
Sambasivam and Levi Absentee

Summary and Review of the Suitability of

 Microsoft Access 2003 as a Software

Prototyping Tool for a Small IT Department.

Samuel Sambasivam, Ph.D.
Azusa Pacific University,

Azusa, CA, USA
ssambasivam@apu.edu

Pat Levi

Nottingham, UK,
Europe

pat.levi@ntlworld.com

Abstract
A typical small IT department normally has many challenges placed upon it

that need to be faced in order to be able to give a professional and effective service to the us-

ers (or customers) of the IT department. Common activities of a typical small IT department

often include recording and planning work for the IT team, providing help desk support to us-

ers, and recording software changes as part of a change control process. This paper summa-

rises the results of a project that evaluated a small sample of potential commercial software

solutions before designing and building an evolutionary software prototype created with Micro-

soft Access 2003 as the recommended solution to satisfy the requirements agreed with the

project sponsor to improve work planning, help desk support, and the recording of software

changes in a small UK IT department. Before building the software prototype it was necessary

to research topics related to building a software prototype with Microsoft Access 2003, it was

also necessary to research any UK legal considerations that might apply to the environment in

which the software prototype was implemented. The evolutionary software prototype was suc-

cessful at satisfying all the requirements that were agreed with the project sponsor. This paper

also reviews the suitability of Microsoft Access 2003 as a software prototyping tool based on

the experience gained during the project through building a Microsoft Access 2003 software

prototype to meet the requirements agreed with the project sponsor. The results of this review

are expected to be of interest to other software developers who are considering using Micro-

soft Access 2003 as a tool to develop a software prototype.

Keywords: IT department work planning, IT help desk support, recording software changes,

software prototype, Microsoft Access 2003, Access 2003 software prototype, help desk, human

computer interaction, software engineering, UK IT legal considerations.

1. BACKGROUND OF THE

PROBLEM

Project Overview
The first aim of the project was to

conduct a high level evaluation of a small

sample of commercial software solutions as

well as to design and implement a bespoke

purpose built software prototype built with

Microsoft Access 2003 in order to recom-

mend a potential software solution to im-

prove work planning, help desk support, and

the recording of software changes in a small

IT department. The proposed solution had to

satisfy the requirements that were discussed

and agreed with the project sponsor in a

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 1

Sambasivam and Levi Absentee

formal requirements specification document.

As there was not sufficient time within the

project plan to learn both Microsoft Access

2003 and VBA it was initially planned to cre-

ate the software prototype in Access 2003

without writing any VBA code, later in the

project this strategy had to be changed.

At the start of the project 2nd author

had no experience of using Microsoft Access

2003 and so 2nd author was unsure how

well Microsoft Access 2003 would be suited

to building a software prototype. 2nd author

performed some preliminary research before

starting the project and to my surprise found

no information that reviewed the suitability

of Microsoft Access 2003 as a software pro-

totyping tool, this presented an opportunity

to add a secondary aim to the project that

could contribute to the world body of knowl-

edge. The second aim of the project was to

review the suitability of Microsoft Access

2003 as a software prototyping tool based

on the experience gained during the project

through building a Microsoft Access 2003

software prototype to meet the require-

ments agreed with the project sponsor. The

review of the suitability of Microsoft Access

2003 as a software prototyping tool is ex-

pected to be of interest to other software

developers who are considering to use Mi-

crosoft Access 2003 as a tool to develop a

software prototype.

Problem to be addressed
The problem to be addressed was

based on my experience of working as the IT

Manager of a small IT department at a site

within a UK company (the company is not a

public authority) called Sogefi Filtration Ltd.

Sogefi Filtration Ltd manufactures automo-

tive filters for aftermarket and OE customers

including Ford, Peugeot, Citroen and JCB and

has an annual turnover of around £70 mil-

lion in the UK, with around 933 employees

located across three UK sites. The problem

scenario was set in a small IT department in

which each member of the IT department

could receive work requests from users in an

informal help desk environment. The help

desk supported customers that were internal

to the UK company and was not manned by

dedicated staff, further consideration needed

to be given to determine if this was a suit-

able policy. Without a suitable work planning

and help desk solution IT staff could give

poor service to users or fail to work on tasks

based on the importance to the business,

also new work requests from users could

easily be forgotten or lost if they were not

sensibly recorded at the time of being re-

quested. IT help desks often have to deal

with problems that have been resolved pre-

viously by other colleagues, if previous solu-

tions could be easily identified then the help

desk could be more efficient. Help desk

work and scheduled IT work could result in

the need to implement new software or

make changes to existing software, for

traceability it is useful to have a record of

the software that has been implemented as

a result of help desk work or scheduled IT

work. The first problem to be addressed by

the project was to recommend a potential

solution to improve work planning, help desk

support, and the recording of software

changes in a small IT department that satis-

fied the requirements agreed with the pro-

ject sponsor.

The second problem to be addressed

by the project was to review the suitability

of Microsoft Access 2003 as a prototyping

tool based on the experience gained during

the project through building a Microsoft Ac-

cess 2003 software prototype to meet the

requirements agreed with the project spon-

sor.

2. REQUIREMENTS, LITERA-
TURE REVIEW,

AND RECOMMENDED SOLU-
TION

List of requirements
A formal requirements specification

was created to represent the list of require-

ments. Potential solutions included a small

sample of COTS (Commercial Off The Shelf)
solutions and a bespoke evolutionary soft-

ware prototype written in Microsoft Access

2003. It was expected that the new system

would be a bespoke evolutionary software

prototype written in Microsoft Access 2003.

The functional and non-functional require-

ments are summarised below in Table 1 and

Table 2 of Appendix A.

3. LITERATURE REVIEW AND

REVIEW OF COTS SOLUTIONS
The following literature review starts

by investigating topics that are related to

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 2

Sambasivam and Levi Absentee

solving the project requirements by building

a software prototype in Microsoft Access

2003. The literature review continues with a

review of legal considerations for the project

and afterwards reviews a sample of potential

COTS solutions in order to evaluate the like-

lihood of being able to satisfy the project

requirements with a COTS solution. After the

literature review the chosen solution is con-

firmed.

Help desk
A help desk environment that allows

user work requests to be recorded and

tracked is one of the central themes in the

project requirements, considerations needed

to be made to determine the type of help

desk environment that was required for the

project. An IT help desk can be generally

described as an on-demand service point

that provides information or actions that as-

sist help desk users in carrying out an IT

related task. A dedicated help desk typically

has the following three essential characteris-

tics:

• The help desk is either centralised or

consists or multiple help desks.

• Staff work exclusively for the help

desk activities.

• Help desk staff may have either a

basic knowledge with the ability to

pass a problem on to more experi-

enced staff or alternatively the help

desk could be manned by experts.

The help desk is not a single subject disci-

pline; typically the help desk is a combina-

tion of the disciplines of computing, informa-

tion science, and service management

(Marcella R. & Middleton I. 1996, pp.4-5).

The use of help desk software on help desks

is becoming common, typically two thirds of

help desks use help desk software. The use

of knowledge bases or artificial intelligence

within help desks is still not common. The

results of a British Library Research and De-

velopment Department funded project indi-

cated that less than half of the help desks

that were surveyed were manned by dedi-

cated full time help desk staff, the majority

of help desk staff provided help desk support

whilst still carrying out their other duties

(Marcella R. & Middleton I. 1996, p.7). As

this project is focused on a small IT depart-

ment in which all staff in the IT department

were able to receive user work requests it

was decided that the most cost effective so-

lution was to man the help desk by staff who

provide help desk support whilst carrying out

their other duties.

There are two types of help desks

depending on whether the clients of the help

desk are internal or external to the organiza-

tion (Heckman 1998, cited by Gonzalez et al.

2005 and Thomas 1996, cited by Gonzalez

et al. 2005). The help desk for the project

only had clients that were internal to the

organisation therefore it was decided that

the best solution was to continue using an

internal help desk within the IT department

of the organisation. Using an internal help

desk is often beneficial as an internal help

desk provides an important service to the

organisation, it has been observed that an

internal help desk can have a great impact

on the productivity of an organisation since

the help desk is resolving problems that may

stop, delay, or otherwise impact the comple-

tion of daily business activities (Held 1992,

cited by Gonzalez et al. 2005). The primary

function of a help desk is problem solving of

both new and previously solved problems.

Solving previously solved problems is a form

of knowledge acquisition (Gonzalez et al.

2005, p.393). Solving problems that have

not been previously solved is known as

knowledge creation (Gray 2001, cited by

Gonzalez et al. 2005).

It has been suggested that it may be

beneficial to deconstruct the process of us-

ers making requests and receiving support

into four phases: Phase A is the greeting

phase, during this phase someone or some

thing asks the user “How may I help you?”.

