
Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

Consuming Web Services from

AJAX Applications

Robert Dollinger
rdolling@uwsp.edu

Mathematics and Computing Department,
University of Wisconsin Stevens Point

Stevens Point, WI 54481, USA

Abstract

Web applications require new and innovative techniques to manage the increased amount and

variety of information they handle. The response to the challenge of Rich Internet Applications’

(RIA) requirements is a new web development methodology called AJAX (Asynchronous Java-

Script And XML). AJAX is a set of technologies that work together, to leverage browser capa-

bilities in order to reduce the amount and frequency of server postbacks. With AJAX, regular

postback cycles are eliminated or replaced by requests, typically asynchronous, for some spe-

cific data that result in partial updates of the Web page. This considerably reduces the load on

the Web Server and enhances scalability of the server side resources, while making interactive

Web applications more responsive. When an AJAX application makes a server request it is

most often talking to a piece of code residing on the Web server. This piece of code may con-

nect to a database or another server in order to collect some data which is then sent to the

client. When the client call is for a Web service method, developers are faced with a couple of

problems to solve, and decisions they have to make: (1) architectural – call the service di-

rectly or via the Web server, (2) technical – how to correctly format a request and how to

process the returned response, and (3) security – prevent or deal with cross-site scripting re-

strictions. In this paper we use a specific example in order to illustrate how to consume Web

services in an AJAX application and to provide some general guidelines which make the proc-

ess more structured and easier to understand.

Keywords: Rich Internet Applications, AJAX, Web Services, GET, POST, SOAP envelope,

cross-site scripting

1. INTRODUCTION

Web applications become richer and richer

both in the information content they provide

and by the interactive features that make

them look more an more like Windows-

based rich client applications. This requires

new and innovative techniques to manage

the increased amount and variety of infor-

mation, and support the shift from the pa-

radigm of Web sites to that of Web based

applications. Many people claim that we are

on the verge of another programming revo-

lution, a revolution that will free the com-

puter users from the constraints of desktop

applications and from the dependence on a

specific software provider (McClure, 2006).

The response technology now provides to the

challenge of Rich Internet Applications’ (RIA)

requirements is a new web development

methodology called AJAX (Asynchronous

JavaScript And XML). AJAX is a set of tech-

nologies that combine, and work together, to

leverage browser capabilities in order to re-

duce the amount and frequency of server

postbacks that entirely recreate the page

each time. With AJAX, regular postback cy-

cles are eliminated or replaced by requests,

typically asynchronous, for some specific

data, that result in partial updates of the

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 1

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

Web page. This considerably reduces the

load on the Web Server and enhances scal-

ability of the server side resources, while

making interactive Web applications more

responsive. When an AJAX application

makes a server request it is most often talk-

ing to a piece of code residing on the Web

server. This piece of code can be an event

handler on the Web page, an HTTP handler,

a Java Servlet, or other, and it may connect

to a database or another server in order to

collect some data which is then sent to the

client. Very often, the client call is for a Web

service method which is when developers

are faced with several unexpected issues

and design decisions: (1) architectural – call

the service directly or via the Web server,

(2) technical – how to correctly format a

request and how to process the response,

and (3) security – prevent or deal with

cross-site scripting restrictions. In this pa-

per we use a specific example in order to

illustrate how to consume Web services in

an AJAX application and provide some gen-

eral guidelines which make the process

more structured and easier to understand.

2. BASICS OF WEB SERVICES

A Web Service (or XML Web Service) is

nothing but a piece of code that can be in-

voked via HTTP requests. Web Services ex-

pose functionality that is similar to standard

code libraries, and do this in the form of

objects with methods that can receive pa-

rameters and be invoked to perform some

work for a client. Web Services are a lan-

guage and platform independent remoting

technology, based on XML for data serializa-

tion and communication management. A

Web Service can be invoked from any kind

of application, and from any platform: the

client can be a C/C++ console application

under UNIX, a .NET Windows or Web pro-

ject, a Java program under SUN’s Solaris

system or anything else (see Figure 1).

