
Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

Teaching Relational Database Concepts to

Computer Literacy Students: The Spreadsheet

Metaphor

Geoffrey Steinberg

gsteinbe@kent.edu
College of Business, Kent State University

Kent, OH 44120 USA

Abstract

A challenge facing computer literacy classes is the proper course content level. The challenge

is to take the students to a higher level academically but without driving them away because

they feel an “easy” course has become “hard.” Accepting this challenge, we have moved the

database portion of the computer literacy class beyond keystrokes (rote learning) to data

modeling using the spreadsheet as a metaphor for a relational database. Although not found in

the current literature, this metaphor facilitates the understanding of the foundations of

relational theory and enables computer literacy students to design normalized multi-entity

databases within several class sessions. Students combine relational theory and keystroke

knowledge of Microsoft Access to implement finished applications. The resultant applications

are free of data redundancy problems that often plague non-normalized databases.

Key Words: Database, Computer Literacy, Pedagogy, Teaching, Normalization, Data

Modeling, Spreadsheet, End User

1. Introduction

A challenge facing computer literacy classes

is the proper course content level. Courses

containing material too elementary for the

student are spurned as “blow-offs” resulting

in declining enrollments (Tucci). Literacy

classes with an in-depth exploration of

computer science material may scare away

all but the most mathematically inclined

student. The challenge is to take students to

a higher level academically without driving

them away because they feel an “easy”

course has become “hard.” Accepting this

challenge, we have moved the database

portion of the computer literacy class

beyond keystrokes (rote learning) to data

modeling.

Effective data modeling requires an

understanding of the foundations of

relational database theory. Without these

foundations, students typically develop

multi-entity databases using a single table.

The resultant applications suffer from data

redundancy problems associated with non-

normalized databases.

Database theory is given little emphasis in

computer literacy classes (Hutchings).

Textbooks universally present word

processing before spreadsheets are

introduced. Appropriately, the final topic is

database, a more abstract application than

word processing or spreadsheet.

Unfortunately, textbooks typically continue

the keystroke methodology of word

processing and spreadsheet and forgo

discussion of relational theory. Usually the

most basic database concepts (such as table

or attribute) are presented using metaphors

and terminology from an Information

Systems (IS) based perspective.

In a computer literacy class, the IS

perspective is difficult because it fails to

build on and is not associated with prior

student knowledge. Assimilation theory

holds that a familiar metaphor functions as

an advance organizer and facilitates the

understanding of new knowledge, that is,

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 1

Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

concepts from relational database theory

(Mayer). This article describes an approach

to the introduction of fundamental relational

concepts using a familiar metaphor, the

spreadsheet. This metaphor is more

consistent with the end-user’s knowledge

base that traditional IS oriented

presentations, a factor critical to learning the

subject material.

The metaphor of a spreadsheet as a

relational database table can be inferred

from both the “conventional” IS database

definition and from relational theory. An IS-

oriented definition of a database is a group

of logically related files, files being a group

of logically associated records and fields. A

spreadsheet may be viewed as a sequential

file of fixed length records. 1 The fixed

record length characteristic is derived from

the spreadsheet requirement that all rows

(representing the file’s records) of a given

spreadsheet has the same number of

columns. Thus a spreadsheet is logically

equivalent in structure to a fixed-length,

fixed field, sequential file.

The spreadsheet metaphor is also derivable

from relational database theory as follows. A

spreadsheet, in its most basic form, is a

rectangular grid. A column’s content and

domain (set of allowable values, i.e., pool of

values for an attribute (Teorey)) are defined

by the column width, data type (e.g.,

currency, fixed decimal, date, string, etc.),

and the column heading (attribute name).

Columns are attributes. Column cell values

embody attribute values; tuples are rows.

The set of column headings with the visual

formatting characteristics (such as column

width) are akin to a relation’s heading (fixed

set of attribute pairs that define the domain

of the attribute, each attribute belonging to

only one domain (Teorey)). Thus the

spreadsheet metaphor can be derived from

the representation of a relation as a table as

1 This article presumes that the reader

possesses a basic understanding of

spreadsheet software. References will

presume the “typical” orientation with rows

being records and columns being fields.