Typically users may make a user request by

telephone, by walk-up help desk or by elec-

tronic submission by email (Limoncelli,

1999, p.36). Phase B is the phase in which

the user request is classified according to

the type of request (such as a hardware

printing problem) and a suitably skilled per-

son is assigned the task of resolving the user

request, afterwards the request is recorded

and if the user request is to report a prob-

lem the problem symptoms are verified to

see if the problem is repeatable (Limoncelli,

1999, pp.37-38). Phase C is the phase in

which a solution to the user request is iden-

tified, planned and actioned (Limoncelli,

1999, p.38). Phase D is the verification

phase, during this phase the user verifies

that the request has been resolved (Limon-

celli, 1999, p.40). Although the software

prototype was not developed to match the

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 3

Sambasivam and Levi Absentee

four phases previously described (as this

was not a specified requirement in the re-

quirements specification) the prototype does

have the capability of supporting the four

phases.

Human Computer Interaction
Human computer interaction can be

described as the study of how people inter-

act with computers and the extent that

computers are or are not developed for suc-

cessful interaction with humans (Techtarget,

2005). Human computer interaction involves

the use of a human computer interface, a

human computer interface can be described

as a software sub-system that mediates be-

tween the user and the program that trans-

forms the computer into a tool for a specific

application (Neelamkavil, F. & Mullarney, O.

1991, p.37). Human computer interaction

typically includes consideration for how us-

ers form mental models about their interac-

tion experiences, users often have different

ways of learning and keeping knowledge and

so individual users may have different cogni-

tive styles (for example individual users may

be classified as either left-brained or right-

brained). Another factor that is often consid-

ered in human computer interaction is the

impact of cultural and national differences

(Techtarget, 2005).

It is advisable to consider human

computer interaction requirements when

designing a software prototype. Good user

interface design is critical to the success of a

system as a poorly designed interface may

cause an otherwise good system to be re-

jected by the users of the system (Sommer-

ville, 2001, p.328). The importance of a

good human computer interface is also sup-

ported by Neelamkavil and Mullarney, ac-

cording to Neelamkavil and Mullarney a hu-

man computer interface encompasses the

aspects of a computer system that the user

directly experiences therefore the perform-

ance of a human computer interface is a

critical factor in the success or failure of ap-

plication software (Neelamkavil, F. & Mul-

larney, O. 1991, p.37).

Human characteristics need to be

taken into account when designing user in-

terfaces, for example people have limited

short term memory and they normally make

mistakes when using a system (especially

when stressed or trying to handle too much

information). General user interface design

principles should include user familiarity with

the terms and concepts of the interface,

consistency with how comparable operations

are activated, minimal surprise in the behav-

iour of the system, recoverability mecha-

nisms to recover from errors, user guidance

in terms of meaningful feedback to allow

users to recover from errors, and user diver-

sity to allow tailored interaction facilities for

different types of users (Sommerville, 2001,

p.330).

It is useful to know how to evaluate

a human computer interface, such skills are

often useful when creating a user interface

or when reviewing COTS solutions that con-

tain user interfaces. Interface evaluation

involves assessing the usability of an inter-

face and the suitability of the interface to

meet the user requirements. Metrics for the

usability of an interface might include learn-

ability (how long does it take a new user to

be productive with the interface), speed of

operation (is the interface speed of opera-

tion sufficient to satisfy the user's working

practice) robustness (for example how toler-

ant is the interface of user error), recover-

ability (for example can the system recover

from user errors), and adaptability (is the

interface adaptable or is it closely tied to a

single model of work) (Sommerville, 2001,

p345). According to Schneiderman the prin-

ciples of human computer interface design

incorporate eight golden rules as follows:

• Strive for consistency (for example keep

terminology consistent, also consistent

sequences of actions should be required

in similar situations)

• Enable frequent users to use shortcuts

(as users become more familiar with an

interface it is desirable to reduce the

number of interactions)

• Offer informative feedback (for every

user action there should be some infor-

mative feedback)

• Design dialog to yield closure (se-

quences of actions should be designed

with a beginning, middle, and end)

• Offer simple error handling (offer simple

mechanisms for handling errors)

• Permit easy reversal of actions (allow

the user to reverse actions)

• Support internal locus of control (design

the interface to make users the initiators

of actions rather than the responders)

• Reduce short-term memory load (limita-

tions of human processing in short term

memory should be considered when de-

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 4

Sambasivam and Levi Absentee

signing interfaces, for example short-

term memory load can be reduced by

keeping displays simple and using pull

down menu’s and icons) (San Jose State

University, 2005).

Another important factor to consider

when designing or evaluating user interfaces

is the use of colour, general guidelines for

the use of colour in user interfaces include:

• Limiting the number of colours used, for

example no more than five colours

should be used in a window and no more

than seven colours should be used in a

system interface.

• Use colour to show a significant change

in system status.

• Use colour coding to aid the task that

users are trying to perform, for example

if the user is looking for anomalies that

have been identified by the system high-

light the anomalies in a particular colour.

• Use colour coding in a consistent way,

for example display all error messages in

the same colour.

• Be careful with colour pairings, for ex-

ample the human eye can not focus on

red and blue simultaneously.

• Do not use colour to represent meaning,

for example a vehicle driver usually in-

terprets red as danger whilst a chemist

usually interprets red as hot (Sommer-

ville, 2001, p339).

Microsoft Access
As the most likely solution to the

project was a Microsoft Access 2003 soft-

ware prototype certain considerations

needed to be made regarding the use of Mi-

crosoft Access 2003 and the potential impact

on the project.

The first consideration to be made

was to ensure that Microsoft Access has the

capability of creating a multi-user relational

database as this was a project requirement.

A Microsoft Access desktop database has a

file extension of .mdb and is a fully function-

ing RDBMS (Relational Database Manage-

ment System), a Microsoft Access desktop

database (identified by the .mdb file exten-

sion) can be either a stand alone RDBMS on

a single PC or a shared multi-user client

server database when used on a network

(Viescas, 2003, p.6).

Microsoft Access implementation ar-

chitectures needed to be considered to de-

termine the most suitable implementation

architecture to match the project require-

ments with the available resources. Investi-

gating Microsoft implementation architec-

tures also helped to identify potential solu-

tions for coping with future growth of the

application. Example Microsoft Access 2003

implementation architectures include:

• A Microsoft Access desktop database

(.mdb file) can be installed as a stand

alone database on a single PC (where

both the client and server exist in the

same PC). Microsoft Access is used as

the RDBMS when the Microsoft Access

desktop database is used to build an ap-

plication.

• Two-tier client server system: A Micro-

soft Access desktop database (.mdb file)

can be installed on a network server. A

two-tier client server system normally

has an application user interface on the

client computer and the corresponding

application database stored on a server

computer, the client computer requests

services directly from the server com-

puter via the application user interface.

The actual application logic can run on

either the client or the server (Webope-

dia, 2005b).

• Two-tier client server system: A Micro-

soft Access data-only desktop database

(.mdb file) can be installed on a network

file server with linked tables over the

network into multiple Microsoft Access

desktop databases.

• Two-tier client server system: A Micro-

soft Access data-only desktop database

(.mdb file) can be placed in a Microsoft

SQL server database on a network

server with linked tables over the net-

work into multiple Microsoft Access

desktop databases.

• Two-tier client server system: The data-

base can be designed in Microsoft SQL

Server and connected over a network to

multiple Microsoft Access project files

(.adp) running on different client PC’s.

Microsoft SQL Server Desktop Engine is

used as the RDBMS when a Microsoft

Access project file is created.

• Three-tier client server system: Web

browsers act as the client interface to a

Web server, the Web server connects to

a Microsoft Access database (.mdb file)

on a file server (Viescas, 2003, p.6,

p.52). A three-tier client server system

has an application user interface on the

client computer, a middle tier application

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 5

Sambasivam and Levi Absentee

server for the application logic that proc-

esses the application data, and a third

tier database management system

server that stores the data required by

the middle tier application (Webopedia,

2005c).

Due to limited resources it was ex-

pected that the software prototype would

have to be implemented as a Microsoft Ac-

cess desktop database on a single PC (where

both the client and server exist in the same

PC), however, providing that the necessary

resources were available the completed

software prototype would be still be capable

of being implemented as a multi-user two-

tier client server system on a network. A

Microsoft Access desktop database can be

used as a multi-user two-tier client server

system on a network by placing the data-

base (.mdb file) on a Windows network

server (such as a server running Microsoft

Windows Server 2003) and allowing shared

network access from clients connected to the

network that are running Microsoft Access.

There are performance benefits in converting

a multi-user two-tier client server Microsoft

Access desktop database on a network into a

Microsoft Access data-only desktop data-

base, the main performance benefit is re-

duced network traffic. Microsoft Access data-

only desktop databases are able to reduce

network traffic by only requiring the Micro-

soft Access tables to be accessed over the

network, each client will have a local copy of

the application logic (in Microsoft Access the

application logic is comprised of Microsoft

Access queries, forms, reports, data access

pages, macros, and modules). The Microsoft

Access database splitter could be used to

convert the software prototype from a Mi-

crosoft Access desktop database into Micro-

soft Access data-only desktop database (Vi-

escas, 2003, p.1204). If required the Micro-

soft Access database upsizing wizard can be

used to upsize a Microsoft Access desktop

database into an alternative two-tier client

server solution that uses Microsoft SQL

server. Reasons to upsize to a two-tier cli-

ent server solution that uses Microsoft SQL

server include:

• The number of concurrent users needs

to exceed 20 users.