The key for this independence is the use of

XML, which provides Web Services the ad-

vantage of unprecedented flexibility over

older, proprietary technologies like: Micro-

soft’s DCOM (Distributed Common Object

Model), SUN’s EJB (Enterprise Java Beans)

or OMG’s CORBA (Common Object Request

Broker Architecture). All of these technolo-

gies where confined to one single language

or platform or required a specific communi-

cation protocol (CORBA).

Currently, Web Services are the adopted

standard for systems cooperation and dis-

tributed processing, a standard that has

been jointly developed by IBM, Microsoft and

other major vendors.

All previous remoting technologies required

that the communicating systems (servers

and clients) recognize the same data types in

order to insure compatibility.

XML solves the compatibility problem across

all systems that have at least an XML parser,

so that data can be converted to and from

any type via XML in a platform and language

independent manner. The communication

protocol of choice in Web Services is HTTP,

which is stateless, so the server forgets

about a given client the moment its request

has been served. This means that developing

applications with Web Services follows the

same stateless programming model like Web

Applications. All Web Services require some

support infrastructure that consists of the

following sub-services:

1) A discovery service – to allow users to

locate and identify services they want to use.

Web Services can be made public in any of

the two ways: UDDI (Universal Description

Discovery and Integration) servers and,

DISCO (Discovery of Web Services). UDDI

works like the “Yellow Pages” of the Web

Services. Web Service developers would reg-

ister their new service with one of the UDDI

servers. This approach is less and less used

in present days since most providers re-

moved their UDDI servers. This reflects a

trend of shifting the main stream of the Web

Services from the concept of “publicly avail-

able” towards the more closed corporate en-

vironment. DISCO, is a feature available for

Web Services created with .NET and consists

of a *. disco file which allows all Web Ser-

vices on a given site to be advertised to the

outside world.

2) A description service – by which the

client can find out what the service can do,

what methods are available and how should

these be invoked. All Web Services fully de-

scribe themselves through a XML based

grammar called Web Service Description

Language (WDSL). The description of a Web

Service includes an optional description of

the service itself, a list of all methods with

their exact signatures and return types, as

well as an optional description of what each

method does. Each Web Service has a WSDL

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 2

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

schema which can be used to automatically

generate a Web Based presentation and

testing page. WDSL also serves for the gen-

eration of the Web Service-proxy for the

client side application.

3) A transport protocol – HTTP has been

chosen as the wire protocol to transmit data

to and from Web Services, such that all

consumers can access these services with-

out platform or language restrictions. This

means that Web Services are invoked via

HTTP Requests and the results are retuned

through HTTP Response. Web Service HTTP

messages can be formatted in three differ-

ent ways:

- GET message – with parameters follow-

ing the URL string;

- POST message – where parameters are

encoded in the request object;

- SOAP message – where the request is

inserted inside a SOAP envelope with a

specific well-defined, XML based format.

The encoding of the response is the same

for GET and POST messaging, and is slightly

different for SOAP. The GET and POST mes-

sages have been inherited from the tradi-

tional Web applications, and are fast, simple

and easy to use. However, GET and POST

can be used to transmit only the basic, pri-

mitive data types like numbers, strings and

simple arrays. The SOAP protocol has been

specially created for the needs of Web Ser-

vices and it is the only protocol that allows

transmitting complex data types such as:

tables, datasets or custom objects.

Theoretically, a Web Service can communi-

cate via any of the three protocols, but this

is a design decision and many Web Services

have only the SOAP protocol activated. In

order to successfully access the Web Ser-

vice a client must be able to correctly for-

mat requests and process responses in any

of the protocols accepted by the service,

and SOAP is the safest choice.

