
Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

 
A RAD Framework for Cross-Platform GUI 

Development of MVDBMS Client-Server 
Applications 

 

John George Bend 
john.bend@ITStuff.net 

 
Dr. Samuel Sambasivam 

ssambasivam@apu.edu 
Computer Science Department, Azusa Pacific University 

Azusa, CA 91702, USA 
 

Abstract 
 
Applications based upon the PICK family of Multi Value Database Management Systems 
(MVDBMS) have been serving their users needs for decades. However the majority of 
MVDBMS applications pre-date Graphical User Interfaces and Web application technologies. 
There is a recognised need within the MVDBMS development community to establish an 
uncomplicated development framework which continues the recognised benefits of PICK whilst 
helping MVDBMS applications compete in the current market place. 

Keywords: Database, Multi-value, GUI, MVDBMS, SWT, Programming, Interface, API 

 

1. INTRODUCTION 

The PICK family of Multi-Value Databases 
Management Systems (MVDBMS) provides 
efficient and reliable data storage, 
manipulation and interrogation, together 
with a richly featured BASIC programming 
language. The unique features of MVDBMS 

enable developers to concentrate on the task 
of creating an application rather than the 
technology behind it. This translates to rapid 
application development and low software 
maintenance costs. Today there are many 
legacy MVDBMS applications still in use with 

development roots that predate today’s 
graphical interface and n-tier architectures. 
Whilst these applications are still able to 
satisfy the user’s needs they are text-based 
and perceived by the market as tired and 
uncompetitive when compared to modern 
applications. Thus vendors and developers 

recognised the need to move these 
applications over to graphical desktop or 
web-based clients. Unlike Relational 

Database applications, there is no 
established development framework to 
which MVDBMS developers can turn to. 
Working in isolation, MVDBMS vendors and 
developers have been obliged to engineer 

various competing development solutions. 
Typically these solutions lock the application 
into restrictive technologies, costly licences 
or a lengthy development process. This 
paper discusses an attempt to establish an 
MVDBMS development framework for 

developing client-server applications. 

The PICK multi-value database model 

 
“Multi-value is a database model with a 

physical layout that allows systematic 

manipulation and presentation of messy, 

natural, relational, data in any form, first 

normal to fifth normal. In other words: with 

repeating groups in a normalized (one- key 

and one-key-only) table.” (DM Review Sep 

2002). 

 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 1



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

The PICK database model can be traced 
back to 1965 when Richard Pick and Don 
Nelson developed an information retrieval 
language for a large US military contractor 

(Bourdon 1987). The Generalised 
Information Retrieval Language System 
(GIRLS) enabled remote terminals to locate 
rocket engine parts anywhere within the 
group. The US army took interest in the 
project and funded development of a data 
management system for the Cheyenne 

helicopter project. Since the project was 
funded by public money details of this data 
management system became readily 
available within the public domain, which 
allowed Richard Pick and Don Nelson to 
develop the system further and create a 

commercial version of the system in 1972. 
Since then numerous licenses and versions 
of the MVDBMS or PICK model have become 
established. Figure 1. 
 
Multi-value databases are characterised by a 
number of features (Bourdon 1987, Sisk 

1990, Tincat Group Inc. 2006) in that they: 
 
• Have a hierarchical filing system which 

employs a hashing algorithm for 
storing and retrieving data. Data is not 
stored is 1st Nominal Form and is of 
variable length. 

 
• Provide a Terminal Control Language 

(TCL) which provides an interface 
between the user and the multi-value 
database system. 

• Possess an editor to enable online 

modification of data, system records 
and source code. 

• Provide a “PROC” processor which 
executes scripts. 

• Include a version of BASIC (Beginners 
All-purpose Symbolic Instruction Code) 
language. This is a compiled version of 

the original Dartmouth BASIC 
language, greatly extended to provide 
powerful data and string handling 
commands. The language 
implementation also supports un-typed 
data structures. 

• Include a non-procedural database 

enquiry language (Access or English). 
• Utilise an output Management System 

or SPOOLER. This provides and 
manages printer output and tape 
operations. 

• System Accounting which provides a 
means of monitoring and controlling 
the system. 

• Contain a Security System which 

enables and prevents access to 
information according to assigned 
privileges. 

• Provide a document output processor 
(RUNOFF). 

