
Sambasivam and Mills Absentee

Online Content Editing - An Evaluation and

Comparative Study

Samuel Sambasivam, Ph.D.

Computer Science Department

Azusa Pacific University

Azusa, CA 91702, USA
ssambasivam@apu.edu

David C. Mills

United Kingdom
dave_mills@blueyonder.co.uk

ABSTRACT

Browser Compatibility is quite possibly the most infuriating and frustrating subject for any web

developer, this is compounded when the developer is trying to provide support for ‘What You

See Is What You Get’ content editing. This document will discuss the issues surrounding

online content editing, web browser compatibility and how they affect the dynamic page

builder product that is provided commercially by Dynamic Solutions Development Limited. It

is an evaluation of the main product as well as a comparison against other products and

solutions that are available today. The original product will be compared against other

commercially available products as well as current thinking and theory. Content editing has

evolved away from products that must be installed on a machine somewhere in the office and

there are now many alternatives. All of these are provided through the use of a web browser,

this is largely due to the fact that almost every office and home has a machine with some form

of browser and that web browsers are extremely portable. The original product will be

evaluated for functionality, compatibility and security and each area will be discussed in detail.

The document will address these areas and provide some suggestions as to how they could be

improved or in the case where they are not offered provided.

Keywords: Online, Web Browser, Content Editing, Dynamic page

1. Background of the Problem

Dynamic Page Builder is a content editor and

website management tool that was written a

little over four years ago. The aim of the

project was to provide a tool that would

allow the user to log in from anywhere they

could gain access to a web browser and

modify their website through the browser

alone. One constraint that still remains is

that activeX® can not be used and there

should be no need to install any such

components on the client machine.

Four years ago content editing was very

much the sport of client based applications

and the ability to modify a web sites content

from within any browser was at very best

limited, today however many advances have

been made and new browsers introduced.

In this paper I intend to address as many

aspects of the product as possible looking at

how it was originally built what security

measures are in place what could be

updated and of course I will question

whether the original architecture and design

are right if the cross browser goal is to be

achieved.

There are many solutions available today

and I have listed references for these in

table 1 (Appendix A) (Other Content

Editor’s).

2. Dynamic page builder the
product

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 1

Sambasivam and Mills Absentee

Dynamic Page Builder provides a full web

site management tool (through Microsoft

Internet Explorer 5.5®© and above) it is far

more than a content editor and provides rich

features such as the ability to create and

modify page description and meta tag

information, the ability to modify the page

background colour and image along with

many other facilities to modify page level

information. The product was built with the

express intention of making the act of

creating and modifying web sites accessible

to many different kinds of user. It is

possible for someone with very limited

knowledge of IT to build a site, just as it is

possible for a web master or other IT

professional to edit HTML and script through

the same interface.

3. HOW WAS THE EDITOR PUT
TOGETHER

The editor itself being the core of the system

is written as an HTML component, one of the

tests I intend to perform in this project is to

attempt to remove the Java script from the

component and run it independently if this is

possible then it is feasible that the editor

could be converted to cater for many

different browsers as a hook can be written

for browser detection then the appropriate

code utilised where any major differences

occur.

The HTML component has a number of

supporting Active Server Pages, these

provide the management and administration

facilities for the user. I have mapped the

applications structure as much as possible in

Fig1 below, here you can see the basic flow

of the application and how the ASP pages

interact with each other. In this section I

will discuss each page in turn and detail

where any pages have been modified or

indeed are completely new compared to the

original YUSASP (Advanced Content editor,

No date) code. The most significant changes

are a number of include files to provide site

security and additional functionality these

pages are: -

• Commonscript.js

• Logincheck.inc

• ASPupload.asp (ASP Upload, No

date)

ASPupload.asp[2] was included as part of

the components integration and is based on

a sample page provided by Persits

Incorporated.

The main editor is produced from the three

files that are shown within the HTML

component section above (highlighted in

green) in Fig1 these are: -

• Ace.htc – The main HTML

Component

• Ace.gif – The button image file

• Ace.css – The main style sheet that

governs the look of the editor DIV.

We will venture further into the HTML

component file later in this document when

we look at the code (Figure 1, Appendix A)

The main management page within the site

is admin_doclist.asp shown in Fig2

(Appendix A).

