
Stillman and Peslak Fri, Nov 2, 5:30 - 5:55, Haselton 1

Teaching Software Engineering

Including Integration with Other Disciplines

Richard M. Stillman
rstillma@nova.edu

School of Computer and Information Sciences
Nova Southeastern University

Fort Lauderdale, FL 33314, USA

Alan R. Peslak
arp14@psu.edu

Information Sciences and Technology
Penn State University

Dunmore, PA 18512, USA

Abstract

Software engineering is Money Magazine’s top rated profession. The development of novel

information systems has created new industries and catapulted developers to wealth and star-
dom. Yet, for many students of computer and information systems, software engineering is
just another hurdle they must jump to satisfy degree requirements.

How best to teach software engineering so that students appreciate its unique and vital les-
sons remains an unanswered question. Our software engineering course exploits students’
experience in specific domains as a foundation for learning the skills of software development.

The course syllabus provides a vehicle for honing one’s development skills, practicing abstrac-
tion, and finally experiencing the “aha” phenomenon when the student has successfully inte-
grated two different fields of knowledge into a new discipline. We report the results of this
approach.

Keywords: Higher education, software engineering, information systems, active learning en-
vironment, domain knowledge

1. INTRODUCTION

No one would have predicted: that an effi-
cient search algorithm would form the foun-
dation of an immensely profitable company;
that software to enable peer-to-peer transfer
of copy written music would become avail-
able on-line (or that this technology would

subsequently be deemed illegal); that the
entire genetic code of several species includ-
ing homo sapiens would be sequenced and
available on-line, leading to a new genera-

tion of biology researchers working without a
brick-and-mortar laboratory.

Software engineering is Money Magazine’s
top rated profession (Kalwarski, 2006). The
development of novel information systems
has created new industries and catapulted
developers to wealth and stardom. Yet, for

many students of computer and information
systems, software engineering is just an-
other hurdle they must jump to satisfy de-
gree requirements.

Proc ISECON 2007, v24 (Pittsburgh): §2744 (refereed) c© 2007 EDSIG, page 1

Stillman and Peslak Fri, Nov 2, 5:30 - 5:55, Haselton 1

How best to teach software engineering so
that students appreciate its unique and vital
lessons remains an unanswered question.

Hazzan (2007) points out that mastering

software engineering requires the ability to
deal with "soft ideas", concepts that elude
formal definition. Soft ideas come into exis-
tence when the programmer is thinking
about a domain apart from the software.
Dealing with soft ideas is a skill that cannot
be explicitly taught; they have to be experi-

enced to be understood. To create a novel
system, a programmer must almost instinc-
tively feel the connection between an un-
tapped domain and the power he knows a
computer system can bring to that domain.

Software engineering courses often fail to

convey to students the importance of the
topic they are teaching. Students tend to
believe that success in building information
systems requires just the technical know-
how to write code. Henry and LaFrance
(2006) stress the importance of active learn-
ing by engaging students in relevant pro-

jects. Petcovic et al (2006) note that the
globalization of software requires graduates
to have experienced reasonable simulations
of the complexities of real-world software
development. Grisham et al (2006) go so
far toward real-world simulation as to inten-
tionally leave the project requirements

vague, so that the student must take re-
sponsibility for this fundamental step in the
development process.

Promising new realms of endeavor often
spring from the unlikely combining of sepa-
rate disciplines. Evolutionary algorithms and

bioinformatics are two compelling examples.
Ali (2006) suggests multidisciplinary soft-
ware engineering projects, as for example a
software engineering student partnering with
an architecture student to create 3-
dimensional building visualization software.

Myers (2007) observes that in order for a

software engineering project to be really
educational, it must be a substantial en-
deavor not a "toy" application, despite the
limited time available; and it must involve a
meaningful domain.

The flash of insight that leads a visionary to
introduce computer technology to a new

domain requires creativity, knowledge of the
domain and of the technology, and, perhaps
most of all, the ability to think abstractly.

Kramer and Hazzan (2006), summarizing a
workshop on The Role of Abstraction in
Software Engineering, note that the partici-
pants agreed that abstraction should be

taught in software engineering courses, but
cautioned that abstraction "seems to be a
talent-laden skill: some will get it, many will
not, and a few will be very good at it."