3. BASICS OF AJAX

AJAX stands for Asynchronous JavaScript

and XML. It is a web development method-

ology for creating interactive Web applica-

tions. AJAX is based on a set of techniques

that have been around for quite awhile, and

brings them together in a comprehensive

methodology that now is much more than

just the sum of its constituents, and does

this in a way that makes web pages feel

more responsive, faster and interactive. One

of the main features of AJAX is that it can

bring new content into the page without a

postback, which provides a much better user

experience. AJAX is very likely to represent a

turning point in the history of web develop-

ment. The AJAX enabled Web applications

follow a programming and architectural

model which combines features of the tradi-

tional postback based Web applications with

features of the Windows-based desktop ap-

plications. Figure 2 compares the traditional

Web based application model with the AJAX

enabled application model (Zakas, 2006).

There are several ingredients that make up

the AJAX methodology:

 - (X)HTML and CSS (Cascading Style

Sheets) - for mark up and styling.

- JavaScript – is the tool to provide local

responses to user actions.

- DOM (Document Object Model) – for

access to the content of the web page.

- XMLHttpRequest object - is the vehicle

used to exchange data (a)synchronously with

the web server.

- XML, JSON (JavaScript Object Nota-

tion) – provide the format for transferring

data between the server and the client; basi-

cally, any format will work, sometimes pre-

formatted HTML or plain text may be the

best choices.

The most important piece in the list above is

the XMLHttpRequest object, which is a de-

velopment API, programmatically accessible

from JavaScript that allows web pages to

send and receive data to/from the Web serv-

er via the HTTP protocol without a page load.

The XMLHttpRequest object was first imple-

mented by Microsoft as an ActiveX object in

Internet Explorer (IE) 5, in 2001, as part of

the XML support library.

In browsers like Mozilla, Netscape and Safari

a compatible version is available as a native

object (XMLHttpRequest). The XMLHttpRe-

quest object can be used as a vehicle for

various forms of data that can be trans-

ported to and from the server, either syn-

chronously or asynchronously. The data can

be retrieved from any resource located on

the web site, a text or XML file, it can be re-

quested and returned via an HTTP handler, a

Java Servlet or provided by a Web service.

The data that is returned can be formatted in

various ways: plain text, XML document,

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 3

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

pre-formatted HTML or JavaScript Object

Notation (JSON).

4. CONSUMING WEB SERVICES – A

CASE STUDY

In this section we will illustrate the process

of consuming a Web service in various con-

texts by using as a case study a publicly

available Web service, global-

weather.asmx that can be found at the

following URL:

www.webservicex.net/globalweather.asmx

This service provides local weather reports

and features two methods:

- a method that returns the list of cities in a

country given as parameter;

- a second method that gives a brief de-

scription of the local weather in the location

identified by a country and city arguments

given as parameters.

The first step in order to consume a Web

Service, once its location has been identi-

fied, is to simply invoke the service through

the URL shown above. The service will re-

spond with a test and identification page

with links to, and brief descriptions of the

methods it provides (see Figure 3).

Following any of the links associated to a

method, one would get to the corresponding

presentation and test page of that method.

Each of these pages provides a testing in-

terface for the method with text boxes to fill

with parameter values and an invoke button

in order to call the method.

In addition, sample descriptions of both the

request and response formats are given for

each of the three types of protocols one can

use to invoke a service: SOAP, GET and

POST. For the GetCitiesByCountry method

of the globalweather service a partial view

of this page is given in Figure 4.

Many development environments, like .NET,

make it much too easy for the developers to

consume Web services. None of the details

of how to call the service are to be handled

by the programmers. A Web Service can be

accessed from any kind of .NET application:

console, windows or Web, and no matter

what language is used for development: VB,

C# or other. The .NET user is shielded from

all the details of communicating with the

Web Service due to a server proxy that is

automatically created by .NET, based on the

WSDL description of the service. To the .NET

programmer the Web Service will be pre-

sented as a class with a set of methods

ready to be used in the application. The class

representing the Web Service is accessible

via the namespace associated to it.