• The database is rapidly growing in size

and will soon exceed 100 MB.

• Users are complaining about the per-

formance of the database and the prob-

lems have not been able to be resolved

by making performance related modifi-

cations to the application design (Vies-

cas, 2003, p.1135).

Although options exist to upsize the

Microsoft Access database (as described

above) that was used for the software proto-

type the initial size of the Microsoft Access

database was not considered to be a prob-

lem for the project as the maximum size of a

single Microsoft Access 2003 database is

2GB, also if required several Microsoft Ac-

cess databases (each not larger than 2GB)

can be attached to the application database

that contains the forms, reports, macros,

and modules to allow a Microsoft Access

2003 application to access more than 2GB of

data (Viescas, 2003, p.137).

Microsoft Access database house-

keeping considerations needed to be made

to determine how to keep the database in

good working order. The Microsoft Jet Data-

base Engine treats a Microsoft Access data-

base file as a series of 4096 byte blocks, the

set of records in a Microsoft Jet table are

stored in a series of blocks. Each time re-

cords are added or deleted the table blocks

become fragmented. Compacting a Jet data-

base de-fragments the blocks and improves

read/write performance to the table. Com-

pacting the database also improves the per-

formance of Microsoft Access database in-

dexes, updates table statistics stored in the

database, and allows the Microsoft Jet En-

gine to re-optimise stored queries in the da-

tabase (Microsoft Help And Support, 2005a).

To compact a Microsoft Access 2003 data-

base the compact and repair database utility

needs to be used. The compact and repair

database utility in Microsoft Access 2003

attempts to repair corruption in tables,

forms, reports, and modules and compacts

the database on disk. The compact and re-

pair database utility can be set to run auto-

matically when the database is closed by

selecting the following options after opening

the Microsoft Access 2003 database: Tools >

Options > General tab > select the compact

on close check box and click ok (Online

Training Solutions Inc, 2003, pp.218-219).

A multi-user Microsoft Access data-

base needs to be configured correctly for the

database to manage database record lock-

ing. For record locking Microsoft Access 2003

allows pessimistic locking and optimistic

locking. Pessimistic locking locks a record for

the full duration in which it is being edited

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 6

Sambasivam and Levi Absentee

whilst optimistic locking only locks the re-

cord for the brief time that it is being

changed. To share an Access database on a

LAN each client workstation must have a

copy of Access installed (Online Training So-

lutions Inc, 2003, p.231). For the project it

was decided that the safest option was to

use pessimistic locking, this can be set by

selecting the following options after opening

the Microsoft Access database: Tools > Op-

tions > Advanced, set default mode to

shared, set default record locking to edited

record, and make sure that the open data-

base using record-level locking check box is

selected (Online Training Solutions Inc,

2003, pp.232-233).

Recording software changes
Having the ability to record software

changes is a common part of a change man-

agement process. During the lifetime of a

system changes are to be expected as or-

ganisational needs and requirements change

during the lifetime of a system (Sommer-

ville, 2001, p.647).

Software process model
A suitable software process model

needed to be chosen for the project. Ge-

neric software process models include the

waterfall model, evolutionary development,

formal systems development, and reuse-

based development. Formal systems devel-

opment is based on producing a formal

mathematical system specification to pro-

duce a program, processes based on this

model are only used in a few organisations.

Reuse-based development is based on the

existence and use of reusable components

that are integrated into a system instead of

building a system from scratch. The waterfall

model (also known as the software life cycle)

consists of phases that cascade from one

phase to another with the next phase not

starting until the previous phase has fin-

ished. The main stages of the waterfall

method are requirements analysis and defi-

nition, system and software design, imple-

mentation and testing, and operation and

maintenance. The partitioning into distinct

stages requires commitments to be made in

the early stage of the software process

therefore the waterfall model does not re-

spond well to changing requirements and so

is best suited when the requirements are

well understood (Sommerville, 2001, pp.44-

48). Evolutionary development involves de-

veloping an initial implementation from ab-

stract specifications that is refined with input

from the customer into a system that satis-

fies the customer requirements. Evolutionary

development performs the activities of speci-

fication, development, and validation con-

currently. The two types of evolutionary de-

velopment are exploratory development and

throw-away prototyping. Exploratory devel-

opment focuses on the parts of the system

that are best understood and evolves by

adding new features suggested by the cus-

tomer, the overall objective is to deliver a

final working system. Throw-away prototyp-

ing aims to gain a better understanding of

the customer requirements in order to de-

velop a better requirements definition for the

system. A throw-away prototype concen-

trates on the customer requirements that

are least understood, as the name implies a

throw-away prototype is designed to be dis-

carded after use and as such should not be

used as a final working system (Sommer-

ville, 2001, pp.44-48). For small to medium

systems (up to 500,000 lines of code) with a

fairly short lifetime the evolutionary ap-

proach is well suited, however for large sys-

tems or systems with a long lifetime a hy-

brid process that incorporates the best fea-

tures of the waterfall model and the evolu-

tionary development models is recom-

mended (for example parts of the system

that are well understood could be specified

and developed using the waterfall model

whilst less understood parts of the system

could be specified and developed using ex-

ploratory development or by using a throw-

away prototype to better understand the

requirements after which the waterfall model

could be used) (Sommerville, 2001, pp.44-

48).

It was decided that the project

would use a hybrid process that uses the

waterfall model through out the project with

evolutionary development for the software

prototype. As the project is split into distinct

stages that includes activities such as pro-

ducing a project specification, producing a

project design, developing and implementing

a software prototype, system evaluation and

testing etc then the waterfall model fits the

overall project, however, as the project also

involves producing a evolutionary software

prototype that is intended to be retained as

the final system then the evolutionary de-

velopment model also applies. The availabil-

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 7

Sambasivam and Levi Absentee

ity of a requirements specification due to the

use of the waterfall model was able to assist

the evolution of the software prototype as

there was a requirements specification that

could be referred to when building and

evaluating the software prototype. A system

with a long lifetime is suited to the hybrid

process involving both the waterfall and evo-

lutionary development model. As the lifetime

of the system for the project was not ex-

pected to be short this further confirmed the

suitability of using a hybrid process that

uses the waterfall model throughout the pro-

ject with evolutionary development for the

software prototype.

Software design methodology
A software design methodology

needed to be chosen for the project that was

suitable for building a software prototype

using Microsoft Access 2003. Microsoft Ac-

cess 2003 creates relational databases and

supports the use of objects, the following

object types can be used in Microsoft Access

2003: tables, queries, forms, reports, pages,

macros, and modules. The object type called

table is used to store information, the other

object types are used to manage, manipu-

late, analyse, retrieve, display, or publish

information contained in tables (Online

Training Solutions Inc, 2003, p.3). Microsoft

Access can use VBA (Visual Basic for Appli-

cations) code, VBA is not a true object-

oriented programming language (OOPL) due

its lack of object-oriented programming fea-

tures such as inheritance (Ondotnet, 2005).

As Microsoft Access supports the use

of objects OOD (Object Oriented Design)

was proposed as the main software design

methodology to be used to design the soft-

ware prototype. The following items needed

to be considered in order to determine if

OOD alone would be likely to satisfy the pro-

ject requirements :

• A Microsoft Access relational database

needed to be designed for the software

prototype and OOD is not normally well

suited to designing a relational data-

base.

• Although Microsoft Access uses objects

Microsoft Access was not designed to be

a full object-oriented programming envi-

ronment (Viescas, 2003, p.397).

• Object oriented languages are well

suited to OOD. Although Microsoft Ac-

cess uses objects neither Microsoft Ac-

cess nor VBA (VBA can be used by Mi-

crosoft Access) are true object oriented

programming languages as features

such as object inheritance are not sup-

ported.

 Based on the above information it was de-

cided that the design of the software proto-

type should avoid OOD models that are

based on object inheritance (such as object

class hierarchy diagrams as this type of dia-

gram includes representation for object in-

heritance).

Two of the main models for modular

decomposition are an object-oriented model

and a data flow model (also known as a data

flow diagram or DFD). In an object-oriented

model the system is decomposed into a set

of communicating objects whilst in a data

flow model the system is decomposed into

functional modules that receive data input

and process the data and produce output

(Sommerville, 2001, pp.229-232). A typical

architectural design process decomposes

elements into more detailed elements, the

decomposition process continues until the

architectural structure is sufficiently fine-

grained to be assigned to software develop-

ment teams to design and implement each

piece of the architecture (McGregor J. 2004,

pp.66-67).