A look at the database

Having discussed the user interface and the

differences between the original YUSASP[1]

product and the Dynamic Solutions product I

can see no reason why the database cannot

be stored within any ODBC compliant

system. Currently the database is in SQL

Server format and Fig3 shows a detailed

database diagram of the area involved with

the editor.

It is clear that the database architecture will

need to be completely redesigned in order to

cater for many of the changes that I’ll

propose during this report and it will

certainly need to be normalised in order to

maintain data integrity. Having analysed

the data structure for the site I have

extracted only those tables directly related

to the editor and its associated customer

records (these are necessary for user

validation) I have intentionally ignored many

of the other tables used for web site

management and customer relationship

management as they are not relevant.

A look at the code

So what is an HTC?

As mentioned earlier in this document HTC

stands for HTML Component, this technology

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 2

Sambasivam and Mills Absentee

was introduced by Microsoft® with Internet

Explorer 5® and is NOT backward

compatible. This presents many issues for

any developer that chooses to implement

this approach, on the one hand it is

extremely powerful and many applications

are adopting its use within the corporate

arena, whilst on the other it rules out the

use of any other web browser as the

technology only functions with Internet

Explorer 5 and above. I have provided a link

to the overview for HTC (HTML Components,

No date) for those that wish to investigate

this area further, essentially HTML

Components allow developers to create re-

usable code within their web applications.

For the most part HTC and ASP / ASPX seem

to go hand in hand, and this is indicative

within large corporate environments that

utilise Microsoft® software throughout.

An HTC file is simply an HTML document

with some additional tags. The additional

tags allow the component to react to events

that occur within the parent document and

expose properties and methods in much the

same way as any traditional component

written in Visual Basic or C++. Below I have

included the window_resize() code that will

react to the resize event of the parent

window.

function window_resize() {

var test =

"idContent.editorWidth =

document.body.clientWidth - 20;"

test +=

"idContent.editorHeight =

document.body.clientHeight - 200;"

 if (window.onresize) {

window.setTimeout(test,250);

}

}

The <public:Attach event code of the HTC is

used to point to the above script, whilst an

investigation into the uses of the HTC would

be extremely interesting it is important to

investigate its removal from the underlying

architecture as this removes the browser

restriction. The code seen above is simply a

standard JavaScript that can be found in any

client side script within an HTML page.

In the head of the page an XML namespace

is declared as follows: -

<html xmlns:ACE="ace.htc"

 xmlns=

"http://www.w3.org/Profiles/xhtml1-

transitional">

<head>

Browser Compatibility

Here is where the majority of the problems

lie, whilst it is a relatively simple task to

remove the HTML Component from the code

the issue of browser compatibility will

remain. The problem is largely due to the

fact that the DOM (Document Object Model,

No date) used by Microsoft® is not

compatible with the DOM used by Mozilla®,

whilst both follow the W3C standards for

standard browsing neither support editing

functions in the same way. Later in the

document I will illustrate the clear

differences between the two approaches.

System Compatibility and Security

There is a great deal of embedded SQL used

within the site and this really should be

placed in stored procedures. The site

security is generally quite poor and needs to

be addressed, though most of my

observations in this area fall outside the

scope of the project it will be affected by a

number of them. Embedded SQL, Session

security, and stored procedures are the most

pronounced examples.

When looking at the three tables in Fig3 it is

clear that they will need to be normalised

furthermore the documents table in

particular needs a great deal of attention as

it ideally needs to store all the possible

properties of the head and body tags of a

standard page or store the whole document

in one column.

4. An Alternative Approach

Throughout this chapter we will discuss a

new security model in order to protect the

user and their data, how ASP .Net can be

used to improve the functionality of the

editor, the differences between the IE® and

Mozilla® DOM, how this affects online

content editing and why I believe that the

HTC can be removed from the current

Dynamic Page Builder product.

The Security Model

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 3

Sambasivam and Mills Absentee

I have decided to implement a new .Net

based solution in order to provide a higher

level of security. I have included a page

access string along with encrypted sign in

and password storage. The architecture I

have used is based on an existing Visual

Basic COM component. It has been re-

written using .Net It is important to note

that the concept is based on a component

originally written by Blue Sands Inc. (Blue

Sands Inc., No date).

The component has had the following

additional features included, extending the

original COM component a great deal.

