
Harkins Fri, Nov 2, 3:00 - 3:25, Ellwood 2

The Design and Implementation of a First

Course in Computer Programming for

Computing Majors, Non-Majors and

Industry Professionals within a Liberal

Education Framework

Ronald J. Harkins
Miami University

1601 University Blvd.
Hamilton, OH 45011

513-785-3137
harkinrj@muohio.edu

Abstract

With declining interest and enrollments in computer programming courses, it has been

necessary to consolidate course offerings resulting in a particular class consisting of different

learning objectives for its representative student constituencies. This paper details the design

and implementation of a first course in computer programming with a liberal education focus,

but populated by computing majors, non-majors, and working professionals. Careful attention

must be given to the liberal education theme and the proper instructional methodologies in

order to meet the learning objectives of these three distinct student groups within the same

classroom. Additionally, pragmatic teaching maxims will be provided to help ensure success in

offering not only this programming course, but also any liberal education computer

information systems course populated by different student groups with different associated

course expectations.

KEYWORDS: computer programming, liberal education in technology, CS0, non-majors, Pair

Programming, Active Learning

1. INTRODUCTION

Universities continue to struggle to address

declining enrollments in certain computing

and technical disciplines. Some colleges

continue to offer a wide variety of computing

courses to meet student needs, but with

very low enrollments in each. Indeed,

smaller computing classes taught in

computer classrooms in an active learning

format have been shown to improve learning

and enrollment retention, as well as student

satisfaction (Boyer, 2007). However, for

many schools, offering a variety of such

small classes has become a financial burden.

Instead, they offer a smaller number of

classes, or even a single section of a

particular course, hoping to maximize its

enrollment. Consequently, a particular

course section can be populated by students

with very different course expectations.

Furthermore, designing course materials and

teaching the course can present a challenge

to the instructor. The Computer Science and

Systems Analysis department at Miami

University offers a course entitled

“Introduction to Computer Concepts and

Programming” (CSA 163). This first course

in computer programming with Visual BASIC

is sometimes taken by computing majors

who lack algorithm development and

programming ability for the object-oriented

programming course in JAVA (CS1). Some

working professionals also enroll in the

course to acquire Visual BASIC programming

skills. Finally, most students enrolled in this

course are non-majors who take it to fulfill a

Proc ISECON 2007, v24 (Pittsburgh): §2524 (refereed) c© 2007 EDSIG, page 1

Harkins Fri, Nov 2, 3:00 - 3:25, Ellwood 2

liberal education requirement for their

degree, under the university’s Miami Plan for

Liberal Education.

2. MIAMI PLAN FOR LIBERAL

EDUCATION

The Miami Plan for Liberal Education, a

significant revision of an earlier liberal

education core requirement for graduates of

Miami University, was adopted in 1988. The

Plan requires students to take a number of

courses (usually 3 – 9 semester hours) in

each of five foundation course groups,

followed by a 3-course thematic sequence to

provide an in-depth study in an area outside

of the student’s major, and culminating with

a liberal education capstone experience.

CSA 163 is a Group V (Mathematics, Formal

Reasoning, Technology) foundation course of

the Plan. Non-majors, in particular, take

CSA 163 to meet this Miami Plan foundation

course requirement.

To have a course designated as a Miami Plan

course, a formal application must be

submitted by the department to the

university’s Liberal Education committee.

The application must clearly demonstrate

how the course will meet and incorporate

defined liberal education principles into the

course. These principles include critical

thinking, understanding contexts, engaging

with other learners, and reflecting and

acting. Some might contend that a skills

acquisition course, such as a computer

programming course, is incompatible with

such liberal education principles. However,

the CSA department was very attentive to

these principles in the design of CSA 163 by

focusing on problem-solving and ensuring a

natural integration of each of these

principles into the course, which

strengthened the objectives and outcomes of

the resultant course. This is especially

important for computing majors and/or

working professionals who might enroll in

the course not seeking any Miami Plan

liberal education requirement fulfillment, but

rather acquisition of problem

solving/programming skills in Visual BASIC.

