
Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

Process-Driven Software Development:

An Approach for the Capstone Sequence

Robert F. Roggio

School of Computing
University of North Florida

Jacksonville, FL 32224

broggio@unf.edu

Abstract

Most computer and information sciences (CIS) programs require a capstone sequence

consisting of one or more courses in software development. While the end-product of these

project-oriented courses often results in student teams developing and demonstrating some

rather impressive applications, it is rare that these products can rival real-world application

development that students may encounter in the workplace. This paper thus takes the

position it is the process under which an application is developed that is far more valuable to

the student than the application itself. Features of several popular heavy weight and light

weight methodologies are presented accompanied by methodology recommendations for both

one and two course capstone sequences. A decision tree is also included.

Keywords: capstone software development, heavy weight processes, light weight processes,

selection of a process.

INTRODUCTION

In many colleges and universities, the

capstone sequence has student development

teams adopt (or are given) a process to

follow. They then proceed to develop a

computer-based solution to a problem. In

many cases, students may pick and choose

a project from a list provided by the

instructor; in other cases, projects are

assigned. But in almost all cases, student

teams both develop an application and

demonstrate the application at the

conclusion of the course sequence. These

presentations are often impressive, as

students develop attractive and functional

interfaces, accommodate appropriate

functionality, and establish a database.

Often too, extensive documentation may be

required.

The question that this paper addresses is at

a coarser level of granularity. It addresses

not the ‘what’ of the application developed

(the utility and usability of that interface, the

demonstrated functionality via ‘customer’

testing, and more), but rather the

appropriateness of the process used to

develop the application. This familiarity with

“process” will transcend the slick interfaces,

current technologies used, and the database

built. The ability to select and adhere to a

disciplined, methodological approach to

software development, regardless of

individual technologies, is a program

outcome that we desire in our students.

Recognition of different processes each with

their suitability to different classes of

projects is essential in today’s modern

development environments.

 “Process” can be repeated. Knowledge of

basic processes used to support software

development is transferable to real life

situations Understanding the relative

strengths and weaknesses of widely used

methodologies and how the characteristics

of the project, such as team size, project

scope, development constraints, may well

influence an appropriate process choice.

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 1

Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

The wisdom derived from methodology

selection and its impact on the resulting

software development effort will significantly

add to the experience base of our graduates,

regardless of the application ultimately

developed in academe’.

Software Development is an expanding

discipline, and both new and improved

development methodologies seem to emerge

each year. The appearance of these

methodologies is often the result of attempts

to improve existing development processes

used to guide the every-increasing

complexity and diversity of modern

computer-based solutions. Applications

today continue to become more and more

complicated and require highly tuned skills

as compared to applications developed not

too many years ago. Customers want more,

expect more, and will be only satisfied with

more. We need processes that supports

these expectations.

Two classes of methodologies have evolved

and are, with some modifications, commonly

used across many software development

industries. They are termed heavy weight

and light weight methodologies. Heavy

weight methodologies (please note that I

use the term methodology and process

interchangeably) are also sometimes called

plan-driven methodologies because of

features such as comprehensive planning,

thorough up front requirements modeling,

and typical extensively documented designs,

detailed test plans and more. Light weight

methodologies, in contrast, are often

collectively referred to as agile

methodologies, and tend to focus on

individuals over processes, working software

over documentation, collaboration over

negotiation, and responding to change over

following a plan. Please note this does not

mean that agile processes do not develop

requirements or design documents or

undertake development of traditional

artifacts; rather that the cost in producing

these is weighed against other important

factors, such as delivering high-quality

products earlier and incorporating features

into the software that provide clear value to

the stakeholders.

This paper will first present a brief

description of three heavy weight and three

light weight methodologies and their

respective features. By observing the

features of these methodologies, those

charged with methodology selection may

become better equipped to select an

appropriate process to underpin software

development in the capstone sequence.