There is no loss of generality if the

orientation is reversed.

well as from the IS perspective as a group of

related files.

This article is divided into seven sections -

this Introduction being the first. Second is

an anecdotal survey of the treatment of

relational theory in computer literacy.

Section 3 reviews the consequences of

designing relational databases without a

theoretical foundation and presents

justification for teaching these concepts.

Section 4 presents a review of assimilation

theory concepts that becomes the

foundation for Section 5 in which the

spreadsheet metaphor is presented. The

final sections chronicle the practical

application of the metaphor in the classroom

and end with a conclusion.

2. Current Database Education

The importance of the database topic in

formal IS education is well documented.

Studies have addressed the general

technical knowledge and skill requirements

of IS personnel (Baroudi, Breivik, Marcum,

Neslon). The Association for Computing

Machinery (ACM) curriculum committee

makes periodic recommendations regarding

the content of model curricula for computer

science and IS disciplines. At least one and

most often several database courses are

recommended at all levels: graduate and

undergraduate (Kung,Wu, Chrysler,

Gorgone, Denning).

Current literature promotes use of relational

database software rather than older network

and hierarchical approaches. Studies have

addressed specifically the content and

presentation sequence of IS database

courses using relational databases (Wilkins,

Connolly, Robbert,Keys). Relational concepts

presented as theory or practice application

are widely recommended topics. Specifically

championed are the theoretical topics of

conceptual data modeling and normalization.

Classroom projects involving the design and

implementation of a relational database are

common exercises that demonstrate and

reinforce theory.

With respect to non-IS database education

little emphasis is given to database theory

(Hutchings). In support of this assertion, we

appraised non-IS education by surveying

textbooks used in computer literacy courses.

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 2

Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

2 All considered computer literacy textbooks

shared similar formats and covered three

basic PC applications: (1) word processing,

(2) spreadsheets, and (3) database.

Universally, word processing is introduced

initially. Being the least abstract of the

three, it tends to build student confidence

and thus decrease student anxiety because

students are familiar with the written or

typed word. Spreadsheet software follows

word processing and is deemed more

difficult, being less familiar as well as more

quantitative and abstract. Neither topic

possesses significant underlying theory

regarded as critical for application

development. A keystroke or rote learning

approach (discussed later) is appropriate for

these applications.

In the surveyed texts, the database section

is the final topic, and this is appropriate –

database being the most abstract topic.

Unfortunately textbooks continue the

keystroke methodology and relational theory

presentation is virtually non-existent.

Students are presented only the most basic

concepts (such as file or field) using

metaphors and terminology from an IS-

based perspective. In a literacy class, it is

difficult to build on this perspective or

associate it with prior knowledge.

Frequently, students use aftermarket books

and software manuals accompanying

commercial software. These are only

marginal improvements. Such sources

contain in-depth, keystroke-oriented

instruction for manipulating selected

software packages. Basic terminology is

mentioned in a brief, introductory chapter

(typically six or fewer pages), followed by

mechanical or keystroke instruction. There is

no coverage of important relational

concepts. For example, the critical concepts

regarding database normalization are not

found in any surveyed sources.

 Summarizing, we believe non-IS students

receive database education through

introductory microcomputer-based database

courses, supplemented with tutorials and

reference manuals that accompany software

2
 Contact the author for a list of text

surveyed.

as well as aftermarket texts describing

specific database management system

(DBMS) software. No source presents any

relational database theory. Students become

end-users knowledgeable with regard to the

mechanics of the specific software

application(s) but ignorant of database

design theory, the consequences of which

are described in the following section.

3. Need for Relational Theory

The lack of relational theory presents

difficulties for the database designer.

Students unfamiliar with theoretical

foundations of database design bypass the

critical steps of conceptual data modeling

and normalization during application

development. The consequences of

bypassing the critical data modeling and

normalization steps can lead to poor design,

which in turn, can lead to lost, inconsistent,

and redundant data (Teorey). For example,

the database in Figure 1 is a multi-entity

table that has data redundancy (a vendor

twice and a product twice) as well as other

problems associated with non-normalized

databases.