3. APPLYING LIBERAL EDUCATION

PRINCIPLES TO A COMPUTER

PROGRAMMING COURSE

Infusing liberal education principles into a

skills acquisition course, such as computer

programming, can be especially

advantageous to non-majors. It can help

dispel misconceptions about the art and skill

of programming, and programmers as

“geeks” who work in isolation. Non-majors

themselves provide diversity to the

programming course, and the liberal

education principles make it easier for them

to understand the broader context of

computer programming in helping

individuals work with computers to enrich

their own professional lives as well as the

larger society that is becoming increasingly

technological (Allen, 1990;Anderson, 2003;

Brady, 2004). The problem-solving and

logical reasoning skills utilized in a first

course in computer programming transfer to

end-user programming skills, such as macro

creation, spreadsheet formula/function

derivation, and dynamic web

applications…all important to non-majors.

Furthermore, social persuasion and self-

efficacy can increase for learners, especially

non-majors, in a computer programming

course by incorporating liberal education

principles into the course (Wiedenbeck,

2005).

3.1 Critical Thinking Principle

Problem solving strategies employed in a

traditional college mathematics course are

essentially the same in a first course in

computer programming. The primary

difference is that the problem’s solution is

implemented on a machine using a computer

language to direct the solution. Thus, the

logical reasoning and critical thinking skills

which are so vital to success in mathematics

are likewise crucial to success in computer

programming. Furthermore, courses that

emphasize the development of problem-

solving skills and logical reasoning support

the objectives of curricula grounded in

liberal education (Ellison, 1980). Clarity in

problem definition, accuracy of proposed

algorithms, and the relevance of both input

data and output information, require

significant critical thinking and analysis

(Fagin, 2006). Norris and Jackson (1992)

investigated the effects of a BASIC

programming course on students’ critical

thinking and mental alertness and found

significant improvement in students’ critical

thinking skills at the conclusion of the

course.

Proc ISECON 2007, v24 (Pittsburgh): §2524 (refereed) c© 2007 EDSIG, page 2

Harkins Fri, Nov 2, 3:00 - 3:25, Ellwood 2

Whereas critical thinking skills might be

more apparent for the computing major or

working professional in a first course in

computer programming, the non-

major/liberal education student might

struggle with the critical and analytical

thinking processes in computer

programming. Small group exercises and

pair programming (to be discussed later in

this paper) can assist non-majors in

improving their logical reasoning and critical

thinking skills. Furthermore, connecting the

problems to be solved to non-majors’ areas

of interest or anticipated careers, can also

help them focus their critical thinking in a

relevant context (Allen, 1990). Layman and

Williams (2007) found that only 34% of

programming projects in a beginning

programming course had any practical or

socially relevant context. Addressing

socially relevant problems, some with ethical

considerations, can motivate liberal

education students to realize the importance

of critical thinking in the design of efficient,

practical, and reliable algorithms and

solutions to important societal problems

whose solution can be significantly improved

and tested using a computer (Bosse, 2000).

In a first course in computer programming,

debugging activities and inspection and

appraisal of alternative solutions and code

for a problem, especially in a group

discussion, are ideal mechanisms to focus

on, and subsequently improve students’

critical thinking skills.

3.2 Understanding Contexts Principle

Students in a first course in computer

programming, such as CSA 163, also add to

their knowledge base about the conceptual

framework, achievements, and societal

issues in computer technology. This is

accomplished by students reading a

secondary “computer concepts” textbook

and associated newsprint and internet

articles, and participating in small-group

discussions on topics or issues drawn from

these sources. While computing majors and

working professionals might already know a

significant amount of the technical

hardware, software, and systems related

topics, this knowledge is balanced by the

non-major/liberal education students’

perceptions and contributions in the cultural

and societal issues related to technology.

3.3 Engaging With Other Learners

Principle

Students learn from one another. Working

with fellow students on problem solutions

using a computer proves invaluable to their

success, as well as their confidence and self-

esteem. Informal hierarchies in a computing

classroom, such as a “novice” group, a

“some background” group, or an “expert”

group can be blurred, or somewhat dissolved

by incorporating partnership/small-group

learning activities into a course. This also

tends to diffuse a defensive climate that can

occur when competitiveness, rather than

cooperation permeates computer learning

(Barker, 2002;Garvin, 2004). To this end,

pair programming is utilized in many

computing courses, including CSA 163, a

first course in problem solving and

programming with Visual BASIC. With pair

programming, two students share a single

computer to complete in-class programming

lab activities. One student, designated as

the “navigator,” reads instructions, and

reviews program code and actions

completed the other partner, the “driver,”

who uses the keyboard and the mouse to

interact with the shared computer. These

roles are periodically reversed throughout

the laboratory activity to allow each partner

to experience each of these roles. Both

driver and navigator are actively involved in

reviewing their shared work, debugging their

program, and recommending alternative,

and hopefully more efficient and accurate

solutions to the problem under

consideration. “Mixed” partnerships (i.e.

computing major/non-major/working

professional) seem to work best, with non-

majors providing “user considerations” to a

solution, while computing majors provide

additional technical expertise, when needed.