Whether the application is advertising, mul-
timedia, or molecular biology, the develop-
ment of novel and useful software requires

that the developer integrate software engi-
neering with specialized knowledge of an-
other, unrelated discipline.

Several other researchers have noted the
importance of domain knowledge to success-
ful software engineering. Falbo, Guizzardi,

and Duarte (2002) suggest that domain
knowledge is essential to software reuse.
Maidantchik, Montoni, and Santos (2002)
observe that complex software systems re-
quire iterative development as the team
masters understanding of the domain. Ro-
billard (1999) in the Communications of the

ACM suggests “Software development is the
processing of knowledge in a very focused
way. We can say it is the progressive crys-
tallization of knowledge into a language that
can be read and executed by a computer.
The knowledge crystallization process is
directional, moving from the knowledge ap-

plication domain to software architectural
and algorithmic design knowledge, and end-
ing in programming language statements.”

Thus, in real-world software engineering, the
application of domain knowledge is the start-
ing point for software engineering projects.

2. METHODS

In our master's level software engineering
course, we assign the prototypical exercises,
but encourage the student to respond to
these exercises using a domain for which the
student possesses specialized knowledge or
interest.

Specifically, the student is asked to perform
each of the following steps of software de-
velopment for a sizable existing or imagined
system in one or more domains of his or her
choice:

1. Outline the process that you would
use to build the system.

2. Write a statement of scope.

Proc ISECON 2007, v24 (Pittsburgh): §2744 (refereed) c© 2007 EDSIG, page 2

Stillman and Peslak Fri, Nov 2, 5:30 - 5:55, Haselton 1

3. Create a functional decomposition,
estimate LOC, effort, and cost. (In
the case of an existing system, this
question can be answered using

what the student knows about the
domain to reverse engineer the
software.)

4. Give examples of pertinent data ab-
stractions and the associated proce-
dural abstractions.

5. Use code from your chosen domain

to illustrate examples of cohesion
and coupling.

At this point, the student is asked to do the
following major projects:

1. Produce a comprehensive proposal
for a major software project involv-

ing a domain of your choice. The
proposal should include information
such as Project Overview & Scope;
Process & Project Management; Re-
quirements Analysis & Design; Fea-
sibility Analysis; Coding, Testing &
Maintenance; Project Plan & Sched-

uling; Risk Management; Ethical &
Legal Considerations; Delivery &
Documentation; Conclusions

2. Develop a working prototype of a
portion of the system that you pro-
posed.

3. RESULTS

Many of our master's students are profes-
sionals. They represent a variety of indus-
tries. Therefore, it is not surprising that we
received submissions covering a reasonably
wide range of domains. Here are some ex-
amples:

Example 1

A manager for a major railroad company
developed a proposal to rail shippers, third-
party logistics companies, and shipping bro-
kers for a rail visibility and supply chain
management application.

Example 2

A software contractor to the US Army devel-
oped a three tier application used to update
the airfield approach maps that are used on
the U.S. Army utility and cargo helicopter
flight simulators instructor operator stations.

Example 3

A lead senior client server analyst for a ma-
jor cruise line with twenty years of experi-
ence in the industry developed a three tier

Cruise Line Client Reservation System.

Example 4

A student with a strong background in bio-
logical science proposed the development of
a web-based information system for a bioin-
formatics laboratory. We use this student’s
work as an example of the type of project

submitted. Appendix 1 provides the full table
of contents of the project.

The informational flow model in Figure 1 and
the scope and boundary diagram of Figure 2
illustrate scope of this ambitious project.

The 5-year cost of system development is

estimated at $750,000. The prototype sub-
mitted is a browser-based HTML/JSP client
layer with a Java Servlet architecture con-
necting to the database layer via a number
of problem domain and data access classes.
The database layer is a hybrid of a Microsoft
Access relational structure for internal data

and seamless data access class connectivity
to public databases of biological data. The
data-flow diagram in Figure 3 and the entity-
relationship diagram in Figure 4 show some
of the functionality that will be required for
this prototype.

Figure 5 is a screen print that shows a por-

tion of the actual functionality of the proto-
type system submitted for this project.