Figure 1: Multi-entity Spreadsheet

Some end-users recognize their deficiency

and rely on IS specialists for critical

database design. However, often end-users

felt IS involvement might jeopardize their

independence (Ahrens). Consequently, end-

users undertake design without assistance

with the aforementioned results.

We are not alone in recognizing end-users’

need for an education in database theory.

Others have suggested that end-user

database designers will benefit from a

greater knowledge of database theory

(Hutchings,Robbert,Rob). The software

development community has responded to

end-user demand with new products. Ahrens

and Sankar (Ahrens) and Bostrom, Olfman,

and Sein (Sein) promote software tutors to

acquaint end-users with critical material for

database design. Steinberg, Faley and Chin

(Steinberg) have developed software that

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 3

Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

uses an English-based, non-contextual

approach for teaching relational database

design including normalization. Lim and

Hunter (Lim) describe DBTool which assists

the database developer in the

transformation of a conceptual model to an

equivalent relational model. Although these

approaches show promise, we offer an

alternative that is simpler, does not require

special software, and is perhaps more

appealing: the spreadsheet metaphor.

4. Rote and Meaningful Learning –

Assimilation Theory

Our contribution to database education is

the introduction of a new presentation

metaphor for relational database theory, the

spreadsheet. The choice of a spreadsheet

metaphor is best explained using terms from

assimilation theory.

Assimilation theory defines two types of

learning rote learning (for memorization)

and meaningful learning. “Rote learning

incorporates new knowledge with existing

knowledge in an arbitrary and verbatim way.

Rote learners memorize information with

little or no regard for its meaningful

connection to prior knowledge” (Hung).

Traditional computer literacy database

education consists of rote learning, whereby

the student is taught the mechanics of

database generation without regard for

relevant relational design theory. Students

learn the keystrokes necessary to generate

and manipulate single-table databases. The

instruction terminology is IS-based, with

little or no regard for its meaningful

connection to the student’s prior knowledge

base.

The second type of learning, meaningful

learning, occurs “when an individual

connects new information in a non-arbitrary

and substantive manner with knowledge that

already exists in memory.” With meaningful

learning comes a fundamental

understanding of concepts underlying the

newly acquired information and ability to

apply those concepts to situations not yet

encountered. Advance organizers are

“familiar” material injected into the learning

process prior to the introduction of new

material. The purpose of the advance

organizer is to facilitate retrieval of current

knowledge from long-term memory that will

be necessary and/or useful in the synthesis

of forthcoming information (Mayer). Thus,

models, metaphors, and analogies make

learning new material easier because they

organize the new material in advance for the

learner (Hung).

The traditional, IS-oriented database

approach fails to make effective use of

advance organizers when dealing with the

computer literacy student, defining relational

concepts using unfamiliar terms and

analogies. Virtually, all IS-oriented database

classes begin defining the term “database”

after the terms “field,” “record,” and “file”

are discussed with reference to the hierarchy

of data. Thus, although the hierarchy of data

serves as an advance organizer to IS

students, the new terms become an

additional burden to the computer literacy

student.

For example, the following definition, a

composite of many sources, is used in our

Information Systems database classes: A

database is a group of logically associated

files organized for storage and retrieval of

data. As the typical IS students’ background

includes elementary programming classes in

one or more of, say, Java, C#, or Visual

Basic, the following association is expected:

The database is composed of some number

of files, each of which is composed of fixed-

length records, that in turn, are composed of

fixed-length fields. As the definitions of

“relation,” “tuple,” and “attribute” are

introduced, the IS student mentally

references programming experiences with

“files,” “records,” and “fields,” the

descending hierarchical structure of data.

Thus, the hierarchy of data is used as an

advance organizer, a learning facilitator for

the definition of “database.”

The advance organizers concept is used to

introduce other relational theory concepts.

The organizers are drawn from the IS

student’s programming background, as

would be expected in IS curricula or texts.

However, the background or knowledge base

of the computer literacy student differs from

that of the IS student. Therefore, the IS-

oriented advance organizers are ineffective

as they are not integrated within the end-

user’s knowledge base. In fact, they may

serve as a learning inhibitor by increasing

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 4

Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

the total amount of new information

introduced.