• Page Access String

• Cross server session management (Can

now cope with clustered servers)

• Encryption (Basic but sufficient)

• User identification

• Sign In Log (detailed information of

when users Sign In and Out)

To an extent this is tied to code that I have

written specifically for this project. However,

the security model I have created can easily

be applied to many sites. I chose to

implement this approach as whilst I

appreciate that ASP .Net now offers session

management through SQL Server I wanted

to have a great deal more control over what

was being stored and how.

In figure 4 (Appendix A) shows the basic

flow that the user will experience when

logging onto the site for the first time.

In figure 5 (Appendix A) we have shown a

more detailed flow of what is actually going

on when a user visits the site, as I will refer

to this figure several times.

At this point we would like to highlight some

of the unique features of this session

management approach: -

• As a central database is utilised to store

session information the architecture

allows the use of clustered servers, in

fact any individual site could be hosted

on several servers. Perhaps streamed

data being stored with one host whilst

the main site is hosted elsewhere and

furthermore secure servers could be at

yet another site. The fact that different

sections of the site can be stored on

separate servers is a major advantage of

this approach.

• As the session time out is managed

within the context of the component it

can be set to absolutely ANY reasonable

time scale up to the maximum amount

of time that a cookie can be stored on a

users machine and as little as a few

seconds. Of course the later is

impractical but it might be the case

where sensitive information is to be

viewed then we might set the timeout to

a minute or 45 seconds.

• Due to the way the timeout is handled

another really nice feature is that the

user can completely close their browser

window or even reboot their machine.

When they come back to the site they

will still be logged in provided that the

session has not timed out (I will explain

how this is achieved in detail later in this

section).

Once it has established whether the user is

signed in or not, either a message is

displayed to inform the user they are not

signed in or the welcome message is

displayed.

A number of further checks are performed

and these follow, as you can see in figure 5

if this is the first time a user has visited the

site and they are not a member they will

simply see the default page with the Sign In

dialogue box, they will also receive the

default menu (which is not clear from the

diagram). If an attempt is made to login

without a valid username they will simply

receive a message informing them that the

login attempt has failed, equally if a valid

username is used and the password is

incorrect then the user will receive the same

message. As shown in the diagram there is

an additional step behind the scenes that

actually updates the user table keeping a

count of attempted logins, if this is greater

than or equal to three then the user will be

locked out of the database and will need to

contact a member of support (in this case

me) in order to be able to log back into the

site.

Assuming that the user enters a correct

username and password the process then

retrieves all relevant data from the database

regarding the user and uses this to create a

number of rows in tbl_ssn_sessionData in

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 4

Sambasivam and Mills Absentee

order that they can be utilised throughout

the rest of the site. During this process a

cookie is created on the users machine and

an encrypted session value is written to the

cookie.

From this point on any page that is accessed

by the user will call the session management

component. It will check that they are

entitled to view the page they are requesting

before it is rendered to the browser, this

way the end user will never be able to view

a page that they do not have access to.

A Closer look at the session
manager

In this sub section we will take a closer look

at the session manager component and how

it functions. Figure 6 (Appendix A) shows

how the functionality is encapsulated within

the component in order that no database

connections are made directly from the page

at any point, it will also show the methods

that are exposed by the component.

5. The DOM Compared

The title of this section is perhaps a little

misleading; it would imply that there is only

one document object model and perhaps

W3C would like us to adhere to the

principals they have lain down. There are

still a number of discrepancies and of these

one that stands out is the “contenteditable”

property only available within Internet

Explorer 5.5® and above. This is an

extremely powerful attribute and provides

the ability to make DIV’s, SPAN’s and

iFRAMES editable. An example of this can

be found at

http://www.dynamicpagebuilder.co.uk/editor

page.aspx (please bear in mind that you will

need to sign in to view the page due to the

security that has been implemented within

the site. If you need a username and

password for this purpose please contact

me.)

The W3C version of the Document Object

Model is currently at Core level 3.

Microsoft® however extended the DOM from

core level 1 and amongst the extended

features are those that allow advanced

editing. Netscape whilst far more compliant

to the official DOM have extensions of their

own. A curious fact is that both Microsoft®

(W3C DOM, No date) and Mozilla® (Mozilla®

DOM, No date) are way behind W3C (W3C

DOM , No date). Microsoft® only support

W3C Core level 1 and Mozilla® 2, when both

vendors catch up to level 3 this discussion

may well be irrelevant as provision for online

browser editing will be placed into the latest

DOM. Details of this can be found at

(Microsoft DOM, No date).