It was decided that a hybrid soft-

ware design methodology using selective

functional models and selective object-

oriented design models (selective OOD de-

sign models were used that are not based on

object inheritance as neither Microsoft Ac-

cess nor VBA are true object-oriented pro-

gramming languages as features such as

object inheritance are not supported) would

be the most suitable solution for designing

the Microsoft Access software prototype. The

data flow diagrams (also known as data flow

models) and specific requirements specifica-

tions using standard forms that were pro-

duced in the formal requirements specifica-

tion document were able to be referred to in

the design process to provide functional de-

composition. Modular decomposition was

also used in the software design process as

the chosen hybrid design methodology uses

object-oriented models as well as the data

flow models that were created in the re-

quirements specification document. It was

decided that an entity relationship diagram

(also known as an entity relationship model)

supplemented by a data dictionary would be

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 8

Sambasivam and Levi Absentee

suitable to design the database for the pro-

ject.

Software prototyping
The use of software prototyping to

develop software solutions has increased in

popularity over the last 25 years. In the

early 1980's organisations used prototyping

in approximately thirty percent of

development projects, by the early 1990's

the use of prototyping doubled to

approximately sixty percent of development

projects (McClendon et al. 1996, cited by

Wikipedia, 2005). User interfaces are best

to be developed using prototyping as it is

not usually possible to specify user inter-

faces effectively with a static model. Evolu-

tionary prototyping with end-user involve-

ment is the most suitable way to develop

graphical user interfaces for software sys-

tems (Sommerville, 2001, pp.188-189). In

a study of information systems managers

and other information systems professionals

at 112 different organisations it was found

that information systems software cost esti-

mating was an important concern. It was

reported that the completion of only one of

every four systems development projects

were within their estimated costs (Lederer A.

& Prasad J. 1995, p.125). Evolutionary pro-

totypes allow small and medium sized sys-

tems to be rapidly developed and delivered,

normally this results in system development

costs being reduced (Sommerville, 2001,

p.178). An evolutionary software prototype

would be a suitable type of prototype to

solve the project requirements for the fol-

lowing three reasons: The use of an evolu-

tionary software prototype is suitable as

most of the requirements are well under-

stood (a throw-away prototype is not re-

quired for requirements elicitation). The use

of an evolutionary software prototype is

likely to reduce system development costs.

The use of an evolutionary software proto-

type can assist the development of the

graphical user interface.

UK legal considerations
The target implementation environ-

ment for the project was a small IT depart-

ment that is internal to a UK organisation,

the organisation is not a public authority. A

review was conducted into UK legal consid-

erations that may be applicable to the pro-

ject, the review included the Data Protection

Act 1998, Freedom Of Information Act 2000,

Privacy and Electronic Communications

Regulations 2003, as well as other legal con-

siderations (the review was not an exhaus-

tive review of all UK law, however the review

did cover key legislation that might be appli-

cable to the project). The Data Protection

Act (1998) was the most likely legislation to

be applicable to the project. In the UK the

Information Commissioner and his staff are

responsible for ensuring that organisations

that are processing data are doing so in line

with the obligations that are placed upon

them by the various pieces of legislation

such as the Data Protection Act 1998, Free-

dom of Information Act 2000, and the Pri-

vacy and Electronic Communications Regula-

tions 2003 (Information Commissioner,

2005e).

The Data Protection Act 1998 aims

to balance the rights of individuals with le-

gitimate reasons for using personal informa-

tion. Individuals are given certain rights

about the information held about them that

places obligations on data controllers who

process the personal information. Personal

information includes both facts and opinions

about an individual. Data controllers must

notify the Information Commissioner’s Office

if they are processing personal information

(unless their processing is exempt), notifica-

tion costs £35 per year. Data controllers who

process personal data must comply with the

following eight rules of good practice:

• Data must be fairly and lawfully proc-

essed.

• Data must be processed for limited pur-

poses.

• Data must be adequate, relevant and

not excessive.

• Data must be accurate and up to date.

• Data must be not kept longer than nec-

essary.

• Data must be processed in accordance

with the individual's rights.

• Data must be secure.

• Data must not be transferred to coun-

tries outside the European Economic

area unless the country has adequate

protection for the individual (Information

Commissioner, 2005a).

In the Data Protection Act 1998 personal

data means data that relates to a living indi-

vidual who can be identified either by those

data or from those data together with any

other information held by the data controller

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 9

Sambasivam and Levi Absentee

or likely to come into the possession of the

data controller (HMSO, 2005). Holding in-

formation about others in a domestic envi-

ronment for family, household, or personal

reasons is exempt from the Data Protection

Act. If you hold information about other

people for non-domestic purposes then the

Data Protection Act will impose legal obliga-

tions that must be complied with. A data

controller is the person (individual, company

or organisation) who decides why personal

data is held and the way in which personal

data is dealt with. Examples of personal

data includes collecting information about

living individual customers in terms of where

they shop, how they pay for goods, and the

delivery address. Examples of information

about others that does not count as personal

data includes information about deceased

individuals or information about companies

(Information Commissioner, 2005f).

For the purposes of the project only very

general personal information required to be

held about living individuals such as: First

Name, Last Name, Department, and Site.

The Information Commissioner's Office pro-

duces a notification exemptions self assess-

ment guide for data controllers to clarify if

they need to declare (known as notification)

personal data under the Data Protection Act

1998. According to the notification exemp-

tions self assessment guide notification is

not required if the processing of personal

data is for staff administration, staff admini-

stration includes work management (Infor-

mation Commissioner, 2005b). As the Work

Request Database (software prototype) is

only processing personal data for staff work

management purposes notification should

not be required. If any further clarification is

required then the Information Commis-

sioner’s Office helpline could be contacted,

the Information Commissioner’s Office

helpline telephone number can be found at

the end of the Data Protection Act Factsheet

(Information Commissioner, 2005b).

The Freedom Of Information Act

2000 enables access to information held by

public authorities by public schemes or by

general rights of access. To comply with ac-

cess to information through public schemes

each public authority must routinely make

information available to the public. To com-

ply with general right of access individuals

can request access to information held by a

public authority (some exemptions apply in

the interest of public interest) and the public

authority has to respond to the request for

information (Information Commissioner,

2005d). The Freedom Of Information Act

2000 applies to public authorities in England,

Northern Ireland, and Wales. Examples of

public authorities include government de-

partments, local authorities, hospitals, medi-

cal surgeries, dentist surgeries, schools, uni-

versities, police forces and prison services.

Examples of recorded information covered

by the Act include emails, meeting minutes,

research and reports (Information Commis-

sioner, 2005c). The target implementation

environment for the project was not a public

authority therefore the Freedom Of Informa-

tion Act 2000 does not apply to the project.

Review of commercial
software solutions

An evaluation of a small sample of

potential commercial software solutions was

conducted to determine if the system could

be satisfied by a COTS (Commercial Off The

Shelf) solution. Three COTS solutions were

reviewed to determine how suitable each

COTS solution was for satisfying the re-

quirements of the project.

• Track-It! 6.5 Professional Edition is an IT

asset management system that includes

help desk functionality. A trial version of

Track-It! 6.5 Professional Edition was

downloaded and installed for evaluation

purposes. Track-It! calls a user request

a works order. Works order data in-

cludes: requester (requested by user

name), location (site), workstation ID

(not mandatory), task summary, task

type, task priority, assigned technician

(also a works order can be assigned to a

group such as a group of technicians),

date assigned, due date, completed

date, and solution text. When adding a

new work order a knowledge base of

previous problems (works orders) can be

searched by specifying selection criteria

for the work order summary text of pre-

vious works orders. Also previous works

orders (user work requests) for a par-

ticular user (or asset) can be reviewed

when adding a new works order. A

small IT department typically may man-

age over a hundred workstations, Track-

It! 6.5 Professional Edition is the most

suitable product in the range of Track-It!

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 10

Sambasivam and Levi Absentee

products as this product is designed for

managing hundreds of workstations (In-

tuit, 2005). Track-It! provided good

functionality for user work requests

within a help desk environment but no

functionality for recording software

changes and limited functionality for

work planning.

• A trial version of Request Tracker (ver-

sion 3.1) was downloaded and installed

for evaluation purposes. Request Tracker

allows customer requests (user work re-

quests) to be recorded and progressed

in a help desk database. The software

tracks who requested what and when

they requested it, what was done to re-

solve the request, who handled the re-

quest and how much time was spent to

resolve the request. One screen records

all the information about a single re-

quest (Cniche, 2005a). Request Tracker

does not seem to use consistent termi-

nology for a user work request, for ex-

ample a user work request is referred to

as either a work order or a request de-

pending on which function is being used

(for example one screen is called find

request and another screen is called

print work order). Request data in-

cludes: customer (requested by user

name), department/company name (the

customer department name or customer

company name, the same attribute is

used to hold either type of information),

category (categories of request might

include hardware, software etc), entered

by (the name of the IT staff member

who recorded the request), request

short description, request number, re-

quest date, due date, request descrip-

tion (detailed description of the request),

assigned to (the name of the IT staff

member that the request is assigned to),

request priority, resolved date, resolved

status (displayed as a tick when the re-

quest is resolved), response (detailed

description of how the request was re-

solved), and the hours and minutes

spent on the request (optional use if the

customer is to be charged). Request

Tracker provides two methods to locate

previous customer requests; either by

applying a filter or by performing a find.