HEAVY WEIGHT METHODOLOGIES

Heavy-weight methodologies are also known

as “traditional” methods; these

methodologies are “plan-driven” in that their

process may involve business modeling,

continue with elicitation and documentation

of a complete set of requirements,

architectural and detail design, program

development, extensive testing, and lastly

implementation. Some may be iterative.

Heavy weight methodologies remain the

process of choice for many development

efforts. These methodologies are well

established and often offer senior level

management and developers a comfort level

that newer, less formal methodologies do

not. Note: terms heavy-weight, traditional,
and plan-driven will be used interchangeably

in this paper.

Waterfall Model

According to Reed Sorenson [10], Waterfall

is “an approach to development that

emphasizes completing one phase of the

development before proceeding to the next

phase.” In Sorenson’s article titled, “A

Comparison of Software Development

Methodologies,” he describes which

methodologies may be best suited for use in

various situations and how the use of

traditional software development models is

widespread and often regarded as the

proper and disciplined approach for the

analysis and design of software applications.

Each phase comprises a set of activities that

should be completed before the next phase

can begin.

While the Waterfall approach remains in

widespread use today, it is often modified to

meet the needs of individual businesses and

their tailored way of developing software.

The Waterfall approach does indeed continue

to offer many advantages where the

application to be developed is well

understood, unlikely to change appreciably

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 2

Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

during development, and where, perhaps,

the developers may have had previous

experience in developing similar

applications, and more. However, the

methodology does not embrace change, and

risk is often addressed late in the

development cycle when incurred expenses

are at their high point. (Figure 1)

Spiral Methodology

While the Waterfall model has been the basis

of software development for many years, its

elaborate documentation and rigid

adherence to process has often created

difficulties and led software practitioners to

seek alternative processes. Barry Boehm

developed the Spiral Model with its

distinguishing feature that with it “…creates

a risk-driven approach to the software

process rather than a primarily document-

driven or code-driven process” [4]. The

basic tenet of the Spiral Model is that risk is

assessed periodically (during each cycle) in

the development process thus allowing for

frequent project evaluation. (See Figure 2)

The Rational Unified Process (RUP)

“RUP is a process framework that has been

refined over the years by Rational Software

(and more recently IBM), on a variety of

software projects small to large.” [9] The

RUP approach is considered by many to be a

lighter heavy weight method, where the aim

is to work with short, time-boxed iterations

within clearly articulated phases. Elaborate

workflows, specification of activities and

roles characterize the RUP. The RUP was not

originally intended to be a heavy-weight

process, but its wide adaptation –

particularly by many very conversant with

the waterfall model – has resulted in a more

rigid methodology than originally intended

by its authors. The current version of the

RUP has a number of significant tools to

assist in tailoring the RUP to individual

projects and contains a comprehensive suite

of support tools. (See Figure 3)

The RUP is defined to be a use-case driven,

architecture-centric, iterative development

process. Thus while it is considered a lighter

heavy-weight process, the RUP’s adherence

to iterative development, extensive use of

use-cases, high levels of customer

involvement, and a clear approach to

embracing changes during the development

process makes this process more modern

and to some degree (most feel) that it is

somewhat ‘lighter’.

AGILE METHODOLOGIES

The agile methods place more emphasis on

people, interactions, working software,

customer collaboration, and change, rather

than on process details, workflows, contracts

and plans. Agile methodologies continue to

gain great popularity in industry although

they compromise a mix of accepted and

sometimes controversial software

development practices. Although plan-

driven, heavy weight approaches are still

largely used for larger projects that require

the ultimate quality often in very critical

systems, in many situations more significant

growth lies with agile or flexible methods, as

customers demand rapid delivery, more

developer contact and interactions, and

often want to have their fingers on the pulse

of development as they may continue to

introduce change on a more somewhat

regular basis.