We contend that the spreadsheet metaphor

is effective for teaching relational database

theory to students. This metaphor is

proposed because (1) as an advance

organizer, it lies within the students’ existing

knowledge base; (2) the spreadsheet,

inherently, can be used as an example of

relational concepts; (3) we have obtained

good results using this metaphor, as

presented in Section 6. To illustrate the

metaphor’s potential; next we explain

selected relational database concepts using

the spreadsheet metaphor.

5. The Spreadsheet Metaphor

The introduction of basic relational terms

employs the spreadsheet metaphor at its

most elementary level. The students,

already familiar with spreadsheets, are

introduced to relational terms using the

spreadsheet terms as advance organizers. In

a classroom environment, the instructor

makes an conscious effort to employ

interchangeably the relational and

spreadsheet terms in explanation of

succeeding concepts, reinforcing the terms

already defined, treating as synonyms the

relational term and spreadsheet counterpart.

The remainder of this article is written in this

style.

Continuing with the terminology

development, the following relational theory

terms are defined using the spreadsheet

metaphor. An “instance” of the relation

(tuple) is a row within the spreadsheet. The

set of instances at any moment comprises

the relation’s “extension,” and the set of

columns comprises its “intension.”

Concepts of intermediate difficulty are

introduced with a minimum of difficulty.

Consider the concept of stability of the

database’s intension and extension, certainly

abstract topics for computer literacy

students. These topics are introduced

through a discussion regarding the types of

changes made to a spreadsheet. Students

will agree that after initial spreadsheet

development, changes such as row (tuple)

addition or deletion are more likely than the

addition or deletion of a column (attribute).

Hence, the spreadsheet student is already

aware that a relation’s intension (number of

columns) is relatively stable, as compared

with its extension (number of rows).

Further relational theory topics are

introduced using the spreadsheet as an

advance organizer. For example, the need

for normalization (the process of organizing

data into relations so as to remove or

update anomalies (Lightstone)), and the

nature of (cardinality of) relationships

between entities are abstract topics easily

explained with the spreadsheet metaphor.

These topics are introduced by creating a

multi-entity spreadsheet. For example, the

relational university model (RUM)

spreadsheet (Figure 2) might be considered

a “typical” end-user spreadsheet, created to

reflect the recording needs of the university.

Figure 2: Relational University Model (RUM)

In the spreadsheet an instance contains

attributes that describe two physical objects,

students and classes. It is not uncommon for

end-users designed spreadsheet rows to

contain data about multiple entities (objects

about which information is stored). The

natural grouping and association of

attributes within a row renders ease of

reading. Information about different objects

within an instance (row) reflects the

relationships among objects: students

enrolled in classes. IDs represent each

entity’s unique identification (primary key);

the other columns represent the non-key

attributes. However, this spreadsheet is not

without problems.

The most apparent problem, which the

students immediately identify, is data

duplication. Each row represents a class

taken by one student. For each individual

student’s classes, the attributes (field)

values for ID, NAME, and GPA are replicated.

Obvious duplication of information exists for

the CLASS entity.

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 5

Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

These discoveries are typically followed by a

discussion of the problems inherent to

redundant data. The consumption of

unnecessary primary and secondary storage

is readily apparent. The potential entry and

maintenance errors are more subtle, but

nevertheless are realized by the students as

discussion progresses.

This simple spreadsheet illustrates another

serious problem that exists when

spreadsheet instances reflect information

about more than one entity; the logical data

model cannot accurately reflect the physical

world. For example, consider the common

circumstances that cannot be depicted with

RUM: (1) Dino, a student who sits out a

semester is enrolled in no classes; (2)

Philosophy II, a class not being taught this

semester has no students. These problems,

as many others, are caused by the inability

of a multiple entity instance to provide for

the existence of one entity coincident with

the absence of an associated entity. This

general class of problems, known as data

dependency problems, arises when a

spreadsheet instance contains data about

multiple entities. The spreadsheet requires

the presence of information about all entities

within a data instance. For any multi-entity

spreadsheet (Figure 1), the unique

identifying item (primary key) is a

concatenation of the primary keys (VENDOR

ID + PROD ID) of the individual entities.

Should one or more entities fail to exist, the

spreadsheet’s integrity is comprised because

instance identification becomes impossible;

part of the primary key is missing.