In order to use a Web Service the following

steps are required:

1) Add a reference to the Web Service to

the current project – a service can be se-

lected and referenced in a project from a

variety of locations: the current project, the

current machine, the local network or an ex-

ternal site at a given URL. A local namespace

can be associated to the service for easy ref-

erence.

2) Create an instance of the class repre-

senting the service - this step will actually

create an instance of the service proxy inside

the user application, making the service ap-

pear as an object in the current workspace.

3) Invoke the methods and process the

results - the code invoking a Web method

should be able to properly process the re-

turned result, which is often formatted as

XML. This processing assumes knowledge of

what is the content of the returned results,

and of how the retuned information is struc-

tured. This knowledge can be acquired

through the presentation and testing inter-

face of the Web Service, by testing the Web

methods to be used.

5. CONSUMING A WEB SERVICE FROM

AN AJAX APPLICATION

Web Services and AJAX applications are a

natural combination since they have at least

two things in common: the stateless pro-

gramming model and the intensive use of

XML. Currently, one can develop AJAX appli-

cations by building our own JavaScript code

that creates the XMLHttpRequest object and

deals with the details of issuing the server

requests, or use one of the available libraries

and frameworks.

Surprisingly, none of the libraries, except for

the Microsoft ASP.NET AJAX framework, pro-

vides support for communication with Web

services (Gibbs, 2007). This is only one rea-

son why an AJAX developer has to deal with

the details of the XMLHttpRequest object.

Architectural Options

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 4

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

Before consuming a Web service in an AJAX

application developers have to make a cou-

ple of important decisions. The first decision

is related to the underlying application ar-

chitecture. This is based on the understand-

ing of the fact that in any configuration of a

Web based application with AJAX and Web

Services, there are at least three different

systems involved: the client browser, the

application server, and the server providing

the Web Service. From the point of view of

how the Web services are accessed there

are several ways in which the three systems

may be connected in a service based AJAX-

ed web application:

Access the Web Service Directly from

the Browser - JavaScript can be used to

issue service requests and receive re-

sponses from Web Services directly without

contacting the original Web server of the

application. This is a fast and simple way of

integrating Web Services in an AJAX appli-

cation, but it is considered unsafe from a

security point of view, due to the so-called

cross-site scripting problem. In spite of this,

the details of how a Web service is con-

sumed by the browser side code is worth to

be studied anyway because one would use

the same approach for some of the cases

when the service is located on the same

server with the application itself, especially

when a proxy service is used on the Web

server. The configuration of a Web applica-

tion, where the Web Service is consumed

directly from the browser, is given in Figure

5.

Access the Web Service from the Appli-

cation Server - in this case it is the appli-

cation server that connects to the Web Ser-

vice and receives the service responses. The

application server has to deal with all the

plumbing and details of consuming a Web

Service, but very often, the application

servers provide a much better support in

doing this when compared to JavaScript.

For example, consuming a Web Service

from ASP.NET is made very simple from a

programmer’s point of view. From the point

of view of the communication between the

browser and the application server we fur-

ther distinguish the following cases:

- the browser communicates with the appli-

cation server by sending XMLHttpRequests

to HTTP handlers or anything equivalent,

like Java Servlets;

- the application server exposes the Web

Services to the browser through its own

proxy service that mimics the features of the

original Web service.

Figure 6 illustrates these two options.

6. CONSUMING A WEB SERVICE FROM

JAVASCRIPT

Since more than one of the architectural op-

tions above comes down to the problem of

how to communicate with a Web service by

using JavaScript and the XMLHtppRequest

object we are going to look at the details of

this task in the current section. This is ex-

actly the kind of difficult task developers are

discouraged from solving on their own, due

to its alleged complexities, and this is what

many environments are trying to protect de-

velopers from by incorporating built-in fea-

tures that automate the entire process. An-

other factor, adding to the challenge, is that

this topic is poorly, if at all, documented in

the literature. Since JavaScript is not pro-

vided with any specialized support for con-

suming Web Services, as it is the case with

.NET, contacting a Web Service from the

browser has to be done “manually.” Which

means that user provided code needs to be

added to deal with the details of communi-

cating with the web Service. However, as we

are going to see, this is not as difficult as it

may appear at a first look, if we take the

right approach.