Request Tracker provided good function-

ality for user work requests within a help

desk environment and reasonable func-

tionality for work planning but no func-

tionality for recording software changes.

Some problems were experienced with

the custom report writer (a custom re-

port could only be sorted on a maximum

of two fields, also when trying to run a

custom report sorted on two fields the

report crashed with an error message

regarding the number of parameters).

• A Windows compatible trial version of

Surround SCM (version 3.1.3) was

downloaded and installed for evaluation

purposes. Surround SCM is a software

change management tool for controlling

software source code and other digital

assets. The Surround SCM file detail

pane can be used to view the properties

of selected files including the history of

changes to each file and the availability

of each source file to be checked out of

the source code repository for modifica-

tions to be applied. Surround SCM is a

client server solution that is available for

several operating systems including

Windows, Solaris, Linux, and Mac OS X.

The software can integrate with several

software development tools including

Visual Studio .NET, Visual C++, Visual

Basic, Borland JBuilder, Delphi, Dream-

weaver MX, WebSphere, CodeWarrior,

Eclipse, Ant, NAnt, CruiseControl, IntelliJ

IDEA, and Visual Build Professional. The

software is licenced by either named us-

ers or concurrent user licences (or a

combination of both) (Seapine, 2005a).

During the trial of Surround SCM source

code was checked out of the source code

repository and modified, once checked

back in to the source code repository

each source code version number was

automatically incremented to the next

version number. A change history of

each source code file could be displayed.

Differences between versions of source

code could be identified with the com-

parison results displayed side by side in

the same panel. Surround SCM provided

extensive functionality to manage and

control software source code, however,

no functionality was evident during the

trial of the software for recording im-

plementation details. Surround SCM pro-

vided no functionality for work planning

or help desk support.

The estimated cost of each COTS solution is

presented below in Figure 1, (Appendix A)

each COTS solution cost includes provision

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 11

Sambasivam and Levi Absentee

for 5 days consultancy at £995 per day (to-

talling £4,975) for product installation ser-

vices and training.

Figure 2 (Appendix A) below sum-

marises the suitability of each COTS solution

to satisfy the requirements of the project.

The evaluation of the suitability of each

COTS solution is based mainly on the func-

tional requirements (the only non-functional

requirement included is the requirement for

the solution to be capable of being a multi-

user solution that is can have up to 5 con-

current users).

• As shown above in Figure 2 Track-It! 6.5

Professional Edition obtained a weighted

level of fit score of 52 out of 100, this

score indicated that Track-It! 6.5 Profes-

sional Edition had a low likelihood of sat-

isfying the project requirements.

• As shown above in Figure 2 Request

Tracker (version 3.1) obtained a

weighted level of fit score of 51 out of

100, this score indicated that Request

Tracker (version 3.1) had a low likeli-

hood of satisfying the project require-

ments.

• As shown above in Figure 2 Surround

SCM (version 3.1.3) obtained a weighted

level of fit score of 22 out of 100, this

score indicated that Surround SCM (ver-

sion 3.1.3) did not satisfy many of the

system requirements. Surround SCM

(version 3.1.3) had a very low likelihood

for satisfying the project requirements.

Recommended solution
Failure to find suitable COTS solu-

tions confirmed the need to write bespoke

software to solve the project requirements.

As most of the system requirements were

understood an evolutionary software proto-

type was chosen as the solution to solve the

project requirements. The evolutionary soft-

ware prototype would only include the most

important and best understood system re-

quirements, the requirements to include in

the software prototype were agreed with

the project sponsor. A comparison of the

estimated cost of the solutions considered

can be seen below in Figure 3 (Appendix A).

In order to have a fair comparison

between the expected suitability of the evo-

lutionary software prototype and the suit-

ability of each of the three COTS solutions

the same evaluation criteria that was used

to evaluate the suitability of each COTS so-

lution was used to evaluate the expected

suitability of the evolutionary software pro-

totype. A comparison of the expected suit-

ability of the evolutionary software prototype

with other solutions considered can be below

in Figure 4 (Appendix A).

The expected total weighted level of

fit score for the requirements that were

agreed with the project sponsor to be in-

cluded in the evolutionary software proto-

type is 80 out of 80, this score indicates that

the evolutionary software prototype has a

high likelihood of success for satisfying all

the project requirements that were agreed

with the project sponsor for inclusion within

the evolutionary software prototype. As

shown above in Figure 4 the expected total

weighted level of fit score of the evolution-

ary software prototype for all the project

requirements (including some of the re-

quirements that were agreed to be excluded

from the evolutionary software prototype) is

90 out of 100, this score indicates that the

evolutionary software prototype is likely to

satisfy most of the project requirements and

offers the best possibility of success out of

the options that were considered. Although

not included within the project (due to time

constraints), the evolutionary software pro-

totype has the potential to solve all the pro-

ject requirements by further evolving the

evolutionary software prototype after the

initial project has been completed.

The necessary skills and resources

needed to be available to build the evolu-

tionary software prototype. The main re-

sources required for developing the evolu-

tionary software prototype was identified as

a PC running Windows XP (Home Edition),

software to develop a software prototype

(only Microsoft Access 2003 was available),

a learning source to learn how to use Micro-

soft Access 2003 (two books were pur-

chased), and a human resource to develop

the software prototype.

4. DESIGN OF SOFTWARE
PROTOTYPE

A software design model was created

for the evolutionary software prototype that

included a statechart for the WorkRequest

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 12

Sambasivam and Levi Absentee

object (OOD using UML (Unified Modelling

Language) notation), an ERD (Entity-

Relationship-Diagram) for relational data-

base design supplemented by associated

notes and business rules, data dictionary,

and normalisation, a layered sub-system

architecture diagram (OOD using UML nota-

tion), a sub-system diagram (OOD using

UML notation), use-case diagrams (OOD us-

ing UML notation), use-case descriptions

(OOD), and references to data flow diagrams

and specific system requirements specifica-

tions using standard forms (used as func-

tional models to represent functional de-

composition and to assist modular decompo-

sition).

5. REALIZATION

Implementation
The design was initially tested and

implemented as a stand alone single user

Microsoft Access desktop database on a sin-

gle PC (where both the client and server ex-

ist in the same PC) and afterwards additional

resources were found to implement the

same design as a multi-user (two-tier client

server system) Microsoft Access desktop

database on a Windows network server with

multi-user database access from connected

Windows client PC’s running Access 2003.

The implemented software prototype is a

Microsoft Access desktop database that is

known as the Work Request Database. The

file name that contains the Work Request

Database is ‘Work Request Database.mdb’.

The design was initially implemented

exactly as per the design. After implement-

ing the design four evolutionary enhance-

ments were made to the design, two of the

enhancements were for convenience and two

of the enhancements were out of necessity.

The enhancements made to the design are

described below.

Enhancement for convenience: The

attributes WorkRequestJobStatus and Work-

RequestDateCompleted from the WorkRe-

quest table were originally planned as only

inputs into the function Create/Edit Imple-

mentation And Implementation Details,

however, it was decided that it would be

more convenient to allow the function Cre-

ate/Edit Implementation And Implementa-

tion Details to also output the attributes

WorkRequestJobStatus and WorkRequest-

DateCompleted to the WorkRequest table.

To implement this enhancement the form

called Create/Edit Implementation And Im-

plementation Details was changed to allow

the user to input new values for the Work-

Request table attributes WorkRequestJob-

Status and WorkRequestDateCompleted.

Enhancement for convenience: For

convenience an additional option was cre-

ated on the Work Request Database Main

Switchboard to close the database and exit

the application. Although the database could

be closed by using the Windows 'X' close

window icon having a single button to close

the database and exit the application was a

convenient enhancement.

Enhancement out of necessity: In

the Create/Edit Implementation And Imple-

mentation Details function (implemented as

a form called Create/Edit Implementation

And Implementation Details) the selection of

the WorkRequestNumber to be implemented

was enhanced by creating and using an Ac-

cess 2003 query called Work Request Select

Query Without Matching Implementation.

The use of the query called Work Request

Select Query Without Matching Implementa-

tion was a necessary enhancement as this

guaranteed that only WorkRequestNumbers

that had not been implemented could be

selected to be implemented.

Enhancement out of necessity: The

original project specification planned to build

a software prototype with Access 2003 with-

out manually writing VBA code as there was

not believed to be sufficient time in the pro-

ject to learn both Access 2003 and VBA. At

implementation time it was necessary to

change this strategy as it was found that

Microsoft Access default error trapping was

acceptable for simple Microsoft Access forms

but was quite poor for more complex forms

such as parent forms with embedded child

subforms. As the project was ahead of

schedule two weeks were spent to learn and

apply VBA code to perform essential error

trapping on the more complex Access forms

in the database.