Student Feedback

The goals of our master’s level software
engineering course are to teach the devel-
opment of software-intensive systems, soft-

ware quality factors, software engineering
principles, system life-cycle models and
paradigms, requirements definition and
analysis, behavioral specification, software
design, implementation, software testing
techniques, verification and validation, sys-
tem evolution, and software project man-

agement.

End of semester evaluation forms were re-
viewed to determine the perceived efficacy
of the software development assignment
described in this paper.

Feedback from students enrolled in the three
semesters in which this project was assigned

Proc ISECON 2007, v24 (Pittsburgh): §2744 (refereed) c© 2007 EDSIG, page 3

Stillman and Peslak Fri, Nov 2, 5:30 - 5:55, Haselton 1

revealed uniform agreement that this ap-
proach met the course goals. An example of
the type of feedback was that the approach
was a “comprehensive, well-organized,

academically-enriching experience”.

4. DISCUSSION

There is little controversy that really perfect-
ing the skills required for successful software
engineering requires an active, hands-on
process. The question is how to optimize
the didactic experience. Our approach of

having the student select a familiar domain
for the final project has both benefits and
limitations.

Benefits

One can assign a specific task for a student
or a group of students to complete during

the semester, and perhaps that approach
would better simulate an industrial environ-
ment. But permitting self-selection of the
domain confers the following benefits:

Respecting the Student’s Tal-

ents: The student can focus on the process
of software development, and is relieved

from the need to study an unfamiliar do-
main. The student’s energies are channeled
into the practice of system development.
Van der Duim et al (2007) include respecting
students' diverse talents as a best practice
in software engineering education.

Future Benefits to the Student

and the Industry: The project itself may
provide a springboard for the student's entry
into system development involving his or her
own profession. This may confer immediate
benefit to the student as an employee, the
employer, and even the industry. Bernhart

et al (2006) feel that teaching software en-
gineering requires that the project frame-
work should reflect real-world applications.
Turhan and Bener (2007) go even further:
they recommend, "simulating a chaotic envi-
ronment" so that students' expectations will
match the reality of software development.

Potential Benefit to the Instruc-

tor: As an interesting side effect, the profes-
sor expands his general knowledge of areas
that information systems development may
benefit.

Overcoming Some Obstacles

There are downsides to this approach. But
we believe these obstacles can be overcome.

Coordination of Group Projects:

For obvious reasons it is difficult to coordi-

nate a group project that allows students to
select the project domain. On the other
hand, when students collaborate on a pro-
ject for which only one member of the group
has the domain expertise, the resulting
process becomes a reasonable simulation of
real-world software engineering.

The Instructor’s (Possibly Lim-

ited) Knowledge of the Chosen Domain:
In the absence of in-depth knowledge of a
particular domain, the professor may have a
bit of difficulty helping the student should
problems occur during system development,

and then evaluating the resulting deliver-
ables. The former reflects a real-world con-
cern inherent in system development, but in
practice this is overcome routinely nonethe-
less. The latter has not been a problem in
our experience because the student's plan,
protocol, and prototype form a unit that,

when analyzed together, can be verified by
checking for internal consistency, and of
course the code can always be checked for
appropriate functionality. Furthermore,
there is a safety valve: students are re-
quired to obtain approval for their project
plan at the beginning of the course. This

gives the instructor an opportunity to re-
quest a change of plan if really necessary.
Finally, we emphasize that we utilize this
approach only in graduate-level courses.

Summary

In summary, we teach software engineering

by facilitating integration of the system de-
velopment process with a domain of particu-
lar interest to each student. The syllabus
provides guidelines, but each student cre-
ates his own assignment. We believe that
this approach simulates the process by
which technological ingenuity drives the

emergence of new fields.

As philosopher-scientist Edward O. Wilson
(1998) observed, “… asking the right ques-
tion is more important than producing the
right answer. The right answer to a trivial
question is also trivial, but the right ques-
tion, even when insoluble in exact form, is a

guide to major discovery.”

Proc ISECON 2007, v24 (Pittsburgh): §2744 (refereed) c© 2007 EDSIG, page 4

Stillman and Peslak Fri, Nov 2, 5:30 - 5:55, Haselton 1

5. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their
insightful suggestions.