However, it is important to ensure that both

members of the partnership contribute to

their mutual learning, and dominant or

dogmatic behavior (especially by a

computing major working with a less

technically secure non-major) does not

exist. If allowed, this can not only add to

the frustration and feeling of inadequacy by

the non-major, but can also result in unfair

grading, with “weaker” students receiving

high scores for work that was primarily

completed by the “stronger” student of the

pair (McDowell, 2006). Some educators

employ a pair programming derivative

Proc ISECON 2007, v24 (Pittsburgh): §2524 (refereed) c© 2007 EDSIG, page 3

Harkins Fri, Nov 2, 3:00 - 3:25, Ellwood 2

wherein the roles of the navigator and the

driver are not as pronounced. Chong and

Hurlbutt (2007) conducted a pair

programming study that found the pairings

to be more effective when the driver and

navigator roles were not so distinct, but

rather overlapping, with both partners taking

on driver and navigator roles concurrently.

The benefits to implementing pair

programming activities into a first course in

computer programming or any active

learning computer course are many,

especially in a class populated by different

constituencies, such as computing majors,

non-majors, and working professionals. The

dialog between partners in explaining a

particular construct or algorithm is

sometimes more effective in their learning

than from a traditional textbook or lecture.

Problem solving and programming become a

joint venture, and a more sociable,

enjoyable, and satisfying experience

(Preston, 2006).

Computing majors are somewhat

empowered in helping their partner, while

also allowing the major to discover new

information in response to their partner’s

questions or observations. Working

professionals bring “on the job” anecdotal

commentary and suggestions to the problem

solving activity being jointly developed. In

fact, industry professionals working in pairs

have reported higher job satisfaction than

those who work alone (Williams, 2000).

Non-majors also feel more comfortable

discussing a problem with a peer, than

perhaps their instructor (Preston, 2006).

This is particularly important, as comfort

level in a computer science class was found

to be the best predictor of success in an

introductory computer science course

(Cantwell, 2001). Another study found that

students who programmed in pairs in an

introductory computer programming course

were more confident, had higher course

completion and passing rates, and were

more likely to continue in some computer-

related major of study (Werner, 2004).

Another pair programming study conducted

in 2004 at the University of Auckland (NZ)

found that a higher percentage of paired

students passed a software design and

construction course, compared to students

who worked alone on their projects. The

majority of students in this study also

expressed a desire to use pair programming

in their future computing courses (Mendes,

2006). It has also been shown that

programs written in pairs were completed in

a shorter time, were of higher quality, and

received a higher grade than those written

alone (Benaya, 2007).

A pragmatic detriment to utilizing pair

programming in an active learning,

computing course occurs when the paired

activities cannot be completed within the

designated class period. Finding time to

complete the project jointly, due to

incompatible work and “after class”

schedules can pose a significant hardship for

students, especially returning/working

students (VanDeGrift, 2004). Additionally, if

instead of completing the work jointly

outside of class, it is to be completed in

class as a pair during the “next class”

meeting, problems can arise when a

member of a partnership fails to attend this

subsequent class session. To minimize

these scheduling problems, in light of the

countless benefits to pair programming cited

previously, CSA 163 utilizes pair

programming only in completing shorter (30

– 45 minutes), directive lab activities,

leaving more comprehensive programming

assignments to be completed individually

outside of class.

Doing this, also helps prevent one member

of the partnership from becoming too

dependent on the other partner in learning

how to problem solve and program in Visual

BASIC. This lack of independent thinking

and action can be a detriment in completing

current course exams independently, or

even later on in a computing career, when

certain actions, technical decisions, or

solutions must be derived on one’s own. On

the other hand, working with a partner can

be valuable to “team programming,” which

occurs widely in industry. In fact, a final

team programming project is recommended

in CSA 163, with enough “lead time”

provided for team members to arrange work

schedules accordingly. In most cases, the

“team” becomes simply the “pair” from the

pair programming course lab activities, with

perhaps one or two additional members, as

the social/working connection that was so

helpful throughout the semester in pair

programming is continued and strengthened

by this final team programming project.