I do not intend to discuss the many issues

that surround vendors building their own

proprietary versions to suit their own needs,

in an ideal world each vendor would conform

to a common standard but I believe that we

are a number of years away from that

becoming a reality. So though this section

of the document is short, it serves to

highlight the fact that there is a common

standard managed by W3C and that none of

the browser vendors currently meet this. In

turn, this means that a true cross browser

editor can only be achieved through

compiled code. For a project such as

Dynamic Page Builder this would involve a

complete re-write or the purchase of third

party code. As these are not options within

the original remit the goal becomes a

slightly different one, we need to find a

solution that gives the end user the

impression that they are looking at a

seamless cross browser product.

With this in mind I have produced some test

pages on the website

http://www.dynamicpagebuilder.co.uk and

links can be found on the Project Tests Page.

In the following sections I will discuss the

.Net Framework and its benefits for this

project.

A brief look at the .Net framework

At this point it seems appropriate to discuss

the reasons for my choice of Microsoft® .Net

Architecture. I have not chosen it simply

because it’s the latest buzzword and agree

that there are PHP solutions that offer the

full cross browser package. One of the

upsides of the .Net framework is the fact

that it has truly embraced web services.

This is an area that I intend to discuss in this

chapter and will cover in more detail later in

the XML and web services section. I found

following diagram (Web Services Explained,

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 5

Sambasivam and Mills Absentee

No date) (Appendix A) which whilst simple is

effective in describing how a web service

functions.

Without delving too deeply into web

services, it is clear that the component used

on editorpage_V003.aspx on the dynamic

page builder web site could easily be

amended expose its properties and methods

over the internet, I have not included the

component as a web service, due to time

constraints and the fact that I would prefer

not to make it freely available for use just

yet. However, the possibilities for building

the project as a web service are certainly

there and I will include it in the further

investigation section at the end of this

document.

Using ASPX

One of the great strength’s of ASPX is the

fact that the client and server side code are

very neatly separated into their respective

areas. Client side code existing within the

context of the ASPX and server side code in

the VB, of course there is some crossover

here. It is possible to place server side code

within the ASPX page as it used to be

accomplished with ASP; however the facility

is now available to neatly split the two, so

the business layer and presentation layer

remain separate.

Utilising the power of the code behind page

has meant that I have been able to establish

which browser the user has in the middle

tier and only render the relevant content

dependant on the test. This in turn means

that from a users’ point of view they only

see JavaScript that is relevant to their

particular flavour of browser.

Using HTML Components
(HTC)

As the HTC provides a way for developers to

extend Internet Explorer it was heavily used

in the original product produced by Dynamic

Solutions Development, however its use is a

restriction in itself. While I agree that it is

convenient to be able to create properties

and methods within an HTML document, in

order to expose DHTML behaviours. I have

always maintained that there must be a

better and more standards based solution.

XML and Web Services

One of the great benefits of a web service is

the fact that it allows data to be passed

around the internet seamlessly from one

system to another and one browser to

another without the need to worry whether

either is compatible. A quote from the ASP

.Net Kick Start guide [7] reads “If the

browser can read a web page it can use a

web service, regardless of the operating

system” this is a boon for a project such as

this.

Sadly I had not scoped the project to cater

for this and in order to meet my deadline I

cannot investigate web services as a means

of producing an online content editing

system. I will most certainly be including it

in the further investigation section and have

made reference to it here as I would like you

the reader to gain a better understanding of

my thoughts and where the project will go

once this phase is over.

6. Project Tests and Solutions

In this section, I will discuss the solution I

have provided on the project website

http://www.dynamicpagebuilder.co.uk I will

look in detail at the program flow and how I

have achieved the cross browser result

displayed within the editorPageV003.aspx

page. As a reader of this document I

strongly recommend that you view this page

mentioned above in at least Internet

Explorer®, Netscape® and the FireFox®

browser’s. Below in figure 8 (appendix A)

we have placed a diagram of the basic flow

that occurs when the page is opened. Later

in this section I will discuss each phase in

turn and explain what is happening in detail.