Essentially, two steps need to be taken in

order to consume a Web Service:

1) Invoke the methods provided by the

Web Service;

2) Process the returned results.

Each of these steps will be analyzed in detail.

Invoke the Methods Provided by the

Web Service

When consuming a Web Service we have to

take into account the fact that every Web

method has its own signature determined by

the method’s name and its list of parame-

ters. In addition to this we have a choice of

three different protocols to use: GET, POST

and SOAP, each of them with a specific for-

mat. The key to successfully invoke a Web

method is to properly format the request

object, for that specific method, as required

by each of these protocols. Fortunately, the

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 5

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

sample format descriptions available in the

presentation and test page of each method

provide all the clues we need to properly

format the request for each of the available

protocols. The sample format descriptions

provide parameter placeholders for every

method parameter, along with the corre-

sponding data type specification. Depending

on the protocol one or more header options

may be also required. According to this, two

things need to be done in order to call a

method:

- fill in the parameter placeholders with the

proper argument values;

- set whatever header options are needed

by using the setRequestHeader() method

of the XMLHttpRequest Object.

Since the request formats are different for

each protocol, there will be differences in

the corresponding request formatting code.

The GetCitiesByCountry() method of the

globalweather service takes only one sin-

gle string parameter representing a country

name. Accordingly, the GET, POST and

SOAP request formats are:

1) HTTP GET Request

The GET request format for the GetCities-

ByCountry() method is given in the ap-

pendix (see HTTP Request/Response For-

mats).

This is the usual format for any GET type

request. It specifies the location of the ser-

vice (www.webservicex.net), the name

of the service (globalweather.asmx) and

the invoked method (GetCitiesByCoun-

try()) with a parameter called Country-

Name. In our case, the code to issue an

asynchronous XMLHttpRequest call to the

GetCitiesByCountry method is as follows:

xmlHTTPObj.open("GET",

 "HTTP://www.webservicex.net/

 globalweather.asmx/

 GetCitiesByCoutry?

 CountryName="+

 countryName, false);

xmlHTTPObj.send(null);

where xmlHTTPObj is a reference to the

XMLHttpRequest object, and the variable

countryName holds a value interactively

provided by the user of the Web page.

2) HTTP POST Request

The POST request format for the GetCities-

ByCountry() method is given in the appen-

dix (see HTTP Request/Response Formats).

Accordingly, the invoking JavaScript code is:

xmlHTTPObj.open("POST",

 "HTTP://www.webservicex.net/

 globalweather.asmx/

 GetCitiesByCountry", false);

xmlHTTPObj.setRequestHeader(

 "Content-Type",

 "application/x-www-form-

 urlencoded");

 xmlHTTPObj.send(

 "CountryName="

 +countryName);

In this case the URL string in the open()

method only specifies the name of the me-

thod, while the parameter is part of the re-

quest body, and is specified through the

send() method of the XMLHttpRequest ob-

ject.

The request header also contains a Content-

Type entry with value

application/x-www-form-urlencoded

which is set by a call to the setRe-

questHeader() method and specifies the

MIME type of the result.

3) HTTP SOAP Request

The GET and POST requests are simple to

create and efficient enough, but can be used

only for simple response types, basically

numbers, strings and arrays. To consume

Web Services that return more complex re-

sults, like custom data types, one would use

SOAP requests (see HTTP Request/Response

Formats in the appendices). A SOAP request

is in fact a disguised POST request. A SOAP

request uses a so-called SOAP envelope with

a specific XML syntax that specifies both the

name of the invoked method, the name of

the parameters and, at the same time, pro-

vides the placeholders for these parameters.