 

2. MVDBMS APPLICATIONS 

Such databases were once the mainstay of 
the Health Service and local government, 

especially within the UK. Today, multi-value 
database software applications around the 
world are supporting user counts from tens 
to hundreds or users. Where established 
these multi-value database applications tend 
to dominate their vertical markets (DB 

Forums 2004). For example in the USA the 
market for car dealer software is dominated 
by two companies: Reynolds and Reynolds 
and Automatic Data Processing (ADP). The 
products from both these companies run on 
multi-value databases (Reynolds and 
Reynolds, ADP). 

 

3. FRAMEWORK CONSIDERATIONS 
AND REQUIREMENTS 

The aim is to establish rather than create a 

development framework underlining the 
intention to research and invent a workable 
development framework. 
 
The framework is intended to support most 
MVDBMS offerings and a Graphical User 
Interface (GUI) running on popular graphical 

desktop platforms and embrace industry 
standards and protocols. It should continue 
to support MVDBMS rapid application 
development and provide developers with an 
application development environment which 
is MVDBMS vendor neutral. 
 

The framework should support Rapid 
Application Development (RAD) of Graphical 
User Interface (GUI) clients capable of 
running on a number of popular desktop 
platforms and be firewall friendly in 
recognition of modern networking 

requirements. 
  
Over and above the technical features the 
MVDBMS community insist that the most 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 2



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

outstanding feature of this family of 
databases is the support for rapid application 
development, allowing programmers to 
concentrate on the matter of developing 

database applications rather than the 
technology behind it. Although difficult to 
quantify, this principal should be continued 
by the development framework. 
 
Cross-platform server 
Multi-value databases are available on a 

wide range of server and workstation 
operating systems which includes Windows, 
Linux, Solaris and SCO. It follows then that 
any server component of the run-time 
framework (middleware) must also run on 
these operating systems. 

 
Cross-platform client 
Browser statistics gathered by W3Schools 
(W3Schools, January 2006) suggest that 
Microsoft Windows continues to dominate 
the desktop as we suspect. In 2003 Linux 
was already the second most popular 

desktop operating system and forecasts 
have place it’s desktop adoption between 
6% and 10% by 2007 (IDG News Service, 
August 2004). 
 
There is a growing trend for businesses and 
organisations to consider the various Linux 

distributions as an alternative desktop 
platform. 
 

Penwith District Council rejected 

Microsoft Windows and Office in favour 

of Sun Ray terminals running Open 

Office to save over £150,000 (Computer 

Weekly January 2002). 

 
West Yorkshire Police in the UK, working 

in conjunction with Netproject the Police 

IT Organisation (PITO), migrated 3,500 

desktops to Linux. Plans exist to migrate 

the entire 60,000 desktop computers 

across England and Wales if the pilot 

project is successful. (OSI, June 2003). 

The reader should note that this decision 

was driven not by cost of ownership but 

for the need for greater security. 

 

Designing, developing, testing, documenting 
and selling a client-server application 
represents a significant investment in time 
and resources. Therefore, unless there are 
specific reasons for locking into a particular 
client platform, it is simply good business 

sense to develop software that will run on a 
choice of platforms rather than just one. We 
should also consider that MVDBMS 
application developed with the framework 

proposed by this paper are likely to be 
replacing legacy systems running on dumb 
terminals. The ability to deliver GUI clients 
on low cost PCs running Linux would avoid 
loading the overall cost of upgrading where 
the higher cost of a Windows PC could not 
be justified. The development framework 

should therefore support GUI clients capable 
of running on the most popular desktop 
platforms. These include Microsoft Windows, 
Apple Macintosh and Linux X-Windows. 
 

4. TECHNOLOGY REVIEW 

Before designing the development 
framework or embarking upon a review of 

programming languages, development tools 
and technologies it was necessary to identify 
the principal components of the 
development framework, together with the 
functional and non-functional requirements. 
Figure 2 (Appendix) illustrates a logical view 
of a MVDBMS client-server application where 

we can identify the fundamental 
components. 
 
• The Application Client 
• Middleware to enable interaction 

between the Client and the Server 
• The Application Server 

 
From this we can see that the development 
framework requires a development 
environment for creating GUI clients and 
middleware. 
 

Client Development Environment 
Whether right or wrong, customers tend to 
judge applications by the look and behaviour 
of the GUI. When creating a GUI client for 
any application then, it is important to strive 
for a high quality “look and feel”. It is 
important that the development framework 

provides application developers with the 
maximum competitive advantage in this 
respect. The development framework GUI 
should have good performance and ideally 
provide a look and feel that is “native” to the 
graphical desktop hosting the application 
client. 

 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 3



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

A GUI can be created using a visual tool or 
may be crafted by low level code. As we 
might suspect there are arguments for and 
against both approaches. 

