) and,

if not, a log on script is invoked. Finally, the

Page Controller specified in the URL is in-

voked. Only a Page Controller can be in-

voked since the "c/" directory and the ex-

tension ".c" are added to the controller name

passed in the URL.

The example Page Controller in Figure 4 is

very simple, as controllers should be. It just

invokes a specific Model and then a specific

View. The invoked Model, shown in Figure

5, contains the most programming logic. It

retrieves rows from a database and then

creates an XML file for the View to use in

producing an XHTML stream.

The View component in Figure 6 combines

some "boilerplate" XHTML with other XHTML

statements produced by using an XSLT file

to transform the XML file created by the

Model. A portion of the XSLT file is shown in

Figure 7.

6. SUMMARY

Information systems programs typically in-

clude a system analysis and design course

that requires students to develop a system

for either a real or simulated firm. This is

inherently a less structured task than stu-

dents have confronted in other courses. The

MVC paradigm has proven to be very useful

in industry and also can be effectively used

in student projects with both traditional and

object-oriented methodologies. The MVC

architecture provides a structure that pro-

vides a guide for students to develop fac-

tored systems that facilitate coding, debug-

ging, and maintenance.

7. REFERENCES

Brown , Ken, Keys Botzum, and Ruth

Willenborg, (2004) "The Top 10 (more or

less) J2EE Best Practices." IBM Web-

Sphere Developer Technical Journal, May

12, 2004

Chen, Brady, (2005) "Teaching Systems

Analysis and Design: Bring the Real

World into the Classroom." ISECON

2005, Columbus, OH, October 8, 2005

Cooper, Peter, "Model, View, Controller

HowTo." Retrieved June 2, 2006 from

http://www.bigbold.com/snipets/

posts/show/1050

Davies, Trento (2004), "Mojavi – An MVC

Framework for PHP." June 2, 2004,

http://ad.hominem.org/log/2004/06/ tu-

torial_on_mojavi.php

Gorgone, John T., et. al., (2002) "IS 2002

Model Curriculum and Guidelines for Un-

dergraduate Degree Programs in Infor-

mation Systems." Association for Com-

puting Machinery, Association for Infor-

mation Systems, and Association of In-

formation Technology Professionals,

2002

Hanson, Stuart and Timothy V. Fossum,

(2005) "Refactoring Model-View Control-

ler." Journal of Small Systems Comput-

ing, 2005

Helwig, Janet, (2005) "Using a 'Real'

Systems Development Project to Enrich

a Systems Analysis and Design Course."

ISECON 2005, Columbus, OH, October

8, 2005

Hibernate, Retrieved June 2, 2006

from http://www.hibernate.org/

Kojarski, Sergei, and David H. Lorenz,

(2003) "Domain Driven Web Develop-

ment with WebJinn." OOPSLA, Anaheim,

CA, October 26-30, 2003

Proc ISECON 2006, v23 (Dallas): §3353 (refereed) c© 2006 EDSIG, page 4

Zant Sat, Nov 4, 11:00 - 11:25, Champagne

Krasner, Glenn E. and Stephen T. Pope,

(1988) "A Description of the Model-View-

Controller User Interface Paradigm in the

Smalltalk-80 System." ParcPlace Sys-

tems, 1988

Lerdorf, Ramus (2006), "The No-

framework PHP MVC Framework." Feb-

ruary 27, 2006, http://

toys.lerdorf.com/categories/9-PHP

Luce, Thom, (2005) "Moving the Senior

Development Class from Web Develop-

ment to Life Cycle Development." Is-

sues in Information Systems, Vol. VI,

No. 1, 2005

McGann, Sean T. and Matthew A. Cahill,

(2005) "Pulling It All Together: An IS

Capstone course for the 21st Century."

Issues in Information Systems, Vol. VI,

No. 1, 2005

Morien, Roy, (2005) "Student Exper-

ence of Using Agile Development Meth-

ods in Industrial Experience Projects."

ISECON 2005, Columbus, OH, October

8, 2005

ODB Script, Retrieved June 2, 2006

from http://www.odbscript.com/

Parr, Terence John, (2004) "Enforcing

Strict Model-View Separation in Tem-

plate Engines." Proceedings of the 13th

International World Wide Web Confer-

ence, New York, NY, May 17-20, 2004

PDO-PHP Data Objects Interface, Re-

trieved June 2, 2006 from http://

pecl.php.net/package/PDO

Rebhun, Herb and Shohreh Hashemi, (2005)

"Systems Development Projects – Gaining

Practical Experience While Meeting Commu-

nity Needs: A Win-Win State of Affairs."

ISECON 2005, Columbus, OH, October 8,

2005

Roggio, Robert F., (2005) "Robust Soft-

ware Development: A Technical Ap-

proach Using the Rational Unified Proc-

ess." ISECON 2005, Columbus, OH, Oc-

tober 8, 2005

Satzinger, J. W., Jackson, R.B. and Burd,

S.D., (2004) Systems Analysis and De-

sign in a Changing World, 3rd Edition.

Thomson Course Technology

Scott, Elsje, "Systems Development Group

Project: A Real World Experience."

ISECON 2004, Newport, RI, 2004

Seshadri, Govind, (1999) "Understanding

JavaServer Pages Model 2 Architecture."