Proc ISECON 2007, v24 (Pittsburgh): §2524 (refereed) c© 2007 EDSIG, page 4

Harkins Fri, Nov 2, 3:00 - 3:25, Ellwood 2

3.4 Reflecting and Acting Principle

Thinking critically and understanding

contexts for knowledge in an active learning

environment naturally lead to reflection and

informed action. Students in a first course

in computer programming, such as CSA 163,

have ample opportunities to reflect and act

on problem solving methodologies, and the

subsequent implementation by their

computer program. Pair programming

laboratory activities invite the students to

alter code and report on the impact of these

modifications. When testing programs,

students are encouraged to use data from

various data sets (e.g. integral, real,

character, or string) or from various data

ranges (e.g. above 500, between 100 and

500, and below 100) and report on the

accuracy and relevance of the solution

output. Students are asked to provide data

ranges for input data that conform to “real

life” and investigate the accuracy of related

output information. In CSA 163, utilizing

the Visual BASIC IDE, students must be

aware of user (customer) requirements, and

reflect on their program’s usability

accordingly. Working programs must be

user-friendly, and “forgiving” to users, when

they err in interacting with the program. In

the pair programming lab activities, one

student assumes the role of the

“user/customer,” while the other acts as the

“programmer” in implementing changes to

the code or interface in response to the

user’s concerns and suggestions.

When real-life problems (e.g. population

growth in underdeveloped countries,

mortality rates in Darfur, computer recycling

and distribution) are studied in the liberal

education CSA 163 course, students are

asked to reflect, in writing, on the output

generated by their computer program.

Indeed, written communication is a critical

component of any liberal arts curriculum.

The architects of a liberal arts curriculum

who integrate it with oral and written

communication requirements receive high

praise and support from industry leaders

who find their employees deficient in vital

communication skills needed both within

internal departments of a company, as well

as among units operating around the world.

For educators, as well as students,

incorporating meaningful writing

components into computing or technology-

driven courses can be a difficult and time

consuming, and sometimes perceived as

“forced” by students, with writing

assessment responsibilities and guidelines

both vague and undefined (Kaczmarczk,

2004). All three representative student

groups in a typical CSA 163 class

(computing majors, non-majors, and

working professionals) might question the

value and need of writing activities woven

throughout the course. Curriculum

developers and instructors in technology

courses must work hard to make such

writing requirements meaningful and clearly

connected to the technical content of the

course. Walker (1998) identifies some

activities in a computing course that could

have a writing component. These include

explaining why something happens in a

program, comparing two approaches or

algorithms, justifying one’s answer, or

discussing the purpose of a procedure or

code block. He further requires students to

document programs heavily and

meaningfully, and returns undocumented

programs to students ungraded. Dugan and

Polanski (2006) provide advice to computing

course instructors wishing to incorporate

writing activities into their courses. This

advice includes giving writing assignments a

real world context, demonstrating the

importance of writing in computing-related

courses, requiring revision of writing

submissions by students, and conducting

peer reviews of writing assignments. Ladd

(2003) suggests reducing the number of

programming assignments significantly, and

instead, having two due dates for each

assignment. The first deadline is for the

initial submission, while the second date is

for the submission of a revised program

incorporating modifications suggested by the

instructor, as well as a one page narrative

detailing how these changes addressed the

instructor’s initial evaluative comments.

Anewalt (2002) acknowledges that

integrating writing into a computing course

for the first time can be both intimidating

and challenging for the instructor. She

contends that the key to a successful writing

experience for students requires the

instructor to clearly connect such writing

with the course objectives, making

expectations clear to the students, and to

keep the grading of the written components

both consistent and simple.

Proc ISECON 2007, v24 (Pittsburgh): §2524 (refereed) c© 2007 EDSIG, page 5

Harkins Fri, Nov 2, 3:00 - 3:25, Ellwood 2

In CSA 163, short answer questions, such as

“Explain the differences among the numeric

data types for variables in Visual BASIC.” or

“What advantages do you see for event-

driven programming for both the

programmer, and the end-user?” are

included on every examination.

Furthermore, extensive and meaningful

documentation is required for all submitted

programs, as well as code segments of the

lab activities written by a programming pair.

In addition, two research/opinion papers are

included in CSA 163, one of which involves

taking a previously written program and

having someone with very little computing

experience run it. In this reflection paper,

the CSA 163 student writes a short summary

report of the user’s reactions, suggestions,

and even frustrations with the original

program, and subsequent action(s) taken by

the CSA 163 student-programmer to

accommodate, or reject the user’s

comments, recommendations, or complaints.