The SOAP envelope has a well-defined syn-

tax that is validated against an XML schema

thus enforcing correctness criteria on submit-

ted request objects.

This format provides the information needed

to write the JavaScript that builds the SOAP

request, which involves creating the SOAP

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 6

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

envelope with the current arguments built

into, and adding the proper header attrib-

utes. The SOAP request has two specific

entries in its header:

- a Content-Type entry with value

text/xml, and

- a SOAPAction entry with the value rep-

resented by the following URL string:

HTTP://www.webserviceX.NET/GetCiti

esByCountry.

Both entries are added to the request by

calls to the setRequestHeader() method

of the XMLHttpRequest Object. The rest of

the code deals with building the SOAP enve-

lope string, which is then submitted via the

send() method. The complete code for a

SOAP request of the GetCitiesByCoun-

try() method is as follows:

xmlHTTPObj.open("POST",

 "HTTP://www.webservicex.net/

 globalweather.asmx", false);

 //add headers

 xmlHTTPObj.setRequestHeader(

 "Content-Type","text/xml");

 xmlHTTPObj.setRequestHeader(

 "SOAPAction",

 "HTTP://www.webserviceX.NET

 /GetCitiesByCountry");

 //build request envelope

 var envelope=

 ' <soap:Envelope '+

 ' xmlns:xsi="HTTP://www.w3.org/

 2001/XMLSchema-instance"'+

' xmlns:xsd="HTTP://www.w3.org/

 2001/XMLSchema"'+

' xmlns:soap="HTTP://schemas.

 xmlsoap.org/soap/envelope/">\n'+

 ' <soap:Body>\n'+

' <GetCitiesByCountry

 xmlns="HTTP://

 www.webserviceX.NET">\n'+

' <CountryName>'+

 countryName+

' </CountryName>\n'+

 ' </GetCitiesByCountry>\n'+

 ' </soap:Body>\n'+

 '</soap:Envelope>'

 xmlHTTPObj.send(envelope);

Processing the Returned Results

The results returned by a Web Service me-

thod are serialized and packaged into a

properly formatted response. The format of

the response object depends both on the

specific web method and on the protocol

used. Again, the sample format descriptions

provide the information needed on the client

side in order to use the results. This involves

a process consisting of two steps:

(1) extract the result from the response,

(2) use the result according to the

needs of the application.

1) Extracting the result from the re-

sponse

The result of the GetCitiesByCountry()

method is a string representing a list of cities

in the country that was given as parameter.

This string is packaged into an XML format-

ted response with a placeholder for the result

itself. The response is available in text or

XML format through the responseText or re-

sponseXML properties of the XMLHttpRequest

Object. The response formats are different

for the three types of protocols: GET, POST

and SOAP. In the GET and POST responses

the result is provided as the value of a

<string> XML element:

<string>

 list_of_cities

</string>

while in the SOAP response the result is lo-

cated in an XML element with tag name

<GetCitiesByCountryResult>:

<GetCitiesByCountryResult>

 list_of_cities

</GetCitiesByCountryResult>

A closer look at the sample response formats

for the GET and POST protocols reveals the

fact that they are identical (see HTTP Re-

quest/Response Formats).

HTTP GET and POST Response

Accordingly, the code to extract the result

would be the same in both cases

Extracting the result node from the respon-

seXML property can be done in either of the

two common approaches for processing XML

content: with DOM methods or with XPath.

Using the DOM getElementsByTagName()

method returns a list of nodes with one sin-

gle element in it, the result node, at index

position 0, so the expression:

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 7

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

xmlHTTPObj.responseXML.

 getElementsByTagName("string")[0]

returns the result node, while the result

string itself is given by the data property of

its firstChild node.