 
 
 

Visual GUI tools 
� Allow rapid creation of screens and 

forms. 
� Forms, screens and menus can be 

laid out by suitably trained 
technicians rather than skilled 
programmers. 

� Allows rapid creation of prototypes 
which can be presented for 
customer approval. 

� Quick and easy to effect minor 
changes with minimal impact on 

the client application code. 
� Design phase can also be the build 

phase. 
� Using a visual GUI editor can help 

force the application developers to 

keep the GUI code and client logic 
code separate. 

� Can frustrate attempts to create 
anything that is beyond limits 
anticipated by the authors of the 

tool. 
� Can result in verbose and perhaps 

inefficient code. 

 

 

Hand coded GUI 
� By recognising component patterns 

the experienced programmer can 
create smaller and more efficient 

GUI programs through component 
reuse. (De Vlaminck, 2001). 

� Allows fine grain control of the GUI. 
� Intelligent use of layout managers 

can result in better behaved 

screens and forms. 
� Code can be created which renders 

the client GUI in accordance with 
instructions received from the 
application server. 

� Can be time consuming to create 
and maintain. 

 
On balance the speed and cost benefits of 

using a visual GUI editor far outweigh the 
negatives. An ideal GUI solution for this 
development framework would be to support 
both approaches for creating GUIs. Thus 

most GUI components could be created 
quickly and easily using a visual tool with 
complex GUI components coded by hand. 
 

 
General Requirements 
In considering the requirements with which 
to evaluate and select tools and technologies 
for the development framework three 
principal areas were identified. These are; 
development, functional and marketing as 

illustrated in Figure 3 (Appendix). The 
Development Requirements are simply that 
a client-server application development 
framework needs to support development of 
client-server applications. The Functional 
Requirements require the development 

framework to include run-time elements that 
support the continued running of the client-
server application. The framework runtime 
must be capable of doing its job and support 
client-server operation over LAN or WAN. 
The Marketability (Non-functional) 
requirement dictates that the development 

framework should add value to the 
application. Developers need to be able to 
sell their finished applications. 
 
Client (GUI development) Requirements 
The requirements for the client GUI 
development environment have been 

identified as: 
 
• Cross-platform run-time (MS Windows, 

Apple Mac and Linux 
• High quality GUI with native look and 

feel 

• Easy to use GUI development tool 
• No distribution costs or royalties 
• Allow hand coding of GUI if possible 
• Support for internationalisation 
• Based on or incorporates a well 

established programming language 
• Well documented and supported 

• Simple installation to client workstations 
(roll-out) 

• Must co-exist with middleware 
technologies 

• Cross-platform development would be a 
bonus 

 

Middleware 
The Carnegie Mellon Software Engineering 
Institute describes middleware thus: 
 

“Middleware is connectivity software that 

consists of a set of enabling services that 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 4



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

allow multiple processes running on one 

or more machines to interact across a 

network. Middleware is essential to 

migrating mainframe applications to 

client/server applications and to 

providing for communication across 

heterogeneous platforms. This 

technology has evolved during the 1990s 

to provide for interoperability in support 

of the move to client/server 

architectures.” (Carnegie Mellon, 

Software Engineering Institute) 

 
Figure 4 (Appendix) illustrates the classic 
middleware services model as described by 
Bernstein (Bernstein 1996). Application 
clients interact with an Application 

Programming Interface (API). There can be 
any number of client implementations and in 
this paper we are assuming that these 
clients will be on dissimilar operating 
systems but only one version of the API. The 
API executes actions on the appropriate 
Application Server via interaction with a 

Platform Interface. The Platform Interface is 
usually specific to the Application server’s 
resources and operating system. In this 
paper the Application Framework must 
ultimately support any of the multi-value 
databases available that support network 
communications. The author has established 

that each of these multi-value databases 
support network communications in quite 
different ways. It is the job of the API 
therefore to provide application developers 
with a unified, abstracted interface and 
mask the complex communications between 

itself, the Platform Interface and ultimately 
the Application Server. 
 
Following the growing availability of high 
speed, low cost, reliable internet connections 
organisations are increasingly considering 
hosted applications. In this scenario 

Application Clients seamlessly interact with 
the Application Server over a high speed 
internet connection. This allows the 
Application Server to be located at almost 
any geographic location and allows fairly 
inexpensive application access to any 
location that is connected to the internet. 

Usually the server is located within a third 
party organisation that has the expertise to 
maintain and backup the application and 
data on the behalf of the users. It would 
therefore be highly desirable for the 
development framework middleware to 

support LAN and WAN access via the 
Internet. If the middleware could support 
WAN access via the Internet then it would be 
preferable to adopt protocols that do not 

require special handling by firewalls. 
 