For some students in CSA 163, especially

the computing majors, this is an eye

opening and somewhat humiliating

experience, as they tend to be very

protective, even defensive, of their written

code, and rather unresponsive to criticism of

it, especially from someone knowing little

about computers. On the other hand, the

non-majors enrolled in the same CSA 163

class are more receptive to non-technical

user’s concerns, as they can better relate to

someone without a high level of technical

programming background or ability.

Working professionals enrolled in the same

CSA 163 class are accustomed to meeting

customer needs and requests in their daily

work, so making software user-friendly is

both obvious and apparent to them. Written

communication is an ideal and necessary

tenet of any liberal education technical

course and an excellent vehicle for utilizing

the ‘reflecting and acting’ liberal education

principle of the Miami Plan for Liberal

Education in CSA 163.

Integrating the four principles of the Miami

Plan for Liberal Education (critical thinking,

understanding contexts, engaging with other

learners, and reflecting and acting) into CSA

163, a first course in problem solving and

computer programming, enriches the

course, and makes it a more satisfying and

meaningful experience for all three student

constituencies (computing majors, non-

majors, and working professionals) who

regularly enroll in this course. The liberal

education principled model described in this

paper can likewise be used in developing

and delivering similar computing and

technical courses in information systems,

information technology, and business

technology, as well as other computing-

related fields and disciplines.

4. PEDAGOGICAL ADVICE

The author has taught this first course in

computer programming (CSA 163) every

semester since it was offered as a Liberal

Education foundation course at Miami

University in 1988. In the early years, when

enrollments were high, several sections of

the course were offered, with “day” sections

primarily comprised of traditional age college

students fulfilling their Miami Plan Group V

liberal education requirement, or beginning a

major in computer science. Working

professionals and non-traditional returning

students enrolled primarily in “evening”

sections of the course. In general, teaching

methods and course materials could be

developed in alignment with the learning

styles and cognitive behaviors of the types

of students in a particular section.

Discovery learning challenges can be woven

into activities/lectures/demonstrations for

computing majors. Reflective activities (e.g.

written opinion positions, small group

discussions) are especially valued by the

liberal education students. Finally, busy,

working professionals appreciate

teaching/learning activities with real-life

impact that produce tangible, useful

results/skills that clearly connect to their

responsibilities in the workplace.

As the years passed and enrollments and

interest in computing courses and associated

careers declined, so too did the number of

sections of this first course in computer

programming. Consequently, fewer sections

of CSA 163 were offered and were populated

by all three types of students (liberal

education students, computing majors, and

working professionals). Different

instructional techniques had to be used to

meet the needs of all three of these types of

students, and their corresponding learning

styles in the same classroom. While this

was challenging, it was not impossible.

Furthermore, the resulting student diversity

improved the course by providing alternative

Proc ISECON 2007, v24 (Pittsburgh): §2524 (refereed) c© 2007 EDSIG, page 6

Harkins Fri, Nov 2, 3:00 - 3:25, Ellwood 2

viewpoints, questions, and discussions from

each of these constituencies.

The author provides the following set of

pedagogical maxims to assist instructors in

offering a liberal education technology

course, such as CSA 163, or any “first

course” in computer science, computer

technology, information systems, or

business technology to a class with varied

interests, needs, learning styles, and

reasons for taking the course.

4.1 Just Do It.

Incorporate online, active learning into every

class session. Try interrupting lectures and

demonstrations with online active learning

opportunities for the students. Include both

practice/mastery and discovery learning in

these online activities to provide needed

information, while encouraging intellectual

curiosity in the students.

4.2 Mix It Up.

Try to avoid class sessions that are

exclusively lecture or exclusively laboratory.

Adding variety to classroom activities will

increase student interest and participation.

Try to include lecture segments enhanced by

short laboratory activities and

demonstrations that solicit student feedback,

modification, debugging, or completion.

Short quizzes and group discussions can also

be added to the mix.

4.3 Can I Help You?

Try employing the pair programming

paradigm, described earlier in this paper.

Students “talk the talk” and can explain

some things better than you! “Mixed

partnerships,” consisting of computing

majors, non-major liberal education

students, and working professionals

encourage different perspectives in their

problem solving and computing experiences.

Become a “helicopter instructor,” moving

from pair to pair, acting as a facilitator as

you hover, especially when noticing that

little interaction is occurring between the

partners, or one member seems to be doing

all the work. Engaging with other learners is

an important component and principle of

liberal education.