6. REFERENCES

Ali, M. R. 2006. Imparting effective software
engineering education. SIGSOFT Softw.
Eng. Notes 31, 4 (Jul. 2006), 1-3.

Bernhart, M., Grechenig, T., Hetzl, J., and
Zuser, W. 2006. Dimensions of software
engineering course design. In Proceed-
ing of the 28th international Conference

on Software Engineering (Shanghai,
China, May 20 - 28, 2006). ICSE '06.
ACM Press, New York, NY, 667-672.

Falbo, R. d., Guizzardi, G., and Duarte, K. C.
2002. An ontological approach to domain
engineering. In Proceedings of the 14th

international Conference on Software

Engineering and Knowledge Engineering

(Ischia, Italy, July 15 - 19, 2002). SEKE
'02, vol. 27. ACM Press, New York, NY,
351-358.

Grisham, P. S., Krasner, H., and Perry, D. E.
2006. Data Engineering education with

real-world projects. SIGCSE Bull. 38, 2
(Jun. 2006), 64-68.

Hazzan, O. 2007. The influence of software
intangibility on computer science and
software engineering education.
SIGSOFT Softw. Eng. Notes 32, 3 (May.
2007), 7-8.

Henry, T. R. and LaFrance, J. 2006. Inte-
grating role-play into software engineer-
ing courses. J. Comput. Small Coll. 22, 2
(Dec. 2006), 32-38.

Kalwarski, T., Mosher, D., Paskin, J., Rosato,
D. (2006, May) . Fifty best jobs in

America. Money 35(5): 94-101.

Kramer, J. and Hazzan, O. 2006. The Role of
Abstraction in Software Engineering.
SIGSOFT Softw. Eng. Notes 31, 6 (Nov.
2006), 38-39.

Maidantchik, C., Montoni, M., and Santos, G.
2002. Learning organizational knowl-

edge: an evolutionary proposal for re-

quirements engineering. In Proceedings
of the 14th international Conference on

Software Engineering and Knowledge

Engineering (Ischia, Italy, July 15 - 19,

2002). SEKE '02, vol. 27. ACM Press,
New York, NY, 151-157.

Myers, J. P. 2007. A web emphasis in soft-
ware engineering. J. Comput. Small Coll.

22, 4 (Apr. 2007), 268-274.

Petkovic, D., Thompson, G., and Todtenhoe-
fer, R. 2006. Teaching practical software

engineering and global software engi-
neering: evaluation and comparison. In
Proceedings of the 11th Annual SIGCSE

Conference on innovation and Technol-

ogy in Computer Science Education (Bo-
logna, Italy, June 26 - 28, 2006). ITICSE

'06. ACM Press, New York, NY, 294-298.

Pressman, R. (2006) Software Engineering:
A Practioner’s Approach Sixth Edition
McGraw-Hill, New York.

Robillard, P. N. 1999. The role of knowledge
in software development. Commun. ACM

42, 1 (Jan. 1999), 87-92.

Turhan, B. and Bener, A. 2007. A Template
for Real World Team Projects for Highly
Populated Software Engineering Classes.
In Proceedings of the 29th international
Conference on Software Engineering
(May 20 - 26, 2007). International Con-
ference on Software Engineering. IEEE

Computer Society, Washington, DC,
748-753.

van der Duim, L., Andersson, J., and Sin-
nema, M. 2007. Good Practices for Edu-
cational Software Engineering Projects.
In Proceedings of the 29th international

Conference on Software Engineering
(May 20 - 26, 2007). International Con-
ference on Software Engineering. IEEE
Computer Society, Washington, DC,
698-707.

Wilson, E.O. 1998. Consilience: The Unity of
Knowledge. Vintage Books, Inc., New

York.