It is recognised that Internet technology 
continues to develop and grow quickly. With 
this in mind it would be prudent to use third 
party components wherever possible. Use of 
third party components would give leverage 

to the project development both in speed of 
development and helping to ensure that 
standards and protocols are correctly 
adhered to. Preference should be given, 
where possible, to third party components 
that possess a degree of maturity. 

 
Middleware requirements 
Thus we have identified the key 
requirements of the development framework 
middleware as: 
 
• Cross-platform 

• Support operation across LAN or WAN 
• Firewall friendly 
• Loose coupled (cannot depend on Server 

and Client having same platform or 
language) 

• Interfaces with but is independent of the 
Client 

• High availability 
• Scaleable 
• Provide the application developer with a 

familiar programming interface at the 
client 

• Vendor neutral 

• Well documented and supported 
• Use established programming language 
• Use third party components where 

possible 
• Give preference to components with 

some maturity 
• Use accepted protocols and standards 

where possible 
• No distribution costs or royalties 
 

5. SELECTION & EVALUATION 

The selection process 
After evaluating the component and 
requirements consideration was given on 
how to select and evaluate candidate 
technologies. The natural preference 

would be to identify a fully integrated 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 5



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

development solution which fully met all 
the criteria. 
 

Fully integrated development 

solutions 

  

 Mono, Mono Project 

 A well supported project to create an 
Open Source (free) implementation of 
.NET. A legal implementation based on 
clean-room coding against Microsoft’s 
published ECMA/ISO standards. It is 
intended to be fully cross-platform and 
whilst it is of great interest, alas it does 

not yet have a mature visual designer. 

  

 Revolution Studio, Runtime 
Revolution 

 British product originally released in 
1997. Mature and fairly stable. 
Revolution Studio has a good visual 
designer and is cross-platform with web 
support. The principal problems are 
dependency on an obscure 

programming language, no support for 
MVDBMS. Royalty costs. 

  

 Omnis Studio, Raining Data 

 An exciting proposition from Raining 
Data (formally PICK Systems). Cross-
platform, web support and forms based 
visual designer. Has obscure 
programming language, royalty costs 
and unreliable support for MVDBMS 

operations. 

  

 

Since a fully integrated solution was not 
available the next preference was to identify 
candidate components that would work in 
concert. For convenience the search was 
divided into client GUI and middleware. It 
was understood that an iterative search 
would be necessary in order to identify a 

collection of technologies that worked with 
each other whilst having a “best fit” of the 
criteria. 
 
Client technologies 
The requirement was for a cross-platform 
graphical toolkit, together with appropriate 

programming language and visual designer. 
If a suitable graphical toolkit could be 
identified then a corresponding development 
environment would be searched for. The 
toolkit and programming language would 

need to work in conjunction with the chosen 
middleware technologies. 
 

Fully integrated development 

solutions 

  

 QT Designer, Trolltech Inc. 

 Promoted as a “comprehensive 
development framework”. Able, polished 
and well established. On which the KDE 
Linux desktop manager is based. The 
cross-platform licence is expensive at 
€5,260 and steep learning curve. 

  

 SWT and Eclipse, Eclipse Org. 

 A lightweight Open Source graphical 
toolkit for Java. Originated by IBM and 

the toolkit from which Eclipse was 
created. Mature, well supported and 
free. SWT provides programmers with 

an abstracted interface which wraps 

native graphical components from the 

underlying desktop platform (Guojie 

2005). 

  

 
On balance SWT, Eclipse and Java offered 

the best match to the client criteria which 
left a need for the visual designer. A number 
of candidates were available but only 
Window Builder Pro from Instantiations Inc. 
was sufficiently mature enough to support 
end-to-end application development. This 
product was not expensive at $199 per 

development seat, is well supported and 
attracts no royalties. As an interesting aside 
Window Builder Pro supports two-way 
development between visual development 
and hand coding of the GUI. The Eclipse 
integrated development environment is 
mature and very well supported with add-

ons such as code assistants, integrated help 
and documentation, packaging and CVS 
control. Deployment of SWT GUI applications 
does require distribution of the royalty free 
libraries but documentation suggests that 
this can be handled by Java WebStart. The 

selection of client technology had 
determined the choice of Java as 
programming language. 
 