Feature Driven Development

Feature Driven Development (FDD) is a

model-driven, short-iteration software

development process. [1] The FDD process
starts by establishing an overall model

shape. This is followed by a series of two-

week “design by feature, build by feature”

iterations. According to Boehm and Turner,

FDD consists of five processes: develop an

overall model, build a features list, plan by

feature, design by feature, and build by

feature [3].

The FDD methodology produces very

frequent and tangible results. Small blocks

of functionality that have specific user value

are delivered. This popular development

approach provides for very effective

progress tracking; the overall application

evolves as features are added and deployed.

Scrum

Scrum is an iterative software development

approach which aims to deliver as much

quality software as possible within a series

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 3

Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

of short-time boxes called “Sprints” [11].

Sprint begins with a Sprint Planning Meeting

where the product owner, customers,

developers and other relevant stakeholders

meet to define the immediate Sprint Goal.

This immediate sprint goal is selected from a

Product Backlog, which is a list of

requirements. (See Figure 5) The product

owner is required to prioritize these

requirements.

After addressing the Product Backlog, the

Scrum development process focuses on

addressing a Sprint Backlog. According to

Linda Rising and Norman Janoff [8], the

Sprint Backlog is the final list of product

items transferred from the Product Backlog.

A scrum team breaks down the Sprint

Backlog into small tasks and allocates them

to its team members. The Sprint Backlog is

updated daily to reflect the current state of

the Sprint

Figure 5 also more clearly illustrates some of

the management aspects of scrum software

development; its thirty day iterations and

the daily scrum meetings. With a thirty day

iterative cycle, risk and change can be

continually reassessed and readily managed
for each iteration.

eXtreme Programming (XP)

XP is “a discipline of software development

based on values of simplicity,

communication and feedback” [14]. This

methodology works by bringing the whole

development team together to collaborate in

simple practices, with enough feedback to

allow the team to see and monitor their

project improvement and be able to address

any issue that occurs throughout the phases

of the development process.

Almost any software development effort will

experience requirement changes before it is

completed. Agile methodologies such as

Extreme Programming seem to be the most

suitable for responding to requirement

changes. Communication between team

members and the customer is conducted

through informal contact via face-to-face

meetings. The customer is part of the team.

Obviously, this type of communication is an

advantage for both parties; customers enjoy

being partners in the software process, and

the development team has ready access to

the customer for questions and continuous

feedback.

XP espouses simplicity in every undertaking.

In particular, applications are developed

using a simple design, small releases,

continually restructuring components for

better performance and more. Testing is

extensive and focused on the latest

component. This is facilitated by XP’s

adherence to the pair programming concept,

where pairs of professionals ‘own’ their code,

so to speak.

XP develops software incrementally, but

methodically using short time periods

measured in weeks rather than months.

High quality software occurs as software is

continually refined and improved during the

iterative cycles. This methodology attempts

to avoid activities and artifact production

that do not have a clear value that directly

supports the immediate (or near immediate)

goal.

XP has twelve core practices as can be found

in [12]. Strong adherents to XP claim that

all twelve must be implemented to gain the

maximum value from this process.

CAPSTONE SEQUENCE

So, how do does this information assist us in

capstone course development? How can we

use these categories with some sample

methodologies to, perhaps, drill down to a

methodology that best fits our capstone

sequence? While there will be no exact fit of

a methodology to project characteristics, the

text ahead discusses a series of questions

that might assist in this decision. Such a

series of questions and answers may be best

illustrated not only in text, but also a

decision tree.

The first look is at the characteristics of a

project. While a comprehensive look at

project characteristics for all projects is

clearly well-beyond the scope of this paper,

a number of commonly used characteristics

may be used within the context of an

academic setting. The project

characteristics considered below include

length of capstone sequence (one or two

sessions), degree of documentation planning

and control desired, project communications

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 4

Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

with customer / sponsor, and the design and

development environment. These were

arbitrarily selected, but do appear to answer

a number of important questions that might

bear on the problem.