Students invariably propose to solve both

the data redundancy and data dependency

problems through data instance subdivision.

Intuitively, the division is according to the

logical grouping of attributes, that is, by

entity. Thus, students begin the

normalization process, the process of

decomposing a relation (table) to reduce

data redundancy and data dependency.

When using database software, the

normalization process consists of creating

separate tables, one for each entity.

Students intuitively mirror the process by

partitioning the one physical spreadsheet

into multiple “logical” spreadsheets,

“spreadsheets within a spreadsheet.” (The

sub-grouping, columns contained within a

spreadsheet function independently, hence

the name logical spreadsheets.) Thus the

student’s partitioning illustrates the creation

of separate relations for each entity within a

database. The logical spreadsheets derived

from Figure 2 are illustrated in Figure 3, the

student not currently enrolled in a class

(Dino) and the class not currently being

taught (Philosophy II) has been added,

creating an accurate reflection of the

physical world.

Figure 3: Partitioned Relational University

Model

Students are asked to analyze the

partitioned spreadsheet compared with the

single-table spreadsheet of Figure 2.

Students easily identify the partitioning

(normalization) benefits. Logical databases

are more easily modified than the

equivalent, multi-entity database, as data

redundancy is eliminated. The singular

existence reduces resources requirements

(such as memory or disk) and perhaps more

importantly, reduces the likelihood of error

caused by inconsistent or omitted updates.

Each logical spreadsheet can be maintained

independently. Attributes may be added to

or deleted from one without affecting the

other. Rows may be added to one

spreadsheet and not the other. Row addition

independence allows the existence of one

entity instance (record) without requiring

the presence of another, resolving the data

dependency problem.

Also, students recognize immediately the

need for a logical association between

specific spreadsheet instances, in this case

STUDENT and CLASS. Otherwise valuable

information between specific spreadsheet

instances is lost. For example, it would be

impossible to determine the classes of a

particular student or the enrollment in a

particular class if the spreadsheets remain

unlinked. The information is easily obtained

from Figure 2 but cannot be determined

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 6

Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

from Figure 3. The pursuit of the resolution

to this problem triggers discussion of the

relational concepts associated with primary

and foreign keys, the features that facilitate

logical associations between unique

instances. Thus, students discover

cardinality, the type of relationship that

exists between entities.

At this juncture, students require judicious

guidance supplied by the instructor. The

suggestion that the needed correlations be

enumerated allows the students to see them

(in the physical sense). Using the un-

normalized database (Figure 2) the

instructor extracts the STUD ID and CLASS

ID columns (attributes) and creates an

intersection table (Figure 4) to enumerate

the relationships.

Figure 4: Intersection Table for Relational

University Model

Students discover the concept of the

intersection or cross-reference table as the

implementation technique for M:M (many-

to-many) relationships, STUDENT-CLASS

being a specific example. Students easily

recognize the need to create a new, logical

spreadsheet that contains the connections.

The adjective logical is used because the

new entity reflects nothing tangible, merely

the association between STUDENT and

CLASS. Students enrolled in multiple classes

are represented by multiple rows in the

STUDENT-CLASS entity. Similarly, classes

with multiple students have multiple

instances in STUDENT-CLASS. Students note

that the concatenation of the STUD ID and

CLASS ID keys is needed to form a unique

identifier for STUDENT-CLASS instances.

This example also illustrates the principal

that a normalized database (spreadsheet)

does not eliminate all data redundancy – but

controls data redundancy. Duplication of key

values is required to facilitate the logical

association between specific instances of two

entities. Thus, normalization controls data

redundancy by eliminating unnecessary data

redundancy.

This example becomes the advance

organizer for the generalized resolution of

the M:M relationship, the creation of an

intersection table concatenating the

individual primary keys to form the

intersection’s primary key. In addition, the

M:M relationship is an advance organizer for

the 1:M (one-to-many) relationship that

follows. Thus, the RUM spreadsheets are

used to introduce and illustrate the

advantages of implementation techniques

associated with normalization.