Alternatively, with the XPath approach, the

selectNodes() method will be used:

xmlHTTPObj.responseXML.

 selectNodes("//string")

which directly returns the result node, since

there is only one <string> tag anywhere in

the response.

In conclusion either one of the following

statements would assign the result to the

textResult variable:

var textResult=xmlHTTPObj.

 responseXML.

 getElementsByTagName(

 "string")[0].firstChild.data;

or alternatively

var textResult=xmlHTTPObj.

 responseXML.selectNodes(

 "//string").firstChild.data;

HTTP SOAP Response

The SOAP response has a different structure

than the GET and POST responses (see

HTTP Request/Response Formats), but the

code to extract it is very similar.

The only thing that needs to change is the

name of the tag given as parameter to the

getElementsByTagName() or select-

Nodes() method. Either of the following

statements would extract the result from

the SOAP response and assign it to the tex-

tResult variable:

var textResult=xmlHTTPObj.

 responseXML.

 getElementsByTagName(

 "GetCitiesByCountryResult")[0].

 firstChild.data;

or alternatively

var textResult=xmlHTTPObj.

 responseXML.selectNodes(

 "//GetCitiesByCountryResult").

 firstChild.data;

Notice that the code to extract the result

node is not influenced by where, and how

deep this node is placed in the response,

nor by the structure of the response itself.

What matters is the tag name of the element

containing the result.

Using the result according to the needs

of the application

Once the result is extracted from its re-

sponse shell, it is ready to be used. The for-

mat of the result itself is not dependent on

the HTTP protocol that was used to get it

from the Web Service, but it is specific to

every method and is not explicitly docu-

mented. One simple way of figuring out the

structure of the result is to interactively test

the Web service method by using the test

and presentation interface. In our case an

invocation of the GetCitiesByCountry()

method with country parameter value “Is-

rael” will provide the response shown in fig-

ure 7.

This result is in fact a string representation

of an XML document. This result could be

processed as a string, but in this case it is

more convenient to first convert it into an

XML DOM tree and then process it by the

tools available for XML content processing.

The conversion simply consists of loading the

string into an XML DOM document. For the

particular case of the IE browser the corre-

sponding code is:

var xmlResult=new ActiveXObject(

 "Msxml2.DOMDocument");

xmlResult.loadXML(textResult);

From the XML DOM document one can ex-

tract the list of cities by any of the following:

 var cities=xmlResult.

 getElementsByTagName("City");

or alternatively

 var cities=xmlResult.selectNodes(

 "/NewDataSet/Table/City");

The list of cities can than be used to populate

a select list on the Web page.

The second method of the globalweather

service is GetWeather() with two parame-

ters: country and city. The procedure for us-

ing this methiod is similar to was described

so far, taking into account the details specific

to this method.

7. THE PROBLEM OF CROSS-SITE

SCRIPTING

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 8

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

Accessing from the browser a Web Service

located on a different site than the applica-

tion itself is considered unsafe due to dam-

age that can be done to the user’s machine

by malicious code originating on other sys-

tems. This is known as the cross-site

scripting problem. The same origin pol-

icy states that any page, from a given ori-

gin, may access and interact with (e.g. us-

ing JavaScript) any other resource but only

from the same origin. An origin is consid-

ered a single domain, identified by a unique

URL, accessed by a single protocol, e.g.

HTTP. Changing the protocol from HTTP to

FTP for example means changing the origin.

Same is when sending a request to or re-

ceiving a response from a location other

than that of the page running the code. The

same origin policy applies to the

XMLHttpRequests as well as to any other

communication forms between the browser

and servers. This includes pages from other

Web Servers, third party Web Services,

data servers and other. Basically, whenever

applied, the same origin policy makes sure

that all communication between the browser

and anyone else goes through the applica-

tion server. All browsers, except IE, explic-

itly enforce a default same origin policy. IE

uses a more comprehensive security me-

chanism based on trusted pages and secu-

rity zones. This mechanism is more flexible,

than the all or nothing same origin policy,

since it allows communication with explicitly

listed select sites that are considered as

trusted.