Proc ISECON 2007, v24 (Pittsburgh): §2744 (refereed) c© 2007 EDSIG, page 5

Stillman and Peslak Fri, Nov 2, 5:30 - 5:55, Haselton 1

FIGURES

L a b

A d m in is t r a t io n :

R e a d & W r i te

A c c e s s to S ta f f

I n f o

U n iv e r s i t y :

S t u d e n t & S ta f f

I n f o

W e b U s e r s : R e a d

A c c e s s to B io

D a ta

L a b S ta f f : R e a d &

W r i te A c c e s s to

B io D a ta
B io D B

D a ta M in in g
E x t e r n a l B io lo g ic a l

D a ta b a s e s

Figure 1. The informational flow model of a student's proposed bioinformatics information sys-
tem

Proc ISECON 2007, v24 (Pittsburgh): §2744 (refereed) c© 2007 EDSIG, page 6

Stillman and Peslak Fri, Nov 2, 5:30 - 5:55, Haselton 1

Lab Staff

Demo-

graphic DB

Lab

Adminis-

tration

HRM

Registrar

Web

Users

External

Biological

DB

Internal

Biological

DB

Data

Mining
Lab Staff

Figure 2. A scope and boundaries diagram demonstrating a novel approach to combining a
university's information system with a laboratory's data generation and AI capability

Proc ISECON 2007, v24 (Pittsburgh): §2744 (refereed) c© 2007 EDSIG, page 7

Stillman and Peslak Fri, Nov 2, 5:30 - 5:55, Haselton 1

Lab Staff

Control Panel

Administrator

Interface

User Commands & Data

System Update Commands &

Data
Outside User

Interface

User Requests & Data

Online

Databases

Internal

Databases

Existing Biomolecular Data

Interact with Staff

Search Online DB

View or Update

Internal Bio DB

Search Bio DataDisplay Web Menu

Display Lab Menu

Validate User

User Name & Password

User Details

Lab M
enu C

hoice
s

Display System Menu

View or Update

Internal

Demographic DB

System Commands & Data

Demographic Data

Web Menu Options

Biomolecular Data
Biomolecular Data

Existing Biomolecular Data

Figure 3. A data-flow diagram of a portion of the system. If he didn't appreciate it before, the
complexity of engineering a system of this magnitude is now apparent to the student. Soft-
ware engineering is more than just writing code.

Proc ISECON 2007, v24 (Pittsburgh): §2744 (refereed) c© 2007 EDSIG, page 8

Stillman and Peslak Fri, Nov 2, 5:30 - 5:55, Haselton 1

Laboratory

PK labNo

 labName

 location

 telephone

 supervisorUserName

Staff

PK userName

 password

 lastName

 firstName

 position

FK1,I1 labNo

Experiment

PK exptNo

FK1,I1 userName

FK2,I2 projectNo

 descr

FK3,I3 tissueNo

Project

PK projectNo

 projectName

 projectDescr

Works In

*

Performed By
*

Part Of
*

Organism

PK organismNo

 scientificName

 commonName

 mutantType

Performed On
*

Protein

PK,FK1,I1 biomoleculeNo

U1 pdbCode

 type

 molecularWt

 aminoAcidSequence

DNA

PK,FK1,I1 biomoleculeNo

U1 genBankCode

 chromosome

 length

FK2,I2 codesFor

 baseSequence

Biomolecule

PK biomoleculeNo

 scientificName

 commonName

FK1,I1 tissueNo

Comes From
*

Codes For
*

Promoter

PK,FK1,I1 biomoleculeNo

 location

 comment

Intron

PK,FK1,I1 biomoleculeNo

 priorResidueNo

Gene

PK,FK1,I1 biomoleculeNo

 type

FK2,I2 codesFor

FK3,I3 promoter

Codes For

*

Controlled By
*

Tissue

PK tissueNo

FK1,I1,U1 organismNo

FK2,I2,U1 tissueTypeNo

Comes From
*

TissueType

PK tissueTypeNo

 tissueTypeName

Of Type

*

Figure 4. An entity-relationship diagram of the portion of the system the student has imple-
mented in the prototype.

Proc ISECON 2007, v24 (Pittsburgh): §2744 (refereed) c© 2007 EDSIG, page 9

Stillman and Peslak Fri, Nov 2, 5:30 - 5:55, Haselton 1

Figure 5. A screen print of the web interface to the student's prototype system. The code

behind this page utilizes a variety of technologies including HTML, Javascript, and JSP.

Proc ISECON 2007, v24 (Pittsburgh): §2744 (refereed) c© 2007 EDSIG, page 10