Continuing the introduction of cardinality

with the spreadsheet metaphor, a second

spreadsheet, specialty merchandising model

(SMM) is introduced (Figure 5). The change

of example permits reinforcement of the

M:M normalization process and introduction

of the 1:M cardinality through the

introduction of a third entity. This

spreadsheet reflects the needs of a special

retailer. During the example’s introduction it

is important to include the assumption that

each product has only one vendor. The

intent of this assumption is to introduce a

1:M into the database, later contrasting its

implementation with that of M:M.

Figure 5: Special Merchandising Model

(SMM)

Students identify the three entities in this

spreadsheet: CUSTOMER, PRODUCT, and

VENDOR and create the appropriate relation

(table) with redundancy removed for each

entity (Figure 6).

Figure 6: Partitioned Special Merchandising

Model (SMM)

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 7

Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

The M:M relationship between CUSTOMER

and PRODUCT is readily apparent to the

student and easily implemented through

creation of the logical spreadsheet

CUSTOMER-PRODUCT (Figure 7).

Figure 7: Intersection Table

Students recognize that the relationship

between product and vendor is different

from CUSTOMER-PRODUCT. Students can

visually compare CUSTOMER-PRODUCT

(Figure 7) with the VENDOR ID and

PRODUCT ID columns as well as remember

the example’s introduction. Quickly students

extract the PRODUCT ID and VENDOR ID

form their respective entities (Figure 8-left)

and then eliminate duplicate rows (Figure 8-

right).

Figure 8: Extract Columns (left) - Reduced

Table (right)

Each product is associated with only one

VENDOR, that is, a PROD ID appears only

once in the listing as compared with several

listings of VENDOR. Figure 8-right illustrates

visually a 1:M relationship. One VENDOR has

many PRODUCTs, but each PRODUCT is

supplied by only one VENDOR. In addition,

the visual difference between CUSTOMER-

PRODUCT (Figure 7) and PRODUCT-VENDOR

(Figure 8-right) is an advance organizer to

suggest that implementation of 1:M

relationships is different from that of M:M.

Students, remembering the goal of

eliminating redundancy, explore two open

choices: (1) place PROD ID in VENDOR or

(2) place VENDOR ID in PRODUCT. The

choice is easily resolved. All attributes are

“single-valued” (another relational term),

therefore, one attribute in VENDOR cannot

simultaneously “point” to multiple PRODUCT

instances. However, a PRODUCT instance

may reference the one associated VENDOR

instance. Therefore, students invariably

place VENDOR ID within the PRODUCT

relation (Figure 9). Thus, this example will

server as an advance organizer in the

discussion of foreign key placement.

Figure 9: SMM Product Entity

The formal introduction of the term “foreign

key” proceeds naturally. A foreign key is an

attribute (simple or composite) of one table

whose values are required to match those of

the primary key (unique identifier) of

another entity (table) (Teorey). Using the

SMM example, the instructor notes that the

foreign key placement is critical for a 1:M

relationship. The foreign key must be placed

in the MANY entity instance, pointing to the

ONE entity instance. This somewhat abstract

discussion proceeds smoothly because the

exploration for resolution of the previous

example served as an advance organizer for

the foreign key topic. It is easily

demonstrated that the foreign key attribute

need not possess the same name as the

associated primary key; only the values

need to be matched.

In summary, we have used this section to

demonstrate that the spreadsheet metaphor

may be employed to illustrate relational

theory concepts at all levels of abstraction,

from intermediate nomenclature to advance

abstract topics such as normalization and

cardinality. We use other spreadsheet

examples as advance organizers during the

introduction of further relational theory

concepts to successfully teach data modeling

to computer literacy students. Results

obtained by using this metaphor are detailed

in the next section.

6. Practical Application of the

Spreadsheet Metaphor

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 8

Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

The spreadsheet metaphor has been

employed in the computer literacy classes at

Kent State University for five semesters.

Students are primarily freshmen and have

diverse areas of concentration, but they are

not IS majors.

Students received computer instruction

following the now traditional sequence: word

processing, spreadsheet, and finally

database. The database portion of lectures is

based on relational theory (using the

spreadsheet metaphor) for database design

and keystroke using Microsoft’s Access.

Thus, students could manipulate previously

defined databases as well as design new

applications.