In the case of the Web services that origi-

nate from a trusted source, one would like

to go around the security restrictions im-

posed by the Web browsers. This approach

is considered acceptable and both IE and

the Apache Web server can be configured to

allow cross-domain scripting. Actually,

many Web applications (mash-ups) and

much of the Web based advertising rely on

some form of cross-domain scripting. Be-

sides configuring the web servers there are

quite a few workarounds for this problem.

One approach frequently used is to make

the Web service calls from inside a frame.

(Woolston, 2006) (Moore 2007).

8. CONCLUSIONS

In this paper we looked at the ways and

implications of consuming Web services di-

rectly from a client browser in an AJAX appli-

cation. The alternative architectural option is

to consume the service from the server side

application. One of the approaches with this

option is to have an application specific

server module (Htpp handler, Java Servlet or

other) as the service consumer. Although not

the most efficient, this is a convenient, ro-

bust and safe solution. The server side code

can then (pre)process the results from the

Web service and forward them to the client

in a form ready to be used, thus minimizing

client code. A second approach is to build a

proxy service on the application server. This

has the advantage of a uniform interface to-

wards the client, and would use the same

client code, previously developed for direct

access to the Web service.

The concepts in this paper have been pre-

sented to the students of the first “Rich In-

ternet Applications with AJAX” class at Uni-

versity of Wisconsin Stevens Point. We em-

phasized the idea that consuming a Web ser-

vice only requires to correctly formatting the

request object and then extract and process

the result from the response object. We also

showed that the details for doing all this are

provided through the WSDL description of

the service. By learning how to identify and

use the specific clues in a particular WSDL

one should be comfortable to apply the de-

scribed methodology and use any given Web

service.

Based on this kind of insight, the students

where able to creatively apply their knowl-

edge on other suggested Web services, and

build their own applications. For example the

US weather service returns the results in an

XML format, instead of the string format

used by the global weather service. In spite

of this unexpected challenge the students

where able to adapt their approach and cor-

rectly consume the new service in their own

AJAX enabled Web application.

REFERENCES

Gibbs Matt, Wahlin Dan (2007) Professional

ASP.NET 2.0 AJAX, Wiley Publishing, Inc.

McClure Wallace B., Cate Scott, Glavich Paul,

Shoemaker Craig (2006) Beginning AJAX

with ASP.NET, Wiley Publishing, Inc.

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 9

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

Moore Dana, Budd Raymond, Benson Ed-

ward (2007) Professional Rich Internet Ap-

plications: AJAX and Beyond, Wiley Publish-

ing, Inc.

Woolston Daniel (2006) Pro AJAX and the

.NET 2.0 Platform, Apress.

Zakas Nicholas C., McPeak Jeremy, Fawcett

Joe (2006) Professional AJAX, Wiley Publish-

ing, Inc.

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 10

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

Appendices

Figure 2. The Traditional versus AJAX Web Application Model

Figure 1. Basic Web Services Model

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 11

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

Figure 3. The GlobalWeather Web Service Presentation Page

Figure 4. The GetCitiesByCountry Method Presentation Page

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 12

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

Figure 5. Accessing the Web Service Directly from the Client Browser

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 13

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

Figure 6. Accessing the Web Service from the Server Side HTTP Handler and by using a proxy

Service on the Web Server

Figure 7. Response and result format for the GetCitiesbyCountry() method with country

parameter Israel

ff

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 14

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

HTTP Request/Response Formats

Http GET Request Format

Http POST Request Format

Http SOAP Request Format

Http GET and POST Response Format

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 15

Dollinger Fri, Nov 2, 2:30 - 2:55, Haselton 2

Http SOAP Response Format

Proc ISECON 2007, v24 (Pittsburgh): §2553 (refereed) c© 2007 EDSIG, page 16