Testing the Software Proto-

type Using Test Data
White box testing (also known as

structural testing) is a testing method in

which tests are derived from knowledge of a

software’s structure and implementation, the

objective of white box testing is to ensure

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 13

Sambasivam and Levi Absentee

that each independent program path is

tested at least once. An independent pro-

gram path is a path that traverses at least

one new edge in a program flow graph (this

is a graph with nodes representing decisions

in the program flow and edges showing the

flow of control) (Sommerville, 2001, pp.447-

450). The program code of a system must

be available to be able to perform white box

testing. Black box testing (also known as

functional testing as the tester is only con-

cerned with the functionality of the software)

is a testing method where the tests are de-

rived from the program specification without

any knowledge of the implementation of the

software being tested, test data is input into

the system and the outputs are verified

(black box testing is done without knowl-

edge of the program code of a system)

(Sommerville, 2001, p.443). As nearly all
of the application logic for the Work Request

Database was written with Access 2003

most of the application program code was

not available to perform white box testing

(only a small amount of program code was

available, this code was VBA class module

code scoped to individual reports or forms),

therefore it was decided that white box test-

ing could not sensibly be performed (as

most of the independent program paths

were hidden inside Access 2003). It was

decided that black box testing would be used

for the project, all of the black box software

tests performed on the Work Request Data-

base software prototype were successful.

6. EVALUATION

Successes and failures of MS-

Access 2003 prototype to
meet the requirements

To review the successes and failures

of the software prototype to meet the sys-

tem requirements each requirement was

reviewed to see if the software prototype

had satisfied each requirement. The review

of requirements covered both functional re-

quirements and non-functional require-

ments, to ensure completeness each re-

quirement was traceable by a requirements

identifier and associated user requirement

identifier.

Traceable requirements satis-

fied by the software proto-

type
All of the functional requirements

agreed with the project sponsor to be in-

cluded in the evolutionary software proto-

type were successfully satisfied. All of the

non-functional requirements agreed with the

project sponsor to be included in the evolu-

tionary software prototype were successfully

satisfied. As shown below by Figure 5 (Ap-

pendix A) the evolutionary software proto-

type achieved a weighted score of 95 out of

100 using the same evaluation criteria as

used to evaluate the suitability of COTS so-

lutions, this exceeded the expected weighted

score of 90 out of 100.

As shown below by Figure 6 and Figure 7

(Appendix A) the evolutionary software pro-

totype also exceeded the target weighted

score for all functional and non-functional

requirements by satisfying some of the re-

quirements that were agreed with the pro-

ject sponsor to be excluded from the evolu-

tionary software prototype.

Traceable requirements not

satisfied by the software pro-
totype

All of the traceable requirements

that were agreed to be included in the soft-

ware prototype were successfully included in

the software prototype.

Suitability of MS-Access 2003

as a software prototyping tool
All of the requirements that were

agreed to be included in the software proto-

type were successfully included in the soft-

ware prototype, this demonstrates that it is

feasible to use MS-Access 2003 as a soft-

ware prototyping tool.

Useful features of MS-Access
2003 for developing a soft-

ware prototype
We found the following features of

MS-Access 2003 particularly useful when

developing the Work Request Database

software prototype:

• Database: Access 2003 can be used to

create either a single user or multi-user

relational database. If a software proto-

type is going to have a reasonable level

of depth then a database is often re-

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 14

Sambasivam and Levi Absentee

quired to provide efficient storage and

retrieval of the data used by a software

prototype.

• Scalability: A software prototype can be

designed as a Microsoft Access desktop

database for a small number of users

(no more than 20 concurrent users is

recommended for a Microsoft Access

desktop database) and afterwards op-

tions are available to upsize a Microsoft

Access desktop database to handle more

users. Tools such as the Microsoft Access

database upsizing wizard can be used to

upsize a Microsoft Access desktop data-

base into an alternative two-tier client

server solution that uses Microsoft SQL

server.

• User Interface: A software prototype

developed in Access 2003 with end-user

involvement can provide an effective so-

lution for developing a user interface.

• Speed of development: Software proto-

types are often able to reduce the cost

of getting a software product to the mar-

ket by reducing the time for the design

process, for maximum benefit a software

prototype has to be developed as quickly

as possible. Access 2003 contains many

wizards that help to speed up the devel-

opment of a software prototype. In the

project we used wizards to create Access

2003 forms, reports, queries, and com-

mand buttons. Once an Access 2003 ob-

ject has been created with a wizard it

can normally be tailored by editing the

object in design view. Although a wizard

is also available to create Access 2003

tables we preferred to create each table

manually in design view using the data

dictionary as a source document. We

also used the Access 2003 Switchboard

Manager to create a switchboard form (a

menu is known as a switchboard in Ac-

cess 2003).

• Visual development: Access 2003 sup-

ports a visual programming approach

that allows a software prototype to be

built by defining objects (or compo-

nents) such as switchboards (menus),

forms, form controls, and command but-

tons.

• Object Dependencies: It is normal to

expect changes in software systems as

part of the systems lifecycle, this is also

true for software prototypes (especially

evolutionary prototypes). Access 2003

has a feature called object dependencies

that identifies which objects are depend-

ent on a specified object, this feature is

very useful when analysing the impact of

system changes.

• Import/Export: Although not used in the

project Access 2003 provides facilities to

import and export data in the Microsoft

Office environment. Examples of possi-

ble sources to import data from into an

Access 2003 table include a MS-Excel

worksheet, a text file, another Microsoft

Access database, a HTML file, and a XML

file (Online Training Solutions Inc, 2003,

pp.58-73). The ability to import existing

data into a new Access 2003 table may

be useful to speed up the development

of a software prototype.

• Data Validation: Access 2003 has sev-

eral features that help to keep informa-

tion accurate including table attribute

data type settings, input masks, field

validation rules, and lookup lists (some-

times referred to as combo boxes)

(Online Training Solutions Inc, 2003,

pp.146-166).

• Event driven application logic: Access

2003 allows event driven application

logic (written in VBA) to be added to

certain object types such as form con-

trols, event driven application logic al-

lows additional application logic to be

specified that would not be possible if

just Access 2003 was used. An example

of where event driven application logic is

useful when developing a software pro-

totype is to have the ability to send a

tailored message in a message box to

the screen after the user has clicked in a

particular form control (VBA code could

be created for the on-click event for a

specified form control, when the user

clicks on the specified form control the

on-click event is fired and the VBA code

behind the on-click event is executed).

• Security: In the project multi-user ac-

cess to the software prototype was se-

cured by using NTFS security permis-

sions (all members of the IT team were

made members of a user group that had

update permissions to the software pro-

totype), however Access 2003 also pro-

vides some security features that might

be useful for securing a software proto-

type. Security features provided by Ac-

cess 2003 include encrypting/decrypting

a database, assigning a password to a

database, creating an Access 2003

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 15

Sambasivam and Levi Absentee

workgroup, securing VBA code with a

password, and securing a database by

making a MDE (Microsoft Database Ex-

ecutable) file. In a MDE file users can

not use design view for forms, reports or

modules, or change references to other

objects or databases, or change VBA

code (Online Training Solutions Inc,

2003, pp.226-255).

Potential disadvantages of us-

ing MS-Access 2003 for de-

veloping a software prototype
In order to give a balanced opinion

of Access 2003 as a prototyping tool we be-

lieve that it is worth mentioning the features

of Access 2003 that caused concern whilst

developing the software prototype. Based on

the experience gained in the project the fol-

lowing negative features were identified

when using Access 2003 as a software pro-

totyping tool:

• Default error trapping: Access 2003 de-

fault error trapping is suitable for simple

Access 2003 forms but is not suitable for

more complex Access 2003 forms such

as parent forms with embedded child

subforms. We found it necessary to learn

and apply some VBA class module code

(scoped to within individual Access 2003

forms) to provide satisfactory error trap-

ping and error prevention, without using

some VBA code the software prototype

would not have been successful.

• VBA class module code method restric-

tions: The VBA SetFocus method moves

the focus to a specified Access 2003

form control. The VBA SetFocus method

does not work for certain types of form

controls on an Access 2003 form (such

as a combo box), this caused frustration

when performing error trapping or when

trying to automate the sequence in

which each form control is accessed.

• Environment: Care needs to be

taken regarding the environment in

which an Access 2003 database is

developed. During the project we

experienced a problem where the

code produced by the command but-

ton wizard would not operate with-

out errors (2nd author was receiv-

ing errors such as ‘The command

Select Record is not available now’

and ‘The command Delete Record is

not available now’). First of all we

executed the VBA code produced by

the command button wizard in de-

bug mode, no errors could be found

in the VBA code. After debugging the

VBA code we looked for any occur-

rences of the problem on the Micro-

soft Website, no problem information

could be found matching the symp-

toms we was experiencing. To solve

the problem we had to think differ-

ently, maybe the problem was an

environmental problem as we had

been working on more than one PC

when developing the software proto-

type. we re-opened the database in

design mode after ensuring that we

was opening the database with Ac-

cess 2003 and not a previous ver-

sion of Access and deleted and re-

created the failing command button

with the command button wizard.