The database design segment consisted of

approximately 2.5 class hours of

spreadsheet metaphor lectures over four

weeks. Assignments required the students to

read a problem situation and design and

implement a normalized database using

Microsoft Access that would support the

informational needs dictated by the problem.

Problem level difficulty ranged from easy

(two entities and 12 attributes) to

moderately difficult (six entities and 45

attributes). A sample of a midlevel

assignment follows:

Veterinarians in town can be

identified by a license number.

Other characteristics of the vets

are their name, office address and

phone number. The vet treats

many dogs each of which has one

owner. There are no strays. Each

owner, however, can have more

than one dog, and the owners have

unique names. The dog’s names

are not unique, nor are their

breeds. All owners reside with their

dogs at a location that is identified

by its address. The people never

get their dogs mixed up because

each license number is different.

Students were evaluated on the basis of

enumeration of the entities, association of

the attributes, the correct primary keys, and

the correct foreign keys. The evaluation was

done objectively; over- or under

specification of attributes and/or entities

resulted in a penalty to the student. 3

Summary results for the students’

homework assignments are given in Figure

10. Data are presented for the five

semesters prior to and after the introduction

of the Spreadsheet Metaphor. Specific

assignments changed each semester. The

structure of the assignments (entities,

attributes, etc.) did not change, therefore

the mix of objective score measurements did

not change. The average homework score

increased pre to post introduction of the

metaphor by more then four points.

Figure 10: Student Homework Summary

To measure student learning about database

design, students were required to answer

questions about normalization in an exam

during the database portion of the class as

well as questions on the final. Therefore,

students were evaluated both from academic

(test) and practical demonstration

(implementation) perspectives.

A sample test question of intermediate

difficulty was:

Given this scenario: A car has a

color and is identified by vehicle

identification number (VIN). The

cars have a purchase cost and an

owner. The owners have an

address, phone number, and a

social security number. A

salesperson has a name, sells the

cars ands has a unique tax

identification number (TID). The

salespeople only work at one

dealership.

For this question, students were required to

identify the number of entities, the number

of attributes, the number of foreign keys in

3
 Contact the author for details.

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 9

Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

the entity “car,” and the cardinality between

car and salesperson. A summary of student

performance is given in Figure 11. Data are

presented for the five semesters prior to and

after the introduction of the Spreadsheet

Metaphor. Although a statistical analysis

has not been performed, a general upward

trend can be observed perhaps indicating

increasing success with the pedagogical

technique.

Figure 11: Testing Results Summary

The “hands on” perspective required

students to synthesize their relational theory

and keystroke knowledge of Access to

develop applications. The resultant

applications were generally free of the data

redundancy problems that plague non-

normalized databases.

In summary, the spreadsheet metaphor was

used for the introduction of relational

database theory concepts in a computer

literacy class. Literacy students were able to

read a relational database description,

synthesize it, and design normalized

databases; these tasks usually required only

of IS students. Literacy students later

demonstrated their mastery with the

implementation of their designs using

Access.

7. Conclusion

This article describes a methodology

employed to take computer literacy students

to a higher level academically. Computer

literacy students were introduced to data

modeling using the spreadsheet metaphor as

an advance organizer for the relational

database concepts. By using examples more

familiar to the subject audience that the

abstract concepts of, say, fields or files, the

spreadsheet metaphor facilitates

understanding of the foundations of

relational theory and enables computer

literacy students to create normalized multi-

entity relational databases free of data

redundancy problems associated with non-

normalized databases. Preliminary results of

student performance indicate an

improvement in knowledge and practical skill

regarding normalization and database

design.

References

Ahrens, J., D., and Sankar, C. S., (1991)

“Tailoring Database Training for End-

Users,” MIS Quarterly, vol 17. No 4, pp

419-439

Baroudi, J.J. (1995). “The Impact of Role

Variables on IS Personnel Work Attitudes

and Intentions,” MIS Quarterly, vol 9, no

4, pp 341-356

Bostrom, R., Olfman, L., Sein, M., (1988).

“End-User Computing: A Research

Framework for Investigating the

Training/Learning Process,” Human

factors in MIS, J Carey, ed. Norwood, NJ,

Ablex, pp 2221-250

Breivik, P. (1998). “Student Learning in the

Information Age,” Oryx Press

Chrysler, E., and Van Auken, S. (2002).