Selection of Middleware technologies 
Research suggested that there were two real 
choices for loose-coupled, wide area network 

communications: Microsoft .NET and Java 
Web Services. It would be possible to 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 6



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

implement cross-platform middleware in 
Mono .NET and C#. This would increase the 
number of languages and technologies 
within the project. Java has many Web 

Service tools and technologies, such as 
Tomcat, from the Apache Foundation. The 
technology is mature, well supported, free 
and based upon the same language as the 
client. 
 
Using Java and Tomcat it would be perfectly 

possible to write a Java Servlet that 
interacted with the Java Client API using 
Java network sockets. However this would 
not meet the criteria of firewall friendly or 
adopting established standards. Further 
research revealed that in order to meet this 

criteria the only choice would be to use 
Simple Object Access Protocol (SOAP). SOAP 
allows the loose-coupled interaction between 
two software technologies using a firewall 
friendly protocol based upon XML messages 
using the HTTP protocol (Snell, Tidwell, 
Kulchenko 2002). Though SOAP can be used 

in a number of ways, for the purposes of this 
paper in establishing a development 
framework it would be perfectly acceptable 
to use it only for synchronous Remote 
Procedure Calls (RPC). Further reading 
suggested that whilst SOAP would provide 
the communications interaction that met the 

framework criteria there would be a lot of 
programming work involved. SOAP is far 
from simple. Thankfully the Apache 
Foundation have a fairly established 
software component. Apache Axis provides 
Web Services programmers with the 

leverage to code SOAP interaction and 
masks most of the complexity. It can be run 
as a stand-alone Web Service within Tomcat 
or like Tomcat can be wrapped in application 
code to create a fairly secure, self-contained 
Tomcat Servlet. Axis was fairly mature (as 
Web Services components go) and seemed 

fairly well documented. One of the most 
important features of Axis was that it 
promised to support maintained state 
sessions which are vital to client-server 
applications. This is discussed in chapter 3. 
 
At this stage a collection of technologies 

suitable for the development framework 
middleware had been selected. On the face 
of it all the criteria would be met. At each 
step in the selection and evaluation process 
candidates were uncovered, examined and 

where possible tested. It was now time to 
begin building the framework. 
 

6. IMPLEMENTATION 

Standing on the shoulders of giants. 

(Isaac Newton 1676) 

Implementation Overview 

For the purposes of selecting technologies 
the development framework was divided into 
two categories; Client GUI and middleware. 
In the implementation phase it was 
appropriate to divide the framework further. 
Figure 7 illustrates a more detailed view of 

the framework. 
 
From the illustration we can identify three 
high level components; 
 

• Client 

• Service 
• Server 

 
Note that the illustration is colour coded to 
identify components which are created by an 
application developer, components which are 
developed especially for the development 

framework and third party components that 
were uncovered during the selection and 
evaluation process. In most cases the Client 
would reside on the user’s computer or 
workstation while the Service and Server 
would be hosted on a server. In certain 
cases, where no suitable Java is available for 

the MVDBMS host platform for example, it 
would be necessary for the Service to reside 
on a separate host. 

7. CLIENT OVERVIEW 

The Client is the entire portion of the 
application that resides and operates on the 
user’s computer or workstation. The Client 
comprises of: 
 

Client GUI 
This is created either by the visual designer 
tool or the application developer as part of 
the application creation process. The GUI is 
the interactive part of application visible to 
the user and is created by the application 

programmer. 
 
 
 
Client Logic 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 7



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

This is code created by the application 
developer to assist and control the logical 
flow and behaviour of the client screen. This 
code forms an interface between the GUI 

and the framework API. The Client logic is 
invisible to the user and is created by the 
application programmer. 
 
Java Client API 
The Client API is presented to the application 
developer in a library or Java package. 

Although a distinct part of the development 
framework the API draws upon certain 
functionality from the Apache Axis client 
library. The framework API presents an 
abstraction of the back-end MVDBMS 
functionality. The framework API is invisible 

to the user but is visible to the application 
programmer during the course of creating 
the application. 

8. SERVICE OVERVIEW 

It is difficult to assign a meaningful name to 
this component of the development 
framework. As the component draws its 
principal functionality from Web Services 
and is a Web Service from the perspective of 

the Client then we will call it the Service. It 
is the function of the Service component to 
provide location transparency (Schmelzer et 
al 2002). It hides the communication tasks 
between the Client API and the Server so 
that the Client can access methods and 
resources on the MVDBMS Server as though 

they were local to the client. 
 
During the command/response cycle 
commands from the Client API are 
marshalled, encoded into SOAP, transmitted 
to the Server translated into MVDBMS 

actions and any results sent back through 
the same process. However in the normal 
course of operation this part of the 
framework would be invisible to users and 
application developers. 
 