Exactly the same VBA code was pro-

duced as per the VBA code that was

previously failing but this time the

VBA code worked. we concluded that

the problem was an environmental

problem that was probably due to

opening the software prototype with

an earlier version of Access by mis-

take (causing incorrect DLL’s to be

used).

• Exclusive design mode use: To avoid

losing modifications Microsoft Access

2003 requires exclusive access to a

database when using a database in

design mode (it is not advisable for

more than one software developer to

simultaneously open the same Ac-

cess 2003 database in design

mode). This restriction results in Ac-

cess 2003 being not well suited for

development projects where more

than one software developer re-

quires simultaneous design mode

access to the same Access 2003 da-

tabase therefore Access 2003 is not

well suited for designing software

prototypes for larger projects that

require more than one software de-

veloper to have simultaneous design

mode access to the same Access

2003 database.

• The need to use some VBA code: It

is not recommended to rely entirely

on Access 2003 to build a software

prototype. It is possible to create a

software prototype using Access

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 16

Sambasivam and Levi Absentee

2003 without manually writing any

VBA code, whilst this approach may

speed up the development of a soft-

ware prototype the completed soft-

ware prototype may suffer from the

following two problems:

• Based on my experience of develop-

ing a software prototype with Access

2003 it is likely that using VBA code

will be required to make a software

prototype acceptable to the user.

• If only Access 2003 is used to create

a software prototype then all the ap-

plication logic is hidden inside Access

2003, this can be disadvantageous

as the developer can not see the ap-

plication logic, also the programming

code is not available for white box

testing.

7. CONCLUSION OF THE SUIT-

ABILITY OF MS-ACCESS 2003
AS A SOFTWARE PROTOTYP-

ING TOOL
As demonstrated by the successful

results of this project Access 2003 can be

used as an acceptable tool to build a soft-

ware prototype. The use of some VBA code

in conjunction with Access 2003 allows a

more user friendly software prototype to be

developed (for example the use of VBA with

Access 2003 can provide better error han-

dling logic and more user friendly error mes-

sages than by using Access 2003 without

any VBA code). In order to achieve a better

quality software prototype it is recom-

mended to use Access 2003 in conjunction

with some VBA code, this strategy is particu-

larly important if an evolutionary software

prototype is being developed that will be

retained as the final system. Software proto-

types can still be developed with Access

2003 without writing any VBA code however

this strategy is better suited to throw-away

software prototypes that are not retained as

the final system.

8. STRENGTHS AND WEAK-
NESSES OF THE PROJECT AS

CARRIED OUT
The project as carried out was a suc-

cess, therefore the strengths of the project

as carried out are far greater than the

weaknesses. The main strengths of the pro-

ject are as follows:

A software prototype was success-

fully created (using Access 2003 with some

VBA code) and implemented that satisfied all

the requirements that were agreed with the

project sponsor to be included in the soft-

ware prototype.

The suitability of Access 2003 as a

software prototyping tool was successfully

reviewed based on the experience gained

through the project.

The completed software prototype

provided a successful working software solu-

tion that can be used to improve work plan-

ning, help desk support, and the recording

of software changes in a small IT depart-

ment.

The project was completed in a

timely manner in compliance with the timing

plan defined in the project plan and all ob-

jectives were achieved.

The main weaknesses of the project are as

follows:

Although additional tailored error

messages and error handling logic was pro-

vided by using VBA code some of the default

error messages provided by Access 2003

could have more meaningful text and asso-

ciated actions that help the user to better

understand the necessary corrective actions

to resolve an error situation.

Although the project was a success

we do not believe that Access 2003 is the

best tool to develop a software prototype,

we prefer to think of Access 2003 as an ac-

ceptable tool to develop a software proto-

type that is better suited to a single software

developer environment. It would be interest-

ing to recreate the Work Request Database

software prototype using different software

prototyping tools such as the high-level lan-

guages Visual Basic (or a more recent ver-

sion such as Visual Basic.Net) or Java in or-

der to compare how each tool performed as

a software prototyping tool in comparison to

Access 2003.

9. CONCLUSIONS

Summary of the project as a
whole

As described in the project overview

the project had two aims, both of these

aims were achieved.

The first aim of the project was to

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 17

Sambasivam and Levi Absentee

conduct a high level evaluation of a small

sample of commercial software solutions as

well as to design and implement a bespoke

purpose built software prototype built with

Microsoft Access 2003 in order to recom-

mend a potential software solution to im-

prove work planning, help desk support,

and the recording of software changes in a

small IT department. The proposed solution

had to satisfy the requirements that were

discussed and agreed with the project

sponsor in a formal requirements specifica-

tion document. An evolutionary software

prototype was successfully designed and

implemented as the recommended solution

to improve work planning, help desk sup-

port, and the recording of software changes

in a small IT department. The evolutionary

software prototype did successfully satisfy

the requirements that were discussed and

agreed with the project sponsor in a formal

requirements specification document. The

completed software prototype provided a

successful working software solution that

can be used to improve work planning, help

desk support, and the recording of software

changes in a small IT department.

The second aim of the project was to

review the suitability of Microsoft Access

2003 as a prototyping tool based on the ex-

perience gained during the project through

building a Microsoft Access 2003 software

prototype to meet the requirements agreed

with the project sponsor. The suitability of

using Microsoft Access 2003 as a prototyping

tool was successfully reviewed based on the

experience gained during the project

through building a Microsoft Access 2003

software prototype to meet the require-

ments agreed with the project sponsor.

Possible applications and ex-

tensions of the work
The following applications and ex-

tensions of the work are worth considera-

tion:

• An archiving function could be added to

the software prototype to archive re-

cords over a specified age.

• It would be interesting to investigate if a

front end could be built to allow user

work requests to be received by email

and automatically integrated into the

Work Request Database as open jobs.

• A more detailed understanding of the

required search facility could be devel-

oped by researching intelligent search

techniques and knowledge based sys-

tems in order to recommend and build a

solution to expand the evolutionary

software prototype to include a more in-

telligent search facility.

• It would be interesting to recreate the

Work Request Database software proto-

type using different software prototyping

tools (such as the high-level languages

Visual Basic and Java) in order to com-

pare how each tool performed as a soft-

ware prototyping tool in comparison to

Access 2003.

Bibliography

Coronel,C. Rob,P. (2002) Database Systems.

5th ed. USA: Course Technology.

ISBN061906269X

Cniche. Request Tracker help desk database

system. [Internet]. Available from

<http://www.cniche.com/request/index.

htm> [Accessed 21 May 2005a]

Cniche. Running Request Tracker on a Net-

work. [Internet]. Available from <

http://www.cniche.com/request/network

.htm> [Accessed 21 May 2005b]

Dawson, C.W (2000) The Essence Of Com-

puting Projects A Students Guide. Nor-

folk: Pearson Education Limited.

ISBN013021972X

Dictionary.com. Data Model. [Internet].

Available from:

<

http://dictionary.reference.com/search?

q=data+model&r=67> [Accessed 6th

April 2005]

Gonzalez L. & Giachetti R. & Ramirez G.

(2005) Knowledge management-centric

help desk: specification and performance

evaluation. Decision Support Systems

[Internet], no. 40, 2, pp 389-405. Avail-

able from:

<http://www.sciencedirect.com/science/

article/B6V8S-4CHJ8R2-

1/2/d701f9f268a422eacd82ed01904320

06> [Accessed 30 May 2005]

HMSO. Data Protection Act 1998. [Internet].

Available from:

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 18

Sambasivam and Levi Absentee

<http://www.hmso.gov.uk/acts/acts199

8/80029--a.htm#1> [Accessed 6 May

2005]

Information Commissioner. Data Protection

Act Factsheet. [Internet]. Available

from:

<http://www.informationcommissioner.g

ov.uk/cms/DocumentUploads/Data%20P

rotection%20Act%20Fact%20V2.pdf>

[Accessed 6 May 2005a]

Information Commissioner. Notification Ex-

emptions, A Self Assessment Guide.

[Internet]. Available from:

<http://www.informationcommissioner.g

ov.uk/cms/DocumentUploads/Notificatio

n%20Exemptions%20-

%20A%20Self%20Assessment%20Guid

e.pdf> [Accessed 6 May 2005b]

Information Commissioner. Freedom Of In-

formation Factsheet. [Internet]. Avail-

able from: <

http://www.informationcommissioner.go

v.uk/cms/Documen-

tUploads/FOI%20factsheet.pdf> [Ac-

cessed 9 March 2005c]

Information Commissioner. About The Free-

dom Of Information Act. Available from:

<http://www.informationcommissioner.g

ov.uk/eventual.aspx?id=74

> [Accessed 9 March 2005d]

Information Commissioner. Data Protection.