"Entry Level Value Versus Career Value

of MIS Courses: Faculty Expectations

Versus Alumni Perceptions, "Journal of

Computer Information Systems, vol. 42,,

no. 3, pp 38-43.

Connolly, T., and Begg, C., (2006) "A

Constructivist-Based Approach to

Teaching Database Analysis and

Design," Journal of Information Systems

Education, Spring 2006

Denning, P. & McGettrick, A. (2005).

Recentering Computer Science.

Communications of the ACM, vol. 48, no.

11, pp 15-19.

Gorgone, J., Gray, P., Stohr, E., Valacich. J.,

and Wigand, R., (2006). “MSIS 2006:

Model Curriculum And Guidelines For

Graduate Degree Programs In

Information Systems,” Communications

of the Association for Information

Systems, vol 17, 2006, pp 1-56

Hung, W., Chao, C., (2007). “Integrating

Advance Organizers and

Multidimensional Information Display in

Electronic Performance Support

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 10

Steinberg Thu, Nov 1, 2:30 - 2:55, Haselton 1

Systems,” Innovations in Education &

Teaching International, v44 n2 p181-198

Hutchings, D. and Stasko, J. (2002).

“QuickSpace: New Operations for the

Desktop Metaphor,” Extended Abstracts

of the Conference on Human Factors in

Computing Systems.

Keys, A.C. (2003). Using Group Projects in

MIS: Strategies For Instruction and

Management. Journal of Computer

Information Systems, vol. 43, no. 2, 42-

50.

Kung, M., Yang, S., and Zhang, Y., (2006).

"The Changing Information Systems (IS)

Curriculum: A Survey of Undergraduate

Programs in the United States," The

Journal of Education for Business,

Volume 81, No. 6

Lightstone, S., Teorey, T., and Nadeau, T.,

(2007). “Physical Database Design: the

database professional's guide to

exploiting indexes, views, storage, and

more”, Morgan Kaufmann Press

Lim, B. and Hunter, R. (1992). “DBTool: A

Graphical Database Design Tool for an

Introductory Database Course,” SIGCSE

Papers of the Twenty-third Symposium,

pp 24-27

Marcum, J., (2002) “Rethinking Information

Literacy,” Library Quarterly, v72 n1 p1-

26

Mayer, R.E. (1979). “Can Advance

Organizers Influence Meaningful

Learning?” Review of Educational

Research, vol 49, no 2, pp 371-383

Neslon, R. and Lyons, N., (1991).

Educational Needs as Perceived by IS

and End-User personnel: A Survey of

Knowledge and Skill Requirements,” MIS

Quarterly, vol 15, no 4, pp 503-536

Rob P., and Adams, C.N., (1990).

“Microcomputer Databases in the

Classroom: Its Time to Pay the (design)

Piper,: Journal of Computer Information

Systems, vol 31, no 1, pp 18-24

Robbert, M., Wang, M., Guimaraes, M., and

Myers, M.E. (2000). The Database

Course: What Must be Taught. SIGCSE

Bulletin, vol. 32, no. 1, pp 403-404.

Steinberg, G., Faley, R., Chin, S., (1994).

“Automatic Database Generation by

Novice End-Users Using English

Sentences,” Journal of Systems

Management, vol. 45, no 3, pp 10-15

Teorey, S. Lightstone, T. Nadeau, (2005).

“Database Modeling & Design: Logical

Design, 4th edition”, Morgan Kaufmann

Press.

Tucci, L., (2005). “College Students

Continue To Shun Computer Science,”

CIO News, August 2005.

Wilkins, M., & Nolltt, C., (2000). "Critical

Skills of IS Professionals: Developing a

Curriculum for the Future," Journal of

Information Systems Education Vol 11,

no. 3-4, pp 105-110.

Wu, J., Chen, Y., Chang, J., Lin, B., (2007).

"Closing off the Knowledge Gaps in IS

Education," International Journal of

Innovation and Learning, vol 4, no. 4. pp

357 - 375

Proc ISECON 2007, v24 (Pittsburgh): §1545 (refereed) c© 2007 EDSIG, page 11