The Service comprises of: 

 
Apache Tomcat 
For the purpose of establishing the 
development framework Tomcat will be 
installed as a stand-alone server in 
accordance with the included instructions. In 
a public release of the development 

framework it might be appropriate to create 
a software wrapper to contain Tomcat 

together with the other framework 
middleware components. This would provide 
better security and avoid administration. 
However there may be occasions when the 

server cannot reside on the same host as 
the MVDBMS. In these cases Tomcat would 
be deployed on a separate host and used as 
a proxy to the MVDBMS. Therefore the 
development framework middleware would 
need to exist as a Tomcat Servlet. 
 

Apache AXIS 
Like Tomcat, AXIS can be used in two 
modes; either as a Servlet or as a function 
library for an application. Again for the 
purpose of establishing the development 
framework AXIS will be installed and run as 

a Servlet which will process SOAP messages 
and interact with the Java Web Application. 
In a public release of the development 
framework the AXIS library would certainly 
be wrapped in code to mask the install 
complexities and to provide better security. 
 

Java Web Application 
The Web Application provides an abstraction 
of the communication process between the 
Service Interface and the MVDBMS backend. 
Together with Apache AXIS this combination 
effectively translates a SOAP Remote 
Procedure Call (RPC) into an action on the 

MVDBMS host and returns the result to the 
Client API as a SOAP response. 
 
During normal operation each client session 
would have its own Web Application instance 
which is enabled by Apache AXIS Sessions. 

Each Web Application instance is paired with 
a MVDBMS Specific Server instance on the 
Server. 
 
As we have seen there are many MVDBMS 
versions from a number of vendors. 
Unfortunately whilst most MVDBMS share 

common language and filing features there 
is no common standard for implementing 
network communications. Vendors have 
implemented network communications 
differently on their MVDBMS. The Web 
Service component provides a unified and 
abstracted interface to the Client API with 

the MVDBMS specific communications 
handled by an instance of the Java Service 
interface and an MVDBMS Specific Server 
running on the MVDBMS. 
 
Java Service interface 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 8



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

It is expected that a Java Service interface 
will be needed for the each of the different 
MVDBMS. In some cases, such as Raining 
Data D3, it will be necessary to supplement 

the Java Service interface with additional 
Java and MVDBMS BASIC code to enable 
reliable communications. 
 
These MVDBMS specific Service interface 
versions would be distributed in a single 
framework package. The appropriate 

interface will be instantiated at the moment 
of connection according to the MVDBMS in 
use. 

Server Overview 

The Server is a logical view of the MVDBMS 
and its host. We should keep in mind that 

the many MVDBMS are available on many 
different server platforms. In certain cases a 
specific MVDBMS can have different 
behaviour on two different platforms. For 
example: D3 on Linux and D3 on Windows. 
Other MVDBMS brands such as UniVision 
have identical behaviour. 

 
MVDBMS Specific Server 
Although this component is illustrated by a 
single box in reality it could comprise of a 
number of MVDBMS BASIC programs 
residing on the Server. Whatever the 
implementation the function of the MVDBMS 

Specific Server is to execute Client API 
commands and return any results. 
 
We should note that different vendor 
versions of MVDBMS whilst sharing a 
common core of functionality may handle 

some extended commands differently. A 
desirable design feature would be to wrap 
extended commands in order to always 
return the identical results from different 
MVDBMS. Equally it would be desirable to 
allow the application programmer to access 
MVDBMS specific features if that is required. 

 
Application business logic 
These are the MVDBMS BASIC programs 
hosted on the server which perform 
necessary business processing. The so called 
“business rules”. This layer of code is 
supplied by the application developer and 

might very well be extracted from a legacy 
application. 
 
Application data files 

Naturally this is the data and files created 
for the application by the application 
developer. MVDBMS applications can host 
more than one data collection. In RDBMS 

parlance collections are referred to as a 
database but in MVDBMS they are known as 
an “Account”.  
 

Service Protocol 

We have established that during the course 
of a session commands and responses are 

passed between the Client API and the 
MVDBMS Specific Server. Along the way 
these commands are translated to and from 
SOAP messages and are required to traverse 
a number of platforms, languages and 
network protocols. Fortunately since 

MVDBMS BASIC is an un-typed language the 
content of these messages will consist of 
(ASCII) characters. However it is still 
necessary to create a protocol and command 
syntax in order that both sides of the service 
can communicate. 