It is important to note that there are many

other very significant parameters in real

world project characteristics that do not bear

on the academic setting. In the workplace,

team size is significant, as generally larger

teams often use heavy-weight

methodologies. Other workplace

parameters? Consider team skills - large

teams can absorb less experienced

professionals more readily than light weight

approaches. The academic setting has little

latitude here. Experienced, senior

developers can nurture younger individuals

in the workplace. Testing - the many faces

of tests from a variety of internally-

undertaken testing to external testing

approaches. Not likely in an academic

setting. Customer support – insuring

adequate training to those responsible to

customers for problem identification.

Training – actively training users in the

particulars of the application, and more. The

academic setting is constrained by time

(academic session), experience of the team

members, methodology used,

documentation required, planning, and so

much more.

First Level Decision – Heavy Weight or

Light Weight Methodology

Length of Capstone Sequence;
one or two terms: The first consideration is
perhaps the most significant. Is the

capstone sequence a single course or is it

two courses? If the capstone sequence is

two semesters, then there is more time for

methodologies that have more detailed sets

of required activities and artifacts produced.

While this is very simplistic to offer because

there are so many other parameters to be

considered, generally, with more time, a

heavy-weight methodology might be favored

in in this instance. Both the water fall and

the spiral models (particularly if risk is

emphasized) might be selected. If an

iterative approach that provides for short

development cycles each with change,

testing and assessment is desired, the RUP

might be a wise choice. The RUP subscribes

to many modern programming practices,

and while normally considered somewhat

heavy, it does support change, risk, iterative

development, use case analysis / design and

more. See Figure 6.

Documentation, Planning, and
Control: If the sequence is to require
detailed manuals produced by student

teams, considerable time must be provided

to produce and validate these artifacts.

Typical documentation might include user

manuals, maintenance manuals, and

operations manuals. If the extent of

documentation is significant, a heavy-weight

methodology is likely better. Similarly, if

detailed plans, tracking activities against

tasks, strict timelines and monitoring are

required, this too may legislate toward a

heavier methodology If lesser or perhaps

just on-line help is required, then a light-

weight methodology might be considered.

Project Communications: If the

customer (presumably the instructor, an

agency on campus, or perhaps a local

business) is a key part of the development

team and is readily available for contact

throughout the development process for

verifying various intermediate results, and

consultation in general, then a light-weight

methodology may be preferred. This may

often be the case in an academic setting.

But if the requirements are provided up front

with limited chance or periodic times for

discussion or detailed interaction with the

customer, then a heavy-weight methodology

is preferred.

Design and Development

Environment: If a robust, well-designed
and coded product is desired that is

explicitly designed for extension and

reusability within a carefully orchestrated

and documented architecture, one might

consider a heavy weight methodology. If an

architecture and design are required to

assist the tasks at hand and are then

developed to drill down within that software

architecture and/or organization at certain

points during development, then a light-

weight approach is preferred. If testing a

specific set of features (along with some

regression testing, of course) as features are

incrementally added to an evolving

application are emphasized, then a light-

weight approach appears to be better.

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 5

Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

Second-Level Decision – Methodology
Selection (See Figure 7)

 Consider the Heavy-Weights:
Neither the Waterfall nor the Spiral

methodologies are terribly iterative in

nature, even though some implementations

of these methodologies do provide for

limited feedback and retrenching. The RUP,

however, is iterative by design. Of these

three methodologies, the RUP is the most

iterative.

Change is not well supported in the Waterfall

model and addressed via the cyclic nature in

the Spiral model. The RUP, due to its

iterative and incremental nature espouses

the embracing of change.

Consideration of risk is delayed in the

traditional waterfall model, is visited

cyclically in the spiral model, and is

addressed up front in the RUP approach.

Yet, if risk is anticipated to be minimal, that

is, the development environment appears to

remain relatively stable as do requirements,

a heavy-weight approach might be

preferred.