4.4 Put It In Writing.

Try to encourage written communication

throughout the course activities, and not

simply in one or two isolated writing

projects. The latter might simply be

dismissed by the students as simply another

course requirement that must be tolerated

and completed for a grade. Connecting and

including short writing experiences into pair

programming lab activities,

program/computing assignments, quizzes,

and examinations will help reinforce the

value and importance of written

communication in computer study, and

subsequent computer-related careers. It

also allows them to employ the Reflecting

and Acting principle of liberal education in

these writing activities, especially on

opinion/reflection statements and papers. If

opting to include a significant

research/opinion paper, try to connect it to

the educational objectives and needs of the

students in the class. Providing topical

choices can make writing activities

meaningful for each of the different student

constituencies in the course. For example,

consider a persuasive essay on ethical

behavior involving technology, for liberal

arts students (Cliburn, 2006); investigating

a programming feature or topic not covered

in the course, and evaluating its usefulness,

for computing majors; or summarizing and

resolving a technical crisis at work, for

working professional students.

4.5 Get Real.

Try to incorporate contemporary, real-life

examples in lectures. lab activities and

programming/computing assignments. Ask

working professional students to provide a

real-life application of a class activity or

programming/computing assignment (e.g.

inventory management, distribution models,

promotion/reward mechanisms).

Incorporate financial applications with

business practices that are characteristic of

the day-to-day life of a student. Connect a

programming construct (e.g. parameters of

functions) to application software they are

familiar with (e.g. EXCEL functions), or even

to real life activities, such as sports (e.g.

passing and receiving in football, to

parameter passing in programming). This

can illustrate and employ the Understanding

Context principle of liberal education defined

earlier in this paper, especially in the

abstract realm of problem solving.

Furthermore, try to include problems that

involve social or ethical dimensions (e.g.

Proc ISECON 2007, v24 (Pittsburgh): §2524 (refereed) c© 2007 EDSIG, page 7

Harkins Fri, Nov 2, 3:00 - 3:25, Ellwood 2

population growth, health appraisals,

identity theft statistics, homelessness data,

etc.) in keeping with the Reflection and

Action principle of a solid liberal education

course in any discipline.

4.6 But Does It (Always) Work?

Encouraging the development of robust and

reliable algorithms in problem solving can be

accomplished by requiring extensive testing

of solutions implemented by a computer

program or application. Extensive testing

also increases the confidence of the student-

programmers in the overall reliability and

accuracy of their work (Edwards, 2003).

Consider having one member of a

partnership in a pair programming activity

try to “break” a program segment developed

by the “other member” of the pair using

invalid input data. Can the “break” be fixed

at this point in the course? Perhaps not.

Can they “discover” a solution, on their own?

Are program results accurate, possible and

realistic when applied to everyday life?

Answering these important questions

requires the students to apply both the

critical thinking, and the reflecting/acting

principles of liberal education

Finally, consider the “test first” programming

strategy popularized by extreme

programming (Edwards, 2003), which would

be especially interesting to computing

majors in the course.

4.7 How’s It Going?

Try to evaluate student progress frequently

and provide quick turnaround time and

meaningful feedback on evaluative

measures. Maintaining a web-based

dynamic grade book that informs students of

their current average for any given day or

week of the semester or quarter can be

useful, informative, and motivating for

students. Incorporate variety in evaluation

(e.g. written assignments, online

programming assignments, hourly tests,

short quizzes, lab activities,

position/research papers, etc.). Also, try to

provide formative evaluation opportunities

such as short online topical practice tests.

Some evaluation can be particularly focused

toward a particular constituency in the class.

For example, liberal arts students might

appreciate a question on the intended

customer, the inherent value, or the user-

friendliness of a particular program; whereas

a computing major might be motivated by

an open-ended discovery learning challenge,

such as “Do you think it is possible for your

program to…?” Consider peer review of

program assignments by electronically

delivering a student’s program to individual

workstation monitors or a wall-mounted

classroom projection screen soliciting both

commendations and constructive criticism

from the students. Try to review a different

student’s work each time this peer review

process is conducted. Peer review can also

be conducted in a more personal and

informal manner between partners in a pair

programming activity, but this usually occurs

naturally, without any instructor initiation.