Required Development 

From this breakdown we can now identify 
the areas of development for the framework 
along with a number of interesting 
challenges: 
 
Development 
 

• Service Protocol 
• Java Service Interface 
• Java Web Application 
• MVDBMS Specific Server 
• Client API 
 

 
Challenges 

 
• How to develop a suite of 

interdependent programs based upon 
two different languages and four 
different programming technologies? 

• How to maintain state in the stateless 
world of Web Services? 

• How to maintain record locking from a 
remote client? 

• What protocol can be used between 
Client API and Host Exec? 

• How to implement file handles for a 

remote client? 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 9



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

• How to model multi-dimensional data in 
the two dimensional data world of Java? 
(XML was considered.) 

Naming the framework 

As design and coding had begun a project 
name was required. As the framework would 
deliver a Java API for Multi-value databases 
MVJAPI (Multi-Value Java Application 
Interface) was adopted. Though predictable 
and dull the name was available. 
 

Development 

There is insufficient space to discuss the 
entire development of MVJAPI. As the reader 
can imagine there was a lot of work 
involved. Instead perhaps it would be helpful 
to examine aspects of development that 

were a challenge or that were particularly 
interesting. It is hoped that these will 
provide an insight to the development 
process as a whole. 
 
Development was undertaken on a single 
machine (laptop) equipped with Windows XP 

Pro, Sun Microsystems Java, UniVision, D3 
and Eclipse. Since UniVision and D3 are 
capable of exposing their BASIC source code 
to the underlying operating system this 
allowed Eclipse to be used for all editing 
including the MVDBMS BASIC. Console 
sessions were opened to the appropriate 

MVDBMS to enable any required 
administration or running of test programs. 
 
It was necessary to adopt an organic 
method of development. The author has 
many years programming experience at 

various levels with MVDBMS BASIC. 
However, only a modest grasp of Java and 
no knowledge of Web Services. These 
aspects of development would pose a fairly 
steep challenge. 
 
Before any low level design could take place, 

key aspects of functionality were identified. 
These were isolated, researched and small 
test projects developed to investigate and 
establish the various working principals. 
Once small test projects were completed and 
working they were commented and put aside 
for later reference. Where appropriate larger 

projects were researched and created to 
establish the interdependency and 
interaction of the functional components. 

 
These key areas of functionality include: 
 
• Interfacing Java with UniVision 

• Interfacing Java with D3 
• Creating a trivial AXIS application 
• Supporting “Sessions” in AXIS Web 

Applications 
• Creating and running background 

process on D3 
• Creating reliable network socket 

communications on D3 
• Running a background process in a 

specific account on D3 
• Preventing Java from translating high-bit 

ASCII codes to Unicode 
• Implementing a Dynamic Array 

Structure in Java 
• Translating a Dynamic Array message 

string into a Java Dynamic Array 
instance 

 

Testing 

Testing was a continuous part of the 

development phase. In most cases 
components were thoroughly tested before 
integrated development could progress. Test 
programs were devised, written and retained 
in order that components could be re-tested 
in the event of rogue behaviour occurring in 
an assembly of components. Three modes of 

testing were used depending on the nature 
of the component or assembly being 
developed: 
 
• White box Testing 
• Black box Testing 

• Code Review 
 

White box Testing 
White box testing requires visibility of 
the source code and understanding of its 
internal function. During development of 
Web Service components the ability to 

view console messages is extremely 
limited. Various logging and data capture 
methods were temporarily written into 
the code to analyse component 
behaviour. 
 
Black box Testing 

Black box testing requires no visibility of 
the source code or understanding of the 
internal function. Components or 
assemblies are tested by an external 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 10



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

method according to their published 
behaviour. It is customary to pay 
particular attention to arguments and 
results that exceed or cross acceptable 

limits of input and output. 
 
Code Review 
Code review is simply the process of 
reviewing previous code. This is 
especially helpful in identifying message 
or obscure logic errors in code written a 

couple of days ago. 
 

Service Protocol 

The Service Protocol describes the message 
structure for passing commands and 
returning responses. After examining a 

number of protocols it was decided to adopt 
a simple character based protocol which 
comprised of a numeric command followed 
by any required arguments. Elements of the 
message would be delimited by a reserved 
ASCII character. 
  

A number of tests were written to examine 
the communications between the Java Client 
and the MVDBMS BASIC back-end. It was 
determined that only 7-bit ASCII characters 
were needed. High-bit ASCII characters 
were passed without modification but low 
value ASCII characters, or control codes 

would not. MVDBMS uses the three ASCII 
characters 254, 253 and 252 as database 
record delimiters which would be passed 
without modification. This meant that 
MVDBMS Dynamic Arrays would be passed 
without any special handling needed. Thus 

ASCII character 250 was identified as being 
safe to use as the message delimiter. 
 