One of the underlying drivers for this code is

to minimise the need to post data back to

the web server in order to maintain

performance. Postbacks can totally sap the

performance of an application if not handled

carefully.

When the page is initially called on the

server the code behind (actually it is now

the project assembly dll located in the bin

folder on the web server) calls the Session

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 6

Sambasivam and Mills Absentee

Manager component, this will do one of two

things

a) It will return the user to the sites

home page

b) It will return details of the user

and allow access to the page.

In the first instance, session manager has

determined that the user is either not logged

on. Or that they do not have access to the

page, either way they will be returned to the

home page.

In the second, (and I would hope more

common instance) the user will see the

editor page. However, I am jumping ahead

slightly. Before the user gets to see the

page an awful lot happens, first of all, the

page will call an embedded ‘User control’, for

example editorpage.aspx calls

dpbEditor.ascx it is within the control that

the majority of the work is done. The

control will then check the type of browser

the user has and again at the client (just in

case there is a discrepancy with the browser

type returned from session manager).

Secondly the configuration file is read, the

pages controls are drawn from the ASPX

part of the page after which the relevant

scripts are drawn from the VB side of the

page. Once all of these phases have

competed successfully the page is rendered

to the client.

Once these things have happened, the code

is rendered to the browser and the user will

see the editor as in figure 9 (Appendix A).

Figure 10 (Appendix A) below shows the

actual construction of the ASP .Net pages

and related files and how they interact. I

have localised this diagram to the

editorpagev003.aspx as this is the final fully

functional version.

It is clear from the diagram that all ASP .Net

pages are made up of three physical files

that are referenced as one logical one, the

ASCX extension simply indicates that this

page is a control otherwise it can be thought

of much like a normal ASPX page. The RESX

extension indicates the resource file, this is a

file used by the framework in order to locate

where the relevant resources are for the

page.

The diagram depicts the physical files.

However, if we were to look at the logical

mapping we would simply see the editor

page and the commands.xml page as in

figure 11 (Appendix A).

We spent a great deal of time when

considering the design of the editor

container and made sure that wherever

possible. I used tags that were supported

by both mozilla® browsers and Internet

Explorer®. This has meant that whether

viewed from FireFox®, Netscape or Internet

Explorer® the results are similar, there are

few idiosyncrasies but to the untrained eye it

looks the same. From here I had to

determine what really makes the whole

thing tick and not surprisingly it comes down

to some clever code provided by the vendors

the Key to all of this are two attributes: -

a) designMode

b) contenteditable

The first of these attributes is available in

both browsers and essentially switches the

content of an iFrame, DIV, SPAN into an

editable region of the page. However, there

are differences depending on the browser.

The second is only available through IE®.

The major difference between the Mozilla®

offering and the Microsoft® offering lies

here, both vendors make allowance for a

page to be switched into editable mode,

however only the Microsoft® offering allows

for individual elements within that page to

be switched on or off dependant of the value

of the content editable attribute. A detailed

discussion can be found at (Microsoft®

MSHTML , No date) Microsoft’s® MSHTML

page.

The next important function is how to

actually modify the HTML in order to produce

effects like emboldening or underlining text,

this turns out to be very easy, it is simply a

case of making a call to the execCommand

function supported by both browsers albeit

slightly differently. I have found that calling

execCommand with all three parameters (as

detailed below) functions in both of the core

browsers with no adverse effects.

 execCommand(“[Command Name]”,

[User Interface], [Value])

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 7

Sambasivam and Mills Absentee

Where Command Name would be Bold or

underline etc, User Interface would be true

or false and Value would be present for any

command that needs it, such as forecolor or

null if not.

An interesting error came out of testing, and

that was the fact that the User Interface

parameter must always be set to false when

calling the Mozilla® version or an error is

returned, whereas the Microsoft® offering

handles this well whether it can display a UI

or not.

7. Final Report

Online content editing a comparison

Of the online content editors available, there

are only three base solutions from which

they are derived: -

1 – Internet Explorer (content

editable elements and editable page

supported.)

 2 – Mozilla (editable page

supported)

 3 – PHP compiled cross browser

compatible code base

Whilst the PHP solutions are very interesting,

they fall outside of the scope of this project.

They do however, warrant further

investigation at a convenient time.