4.8 Be There.

Finally, plan to provide reasons for students

to attend class, other than simply giving

points for attendance. This can result in

passive, even bored, attendees. Incorporate

an “event” (e.g. quiz, demonstration, video

clip, lab activity, etc.) into every class

meeting so students see a real value and

purpose of attending every class session of

your computing course. When posting

lecture notes on the web, consider making

them intentionally incomplete (i.e. more like

an outline) that will be completed by them in

class. Posting complete, detailed lecture

notes, on the other hand, without providing

additional in-class activities, might

encourage students to skip the class, finding

something more important and meaningful

in their busy lives to attend to. Finally,

remember that students in a computing

class are “active learners,” so try to identify

some kind of online activity to include in

every class session.

5. CONCLUSION

Teaching a first course in computer

programming or in any

computing/information systems area in a

liberal education framework can be a

challenge, especially if the students in the

same classroom have different needs or

objectives for enrolling in the course, such

as liberal education students, beginning

computer science/technology majors, or

working professionals seeking to acquire

technical skills for their current job. A

recent panel of computer science educators

(Walker, 2003) held that a computer science

curriculum in a liberal arts environment

Proc ISECON 2007, v24 (Pittsburgh): §2524 (refereed) c© 2007 EDSIG, page 8

Harkins Fri, Nov 2, 3:00 - 3:25, Ellwood 2

should contain a firm foundation in technical

computer science, a commitment to problem

solving, integration of the social impact and

ethical issues related to computing, and

development or oral and written

communication skills, among others.

The relevancy of this list can be extended

beyond computer science to any computing

field (e.g. information systems, computer

technology, business technology) delivered

and studied in a liberal education

environment. Some might think that skills

acquisition courses, such as a first course in

computer programming, and a liberal

education courses, grounded in observation,

reflection, and communication, are mutually

exclusive. This isn’t necessarily true. A

technology-driven course, while focused on

problem solving and skill acquisition, can

nonetheless be structured to incorporate the

critical thinking, understanding contexts,

engaging with other learners, and the

reflection/action principles described in this

paper to produce a course rich in both liberal

education and skill acquisition. This mix of

technical skills and liberal education

principles is very appropriate for today’s

students and tomorrow’s careers in an

increasingly technical and culturally diverse

society.

6. REFERENCES

Allen, J., H. Porter, T. Nanney, and, K.

Abernethy, (1990) “Reexamining the

Introductory Computer Science Course

in Liberal Arts Institutions”. Proceedings

of the 21st SIGCSE Technical Symposium

on Computer Science Education, pp. 100 –

104.

Anderson, P., J. Bennedsen, , S. Brandorff, ,

M. Caspersen, and J. Mosegaard (2003)

“Teaching Programming to Liberal Arts

Students: A Narrative Media Approach,”

Proceedings of the 8th Annual Conference

on Innovation and Technology in

Computer Science, pp. 109 – 113.

Anewalt, K., (2002) “Experiences Teaching

Writing in a Computer Science Course for

the First Time,” Journal of Computing

Sciences in Colleges, Vol. 18, pp. 346 –

355.

Barker, L., K. Garvin-Doxas, and, M. Jackson

,(2002) “Defensive Climate in the

Computer Science Classroom”.

Proceedings of the 33rd SIGCSE Technical

Symposium on Computer Science

Education, pp. 43 – 47.

Benaya, T., and E. Zur, (2007)

“Collaborative Programming projects in an

Advanced CS Course”, Journal of

Computing Sciences in Colleges, Vol. 22,

pp. 126 – 135.

Bosse, M., and N. Nandakumar (2000)

“Real-World Problem-Solving, Pedagogy,

and Efficient Programming Algorithms in

Computer Education”, ACM SIGCSE

Bulletin, Vol. 32, pp. 66 – 69.

Boyer, K., R. Dwight, and C. Miller (2007)

“A Case for Smaller Class Size with

Integrated Lab for Introductory Computer

Science”, Proceedings of the 38th SIGCSE

Technical Symposium on Computer

Science Education, pp. 341 – 345.

Brady, A., P. Cutter, and K. Schultz (2004)

“Benefits of a CS0 Course in Liberal Arts

Colleges”, Journal of Computing Sciences

in Colleges, Vol. 20, pp. 90 – 97.

Cantwell, B., and S. Shrock (2001)

“Contributing to Success in an

Introductory Computer Science Course: A

Study of Twelve Factors”, Proceedings of

the 32nd SIGCSE Technical Symposium on

Computer Science Education, pp. 184 –

188.

Cliburn, C., (2006) “CS0 Course for the

Liberal Arts”, Proceedings of the 37th

SIGCSE Technical Symposium on

Computer Science Education, pp. 77 – 81.