Available from: <

http://www.informationcommissioner.go

v.uk/eventual.aspx?id=34> [Accessed 9

March 2005e]

Information Commissioner. Information

Commissioners Office. Available from:

<http://www.informationcommissioner.g

ov.uk/eventual.aspx?id=6786&expmovie

=1> [Accessed 9 March 2005f]

Information Commissioner. What the Regu-

lations Cover. [Internet]. Available from:

<

http://www.informationcommissioner.go

v.uk/eventual.aspx?id=94> [Accessed 9

March 2005g]

Intuit. Intuit Information Technology Solu-

tions: Track-It! 6.5. [Internet]. Available

from

<http://www.itsolutions.intuit.com/Trac

k-It.asp> [Accessed 21 May 2005]

Lederer A. & Prasad J. (1995) Causes of in-

accurate software development cost es-

timates. Journal of Systems and Soft-

ware [Internet], no.31, 2, pp. 125-134.

Available from:

<http://www.sciencedirect.com/science/

article/B6V0N-404RP1C-

C/2/e878da8a26708782edabe6aaf7744b

e2> [Accessed 8 May 2005]

Limoncelli, T. (1999) Deconstructing User

Requests And The Nine Step Model. In:

LISA ’99: 13th Systems Administration

Conference, 7-12 November 1999,

Washington, USA. Washington. The

Usenix Association. pp.35-44.

Marcella R. & Middleton I. (1996) The Role

Of The Help Desk In The Strategic Man-

agement Of Information Systems. OCLC

Systems & Services [Internet], no. 12,

pp. 4-19. Available from:

<http://miranda.emeraldinsight.com/vl=

2576611/cl=16/nw=1/fm=docpdf/rpsv/c

w/mcb/1065075x/v12n4/s1/p4> [Ac-

cessed 17 May 2005]

McGregor J. (2004) Software Architecture.

Journal Of Object Technology [Internet],

no. 3, 5, pp 65-77. Available from:

<http://www.jot.fm/issues/issue_2004_

05/column7> [Accessed 30 May 2005]

Microsoft Help And Support. How to keep a

Jet 4.0 database in top working condi-

tion. [Internet]. Available from:

<http://support.microsoft.com/default.a

spx?scid=kb;en-us;303528> [Accessed

8 March 2005a]

Microsoft Help and Support. How to obtain

the latest service pack for the Microsoft

Jet 4.0 Database Engine. [Internet].

Available from:

<http://support.microsoft.com/default.aspx?

scid=kb;en-us;239114> [Accessed 2

September 2005b]

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 19

Sambasivam and Levi Absentee

Appendix A

Req.

ID

Require-

ment

Type

Priority

H=Hig

h

M=Med

L=Low

Requirement

Description

Associated

User

Require-

ment

ID

In-

clude

In

Soft-

ware

Proto

type

Y/N

FR0

01

Functional H The software product should allow

users to create, update and delete

user work requests.

UR002 Y

FR0

02

Functional M The software product should vali-

date critical data entered by users

by applying suitable attribute vali-

dation rules where validation can

be sensibly applied.

UR003 Y

FR0

03

Functional H The software product should pre-

vent data redundancy or multiple

occurrences of the same data. This

functional requirement must be

satisfied by using a normalised re-

lational database structure.

UR004 Y

FR0

04

Functional H The software product should pro-

vide a means to update the most

current status for a user work re-

quest. The status of a user work

request can be open, rejected, or

closed.

UR008 Y

FR0

05

Functional H The product should be able to re-

port open jobs (open user work

requests) sorted by the person

(computer specialist) that each job

(user work request) is allocated to.

UR009 Y

FR0

06

Functional H The product should be able to re-

port completed jobs (closed user

work requests) sorted by the work

request site, work request depart-

ment, work request user (the em-

ployee who requested the work),

and work request completion date

within a date range that is specified

when the report is run.

UR010 Y

FR0

07

Functional H The product should record user

work requests.
UR0011 Y

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 20

Sambasivam and Levi Absentee

Table 1: Summary of functional requirements

Table 2: Summary of non-functional requirements

FR0

08

Functional H The product should record (when

required) implementation details to

satisfy software change control re-

quirements.

UR0012 Y

FR0

09

Functional L Subject to the time constraints im-

posed on the project it would be

useful for the product to have a

search facility to search previous

user work requests to see if a par-

ticular problem has occurred be-

fore. A more detailed understand-

ing of the required search facility is

required before this requirement

can be satisfied, therefore the evo-

lutionary software prototype is not

expected to include this require-

ment.

UR0014 N

Req.

ID

Non-

functional

Require-

ment

Type

Priority

H=High

M=Med

.

L=Low

Requirement

Description

Associated

User

Requirement

ID

In-

clude

In

Soft-

ware

Proto-

type

Y/N

NFR001 Non-

functional

Product

Usability

Require-

ment

H The software product should

be designed to be suitable for

members of a small IT de-

partment that consists of 5

users or less.

UR001 Y

NFR002 Non-

functional

Product

Usability

Require-

ment

H The software product must

have the capability of being

used concurrently by a maxi-

mum of 5 users through

shared network access. The

software prototype was not

expected to be able to dem-

onstrate this capability as it

was planned to be built as a

stand alone solution due to

physical resource constraints.

UR005 N

NFR003 Non-

functional

Product

Usability

Require-

ment

L Ideally the software product

should have the future possi-

bility of being expanded to

handle more than 5 users.

The software prototype will

not include this requirement.

UR007 N

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 21

Sambasivam and Levi Absentee

Estimated cost of COTS solutions

7687

5309

6951

0

2000

4000

6000

8000

10000

COTS solutions

Cost £GBP

Track-It

Request Tracker

Surround SCM

Figure 1: Estimated cost of COTS solutions

NFR004 Non-

functional

Product

Usability

Require-

ment

H The system must be respon-

sive; a typical user work re-

quest must be able to be re-

corded in the database in less

than 15 minutes.

UR0013 Y

NFR005 Non-

functional

Product

Reliability

Require-

ment

M The system must be reliable;

ideally system downtime

should be less than 1% per

year. The evolutionary soft-

ware prototype should be

able to demonstrate reliability

over short periods of use;

however, there is not suffi-

cient time within the project

to monitor system downtime

over the duration of a year.

This require-

ment has

been included

as it is in the

interest of

good practice.

N

NFR006 Non-

functional

Organisa-

tional

Require-

ment

H Due to budget restrictions the

software prototype must be

built using MS-Access 2003

on a stand alone Windows

based PC.

UR006 Y

NFR007 Non-

functional

External

Legislative

Require-

ment

H Brief considerations should be

made for any legal require-

ments that may be relevant

to the project (such as the UK

Data Protection Act).

General con-

straint

Y

NFR008 Non-

functional

External

Ethical

Require-

ment

H The system must be ethically

acceptable to the users.

This require-

ment has

been included

as it is in the

interest of

good practice.

Y

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 22

Sambasivam and Levi Absentee

Suitability of COTS solutions

52 51

22

0

20

40

60

80

100

COTS solutions

Weighted

score out

of 100

Track-It

Request Tracker

Surround SCM

Figure 2: Suitability of COTS solutions

Comparison of estimated cost of

solutions considered

7687

5309

6951

5390

0

2000

4000

6000

8000

10000

Solutions considered

Cost

£GBP

Track-It

Request Tracker

Surround SCM

Evolutionary

Software Prototype

Figure 3: Comparison of estimated cost of solutions considered

Comparison of expected suitability

of evolutionary software prototype

52 51

22

90

0

20

40

60

80

100

Solutions considered

Weighted

score out

 of 100

Track-It

Request Tracker

Surround SCM

Evolutionary

Software Prototype

Figure 4: Comparison of expected suitability of evolutionary software prototype

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 23

Sambasivam and Levi Absentee

Comparison of actual suitability of evolutionary

 software prototype using COTS evaluation criteria

52 51

22

95

0

20

40

60

80

100

Solutions considered

Weighted

score out

 of 100

Track-It

Request Tracker

Surround SCM

Evolutionary Software

Prototype

Figure 5: Comparison of actual suitability of evolutionary software prototype using

COTS evaluation criteria

Evolutionary software prototype target weighted

score for functional requirements compared with

actual weighted score

80 85

0

20

40

60

80

100

Weighted scores

Weighted

score out

 of 90

Target Functional

Requirements

Weighted Score

Actual Functional

Requirements

Weighted Score

Figure 6: Evolutionary software prototype target weighted score for functional re-

quirements compared with actual weighted score

Evolutionary software prototype target weighted

score for non-functional requirements compared with

actual weighted score

50

75

0

20

40

60

80

100

Weighted scores

Weighted

score out

 of 80

Target Non-

functional

Requirements

Weighted Score

Actual Non-

functional

Requirements

Weighted Score

Figure 7: Evolutionary software prototype target weighted score for non-functional

requirements compared with actual weighted score

Proc ISECON 2006, v23 (Dallas): §5113 (refereed) c© 2006 EDSIG, page 24