All of these processes require considerable

documentation and well-conceived plans

with task assignment, tracking and

workflows. Light weight methodologies

approach these ‘roles’ (as found in the RUP)

much less formally and expect individual

development team members to do when

needs are identified.

 Consider the Light-Weights:
Feature-driven development (FDD), Scrum,

and XP were briefly presented. . FDD is a

model-driven short-iteration development

process. With its short (typically) two+

week design by feature build by feature

iterations, rapid, incremental development

may occur once an initial plan is built.

This is a simple approach that concentrates

on a plan, initial set of identified features,

followed by iterations of design. code, test,

deliver iterations. With a short iterative

cycle particularly in a one session capstone

course, FDD might be a consideration.

With its customer-supplied prioritized set of

requirements which is broken into smaller

features that are assigned to sprints, Scrum

may be the methodology of choice. While

much of the formality of the heavy-weight

processes is eschewed, 30-day iterations

selected from a product backlog are

undertaken. With daily sprint meetings

where problems are surfaced and resolved,

this might be difficult in an academic setting.

But the adherence to sprint meetings where

everything of interest is surfaced and

addressed offers a great chance for students

to interact by speaking and communicating

with each other and the customer.

XP is often considered the ‘lightest’ of the

light-weight methodologies and perhaps the

most controversial. XP espouses simplicity

in everything that it does, it seems, and this

is often criticized by traditional software

developers. This methodology works by

bringing the whole team together to

collaborate on simple well-defined practices,

with enough feedback to allow the team to

see and monitor their project improvement

and be able to address issues that occur

throughout the phases of the development

process. Basic XP tenets, such as pair

programming, collective ownership of

products, the entire team sitting together in

one room, integration many times a day,

and the philosophy to merely build just

enough to meet today’s requirements are

among XP principles. If XP is to be used in a

capstone sequence, its basic tenets and

organization must be carefully considered.

While the way XP does business seems to

favor a one session capstone sequence, the

ability of students to work together in a

larger setting coupled with typical little real-

world development experience might be

causes of concern if this methodology is

selected.

Scrum, XP, and agile processes in general

have strong real-world adherents many of

whom are widely acclaimed. Providing

students with such an environment might

have significant value. It is significant,

however, that many agile features are often

vehemently challenged by proponents of

more traditional heavy-weight

methodologies. It may also be quite difficult

to enforce the development discipline

necessary for such a process in academe’.

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 6

Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

CONCLUSIONS

Simplistic Approach

It is important to restate that the decision

tree approach taken is both very simplistic

and likely incomplete. Figures 6 and 7 do

not adequately address other parameters

essential from an academic point of view.

For example, class size and team size were

not considered, although a nominal size of

from three to five students was assumed.

But in truth, team size can impact the

expected course outcomes. Similarly,

instructor-sponsored projects may be more

readily accommodated within a single

semester, while client-sponsored projects,

by their very nature, may require a two-

semester sequence. Client-sponsored

projects may require very specific

documentation. Frequent communications

between the client and the development

team may be prescribed and thus require

more time – regardless of methodology.

Essential to Undergraduate Experience

Regardless, the capstone sequence is

designed to culminate the undergraduate

experience. Business modeling,

requirements capture and modeling,

architectural and detail design, program

development, comprehensive testing, and

customer implementation take place. Soft

skills are brought to bear in documenting

and presenting various artifacts of the

application. Yet the selection of a proper

development methodology appropriate to

the nature, objectives, and expected

outcomes of the capstone project course

constrained by the realities of an academic

environment must be carefully undertaken.

It is woefully insufficient to hand out

requirements and to tell student teams to

build software to accommodate these

requirements.

The experience gained by the student in

adhering to some kind of disciplined process

far exceeds the value of the application

developed itself. It is the understanding

that software development is not simply

sitting down and writing code, but rather a

painstaking, complex, multifaceted

undertaking involving people, procedures,

and process. The capstone sequence

provides an unmistakable and an

irreplaceable learning outcome essential for

today’s computing professional that must be

realized.