JavaWorld, December 1999, http://

www.javaworld.com/ javaworld/jw-12-

1999/jw-12-ssj-jspmvc.html

Sheidlower, Jesse, (2005) "Catalyst."

http://www/perl.com/lpt/a/2005/06/02/

catalyst.html, June 2, 2005

Shiflett, Chris, "Zend Framework Tutorial."

(2006) Retrieved June 1, 2006 from

http://hades.phparch.com/ceres/ pub-

lic/article/index.php/

art::zend_framework::tutorial

Waldman, Marc, Mehmet Ulema, and

Kyungsub Steve Choi, (2005) "An Analy-

sis of IS 2002 Compliance in Selected US

Business Schools." ISECON 2005, Co-

lumbus, OH, October 8, 2005

Proc ISECON 2006, v23 (Dallas): §3353 (refereed) c© 2006 EDSIG, page 5

Zant Sat, Nov 4, 11:00 - 11:25, Champagne

Appendix

Figure 1. MVC Structure

Figure 2. Data Flow in Example MVC System

Proc ISECON 2006, v23 (Dallas): §3353 (refereed) c© 2006 EDSIG, page 6

Zant Sat, Nov 4, 11:00 - 11:25, Champagne

<% NOTE: This is the Main Front Controller.
 It MUST reside in the application's root directory.
 It sets system variables, checks for log-in, and
 then loads the requested Page Controller. The default
 Page Controller is named 'menu'.

 URL Form: http://site_url/index.odb?pc=name

 Primary Directories:
 controller = "c/"
 model = "m/"
 view = "v/"

 The variable 'home' must link to this controller page. ;

 DEFAULT pc = "menu",
 sys_base = $path_Translated_dir$"/",
 url_base = http:"//"$server_name$$path_info_dir$"/",
 home = url_baseindex.odb ;
 NOTE: If there is no active session, invoke login.odb ;
 SESSION LOGIN = "login.odb?from=pc", TIMEOUT = 10 ;
 INCLUDE sys_base"c/"pc".c"; NOTE: invoke page controller ;
%>

Figure 3. Example Front Controller

<% NOTE: Page Controller for List of Products;
 INCLUDE sys_basem/Products/table1.m ; NOTE: invoke Model ;
 INCLUDE sys_basev/Products/table1.v ; NOTE: invoke View ;
%>

Figure 4. Example Page Controller

Proc ISECON 2006, v23 (Dallas): §3353 (refereed) c© 2006 EDSIG, page 7

Zant Sat, Nov 4, 11:00 - 11:25, Champagne

<% NOTE: Model for List of Products,

 Set up ODBC linkage and retrieve rows ;
 DATABASE "DSN=myProducts" ;
 SELECT Category, ProductID, Heading,
 Description, UnitPrice, UnitsOnHand
 FROM Products ORDER BY ProductID ;

 NOTE: Now create the XML file ;
 TRANSLATE UnitsOnHand 0 = "Sold Out" ;
 OUTPUT $xmlfile$;
 INCLUDE sys_basecommon/XML_begin.incl ;
%>
 <links>
 <home>$home$</home>
 </links>
 <products>
<% EACHROW %>
 <row>
 <ProductID>$ProductID$</ProductID>
 <Category>$Category$</Category>
 <Description>$Description$</Description>
 <UnitPrice>$UnitPrice$</UnitPrice>
 <UnitsOnHand>$UnitsOnHand$</UnitsOnHand>
 </row>
<% ENDROW %>
 </products>
<% INCLUDE sys_basecommon/XML_end.incl ;
 OUTPUT ; NOTE: XML file completed, close it ;
%>

Figure 5. Example Model module

<% NOTE: View for List of Products,
 This module creates an XHTML page ;

 INCLUDE sys_basecommon/XHTML_begin.incl ;

 NOTE: Transform XML with PHP script ;
 SET xsl = sys_base"v/Products/xslt/table1.xslt" ;
 SET xml = $xmlfile$;
 HTTPGET url_basev/xslt.php, xsl, xml ;

 INCLUDE sys_basecommon/XHTML_end.incl ;
%>

Figure 6. Example View module

Proc ISECON 2006, v23 (Dallas): §3353 (refereed) c© 2006 EDSIG, page 8

Zant Sat, Nov 4, 11:00 - 11:25, Champagne

<!-- XML Transform for List of Products -->
<xsl:template match="/"> <!-- root template -->
 <div id="pageHeader">
 <a><xsl:attribute name="href">
 <xsl:value-of select="root/links/home"/>
 </xsl:attribute>
 <h1>World Wide Widgets</h1>

 </div> <!-- End of Page Header -->
 <div id="content">
 <xsl:apply-templates select="root/products" />
 </div> <!-- End of Content -->
 <div id="pageFooter">
 [<a><xsl:attribute name="href">
 <xsl:value-of select="root/links/home"/>
 </xsl:attribute>Continue...
]
 </div> <!-- End of Page Footer -->
</xsl:template> <!-- End of root template -->

Figure 7. A Portion of XSLT file

Proc ISECON 2006, v23 (Dallas): §3353 (refereed) c© 2006 EDSIG, page 9