Of the projects I have reviewed during this

evaluation, none have stood out as being

capable of fully replacing client side

applications such as Microsoft FrontPage®©,

Macromedia DreamWeaver®©, or Microsoft

Visual Studio®©. However, I am certain that

further investigation in the area and the

advances that are being made with

broadband technology, will improve the

features of such products and it will not be

very long before professional developers

begin to use the online tools in place of the

more traditional client side packages.

Summary and Conclusions

I have seen some very impressive solutions

and some very poor ones, however as I have

already mentioned all of those reviewed are

derived from one of three sources and I am

certain that the proposed solution I have

provided at

http://www.dynamicpagebuilder.co.uk/editor

pagev003.aspx is one of the only true

offerings that address the discrepancies

between the variations of the DOM. From an

academic point of view I will continue to

pursue this project in an effort to produce a

true cross browser compatible online editor,

however from a commercial point of view I

believe for any company providing a service

or selling a product the fact that Internet

Explorer has over 90% of the market

(Browser Statistics, No date) cannot be

ignored.

Internet Explorers® dominance of the

particular area remains, at least for now.

Further Investigation

There are a number of areas that warrant

further investigation and I have provided a

simple list below:-

• PHP compiled code solutions

• Web Services and the use of SOAP

(Simple Object Application Protocol)

• Third party FTP solutions should be

considered

• Future browser releases and what

support they will provide for online

content editing.

REFERENCES

Advanced Content editor

http://www.yusasp.com

ASP Upload http://www.persits.com

HTML Components

http://msdn.microsoft.com/library/defau

lt.asp?url=/workshop/author/behaviors/

howto/creating.asp

Blue Sands Inc. http://www.bluesands.com/

Document Object Model

W3C DOM

 http://www.w3.org/DOM/

Microsoft® DOM

http://msdn.microsoft.com/library/defau

lt.asp?url=/workshop/author/dom/domo

verview.asp

Mozilla® DOM

http://www.mozilla.org/docs/dom/

WYSIWYG Pro

Producthttp://www.wysiwygpro.com/de

mos/demo2.php

Web Services Explained http://www.service-

architecture.com/web-

services/articles/web_services_explained

.html

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 8

Sambasivam and Mills Absentee

Microsoft® MSHTML

http://msdn.microsoft.com/library/defau

lt.asp?url=/library/en-

us/dnmshtml/html/mshtmleditplatf.asp

Etive Web Controls

http://www.etive.com/software/dotEtive

FTP/

Browser Statistics

http://www.w3schools.com/browsers/br

owsers_stats.asp

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 9

Sambasivam and Mills Absentee

APPENDIX A

Table 1 Other Content Editor's

IE 5.5 and above Only

http://www.interactivetools.com/products/htmlarea/

http://www.cutesoft.net/ASP.NET+WYSIWYG+Editor/Requirements/default.aspx

http://www.blueshoes.org/en/javascript/editor/

http://sourceforge.net/projects/bpeditor/

http://www.xtort.net/xtort/protopad.php

Mozilla Only

http://www.bitfluxeditor.org/

http://composite.mozdev.org/

http://www.mozilla.org/editor/midas-spec.html

http://mozile.mozdev.org/

Cross Browser

http://www.wysiwygpro.com/demos/demo2.php

http://www.hardcoreinternet.co.uk/

http://www.phpwcms.de/index.php?id=3,0,0,1,0,0

http://www.kevinroth.com/rte/demo.htm

http://vietdev.sourceforge.net/portal/html/index.php

Figure 1 Content Editor Files and interactions

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 10

Sambasivam and Mills Absentee

Figure 2 Main administration control panel

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 11

Sambasivam and Mills Absentee

Figure 3 User experience and logical flow

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 12

Sambasivam and Mills Absentee

Figure 4 under the hood

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 13

Sambasivam and Mills Absentee

Figure 5 Session Manager Component

Figure 6 Web Services

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 14

Sambasivam and Mills Absentee

Figure 7 The editor Page Flow

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 15

Sambasivam and Mills Absentee

Figure 8 The New Editor

Figure 9 ASP .Net Page and related files

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 16

Sambasivam and Mills Absentee

Figure 10 Virtual impression of ASP files

Proc ISECON 2006, v23 (Dallas): §5112 (refereed) c© 2006 EDSIG, page 17