Whether the capstone sequence is a single

session or multiple sessions, care must be

taken in determining the underlying process

necessary to support the software

development effort with its many academic

and real world constraints/

REFERENCES

[1] Abrahamsson, P., O. Salo, J.

 Ronkainen and J. Warsta, Agile

 Software Development Methods:

 Review and Analysis, Julkaisija

 Utgivare Publisher, Finland, 2002.

[2] Beck, K., Extreme Programming

 Explained, Addison-Wesley, Boston,

 1999, p. 157.

[3] Boehm, B. and Tuner, R., Balancing

 Agility and Discipline, Pearson

 Education, Inc., Boston, 2004.

[4] Boehm, B, “A Spiral Model of

 Software Development and

 Enhancement,” ACM SIGSOFT

 Software Engineering Notes 11, 4

 (1998), pp. 14-24.

[5] Coram, M. and S. Bohner, “The Impact

 of Agile Methods on Software Project

 Management,” Engineering of

 Computer-Based Systems, 2005.

 ECBS '05. 12th IEEE International

 Conference and Workshops, 2005,

 pp. 363-370.

[6] Kruchten, P., The Rational Unified

 Process: An Introduction, Addison-

 Wesley, Boston, 2004, p. 43, 81.

[7] Nerur, S., R. Mahapatra and G.

 Mangalaraj, “Challenges of Migrating

 to Agile Methodologies,”

 Communications of the ACM 48, 5

 (2005), pp. 72-78.

[8] Rising, L. and N. Janoff, “The Scrum

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 7

Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

 Software Development Process for

 Small Teams,” IEEE Software 17, 4

 (2000), pp. 26-32.

[9] Smith, J., “A Comparison of RUP® and

 XP”, www.yoopeedoo.com/upedu/
references/papers/pdf/rupcompxp.pdf

[10] Sorensen, R., “A Comparison of

 Software Development

 Methodologies,” www.stsc.hill.af.mil

/crosstalk/frames.asp?uri=1995/01/

Comparis.asp

[11] Sutherlan, J., “Future of Scrum:

 Parallel Pipelining of Sprints in

 Complex Projects”

 agile2005.org/RP10.pdf

[12] Sambasivam, Ganesh, “Extreme

 Programming (XP)”,

 www.agilealliance.com/

 articles/ganeshambasivamextre/file,

 last revision August 2004.

[13] Control Chaos,

 www.controlchaos.com/about/

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 8

Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

Appendices

Figure 1: The Traditional Water Fall Model

Figure 2: Spiral Model of Software Process [4]

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 9

Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

Figure 3: RUP’s Four Phases and Nine Disciplines [9]

Figure 4: FDD Process (Adapted from [1]

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 10

Roggio Fri, Nov 2, 2:00 - 2:25, Haselton 2

Figure 5: Scrum Process Flow [13]

 Other Possible Factors / Constraints

 Two
 Semesters

 One
 Semester

Figure 6: First Level Decision Tree. Heavy or Light Weight Methodology

 Waterfall

 Spiral Methodology

 Two
 Semesters Rational Unified Process (RUP)

 Others

 One
 Semester Feature Driven Development

 Scrum

 Extreme Programming (XP)

 Others

Figure 7: Second Level Decision Tree - Methodology Selection

Heavy Documentation, Formal communications,

Robust, very precise development environment

Client-sponsored project requiring specific

 Documentation, planning, and communications

Document little and as needed but essential artifacts

Very close customer communications / and availability;

Very iterative, highly responsive to change and risk,

Design, code, test, verify as needed

Capstone
Sequence

 Heavy

Weight
Methodology

Light
Weight

Methodology

Capstone
Sequence

 Heavy

Weight

Methodology

Light

Weight

 Methodology

Proc ISECON 2007, v24 (Pittsburgh): §2552 (refereed) c© 2007 EDSIG, page 11