Chong, J., and T. Hurlbutt (2007) “The

Social Dynamics of Pair Programming”,

Proceedings of the 29th International

Conference on Software Engineering”, pp.

354 – 363.

Dugan, R., and V. Polanski (2006) “Writing

for Computer Science: A Taxonomy of

Writing Tasks and General Advice”, Journal

of Computing Sciences in Colleges, Vol.

21, pp. 191 – 203.

Edwards, S. (2003) “Improving Student

Performance by Evaluating How Well

Students Test Their Own Programs”,

Journal on Educational Resources in

Computing, Vol. 3, pp. 1 – 24.

Ellison, R., (1980) “A Programming

Sequence for the Liberal Arts College”,

Proc ISECON 2007, v24 (Pittsburgh): §2524 (refereed) c© 2007 EDSIG, page 9

Harkins Fri, Nov 2, 3:00 - 3:25, Ellwood 2

Proceedings of the 11th SIGCSE Technical

Symposium on Computer Science

Education, pp. 161 – 164.

Fagin, B., J. Harper, and L. , Baird (2006)

“Critical Thinking and Computer Science:

Implicit and Explicit Connections”, Journal

for Computing Sciences in Colleges, Vol.

21, pp. 171-177.

Garvin, K., and L. Barker (2004)

“Communication in Computer Science

Classrooms: Understanding Defensive

Climates as a Means of Creating

Supportive Behaviors”, Journal on

Educational Resources in Computing, Vol.

4, pp. 1 – 18.

Kaczmarczk, L., G. Kruse, and, D. Lopez

(2004) “Incorporating Writing into the CS

Curriculum”, Proceedings of the 35th

SIGCSE Technical Symposium on

Computer Science Education, pp. 179 –

180.

Ladd, B. (2003) “It’s All Writing: Experience

Using Rewriting to Learn in Introductory

Computer Science”, Journal of Computing

Sciences in Colleges, Vol. 18, pp. 57 – 64.

Layman, L., L. Williams, and K. Slaten

(2007) “Note to Self: Make Assignments

Meaningful,” Proceedings of the 38th

SIGCSE Technical Symposium on

Computer Science Education, pp. 459 –

463.

McDowell, C., , L. Werner, and H. Bullock

(2006) “Pair Programming Improves

Student Retention, Confidence, and

Program Quality”, Communications of the

ACM, Vol. 49, pp. 90 – 95.

Mendes, E., L. Al-Fakhri, and A. Luxton-

Reilly (2006) “A Replicated Experiment of

Pair Programming in a 2nd Year Software

Development and Design Computer

Science Course”, Proceedings of the 11th

Annual SIGCSE Conference on Innovation

and Technology in Computer Science

Education, pp. 108 – 112.

Norris, C., and, L. Jackson (1992) “The

Effect of Computer Science Instruction on

Critical Thinking Skills and Mental

Alertness,” Journal of Research on

Computing in Education, Vol. 24, p. 329.

Preston, D. (2006) “Adapting Pair

Programming Pedagogy for Use in

Computer Literacy Courses”, Journal of

Computing Sciences in Colleges, Vol. 21,

pp. 84 – 93.

VanDeGrift, T. (2004) “Coupling Pair

Programming and Writing: Learning About

Students’ Perceptions and Processes,”

Proceedings of the 35th SIGCSE Technical

Symposium on Computer Science

Education, pp. 2– 6.

Walker, H., M Jipping, and D., Baldwin

(2003) “The Computer Science Major

Within a Liberal Arts Environment”, Journal

of Computing Sciences in Colleges, Vol.

19, pp. 99 – 101.

Walker, H. (1998) “Writing within the

Computer Science Curriculum,” ACM

SIGCSE Bulletin, Vol. 30, pp.24–25.

Werner, L., B. Hanks, and C. McDowell

(2004) “Pair programming Helps Female

Computer Science Students,” ACM Journal

of Educational Resources in Computing,

Vol. 4, pp. 1 – 8.

Wiedenbeck, S. (2005) “Factors Affecting

the Success of Non-Majors in Learning to

Program,”Proceedings of the 2005

International Workshop on Computing

Education Research, pp. 13 – 24.

Williams, L., R. Kessler,and, W. Cunningham

(2000) “Strengthening the Case for Pair

Programming,”IEEE Software.

Proc ISECON 2007, v24 (Pittsburgh): §2524 (refereed) c© 2007 EDSIG, page 10