Drawing on analysis of the MVDBMS BASIC 
command reference and many years of 
MVDBMS programming experience, a list of 
commands was created and assigned 

arbitrary codes. The actual codes assigned 
were not of great importance provided that 
the Client API and the MVDBMS Specific 
Server used the same codes. Table 1 lists 
the MVJAPI Service Protocol command 
codes. 
 

Command Code Action 

   

CONNECT 10 Connect to a 
specified MVDBMS. 

DISCONNECT 11 Disconnect from 
current MVDBMS 
session. 

OPENFILE 20 Open a file for 
read/write 
operations. 

CLOSEFILE 21 Close a file and 
release file handle 

resources. 

READ 30 Read an item 
(record). 

READU 31 Read and item 
(record) with an 

update lock. 

READV 32 Read a single 
attribute from an 
item (record). 

READVU 33 Read a single 
attribute from an 
item (record) with 
an update lock. 

WRITE 40 Write an item 
(record) and 

release any update 
lock. 

WRITEU 41 Write an item 
(record) but 
maintain an update 

lock. 

WRITEV 42 Write a single 
attribute to an item 
(record) and 
release any update 
lock. 

WRITEVU 43 Write a single 
attribute to an item 
(record) but 
maintain an update 
lock. 

SELECT 50 Execute an 
Access/English 
statement to 
generate an active 
select list. 

READNEXT 51 Read next available 
value from the 
current select list. 

KILLSELECT 52 Kill the current 
select list. 

EXECUTE 60 Execute a TCL 
command or 
catalogued BASIC 
program. 

CALL 70 Call an external 

catalogued BASIC 
subroutine. 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 11



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

OCONV 80 Perform an 
OCONV(). 

HANDSHAKE 90 Perform a 

handshake with 
version checking. 

   

Table 1 - MVJAPI Service Protocol 
command codes 

 
 
Following execution of a command the 
MVDBMS Specific Server would return a 
response which would comprise of an error 

code followed by any results. The first 
element of the reply is the appropriate error 
code with any error message or relevant 
details given in the following elements. Table 
2 lists the MVJAPI Service Protocol error 
codes. 

 
 
 

Error Code Meaning 

   

ERROR 0 Error 
encountered 
whilst 
executing 
the last 
command. 

OK 99 Success 
whilst 
executing 
the last 
command. 

   

FILE.NOT.OPEN 100 Unable to 
open the 
specified 
file. 

FILE.COUNT.EXCEEDED 101 Unable to 
open any 
more files. 

ITEM.NOT.FOUND 110 The item 
(record) to 

read does 
not exist. 

ITEM.LOCKED 111 The item 
(record) to 
read is 
locked for 

update by 
another 
process. 

   

Table 2 - MVJAPI Service Protocol error 
codes 

 

Client API 

Conflict was inevitable in designing a Client 
API in Java which needed to represent 
MVDBMS BASIC operations. 
  

• Java is an Object Oriented language 
whereas MVDBMS BASIC is a 
procedural language. 

 
• Java demands strongly typed 

variables, but MVDBMS BASIC 
depends on context rather than 

typing to determine the nature of a 
variable. 

 
There are architectural and syntactical 
differences between the two languages. 
However there are also important 

differences in design patterns. (Design 
patterns are the way of doing things in a 
programming language.) It is probable that 
adopters of the MVJAPI development 
framework are likely to be either MVDBMS 
programmers who have modest proficiency 
in Java or Java programmers with little or no 

experience of MVDBMS. It was important to 
conform to the established practice for Java 
programming and necessary to present 
MVDBMS programmers with an API that is 
both familiar and intuitive. It is hoped that 
experienced MVDBMS programmers will gain 
leverage from a familiar API which will 

compensate for their lack of Java skills, or 
that they can extend their understanding of 
MVDBMS operations to make better use of 
an establish Java programmer. 
  
After consideration of the arguments 

between fat client and thin client the 
decision was made to give the application 
programmer the freedom of choice in this 
matter. 
 
The minimum core functions were identified 
as necessary to the Client API: 

 
• Connection 
• Read/Write functions 
• Dynamic Array manipulation 
• Execution of commands and 

programs 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 12



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

 
After working through a progression of test 
models the overall structure of the Java API 
Classes was established: 

 
MVJConnection A class which represents a 

connection session 
together with methods 
and properties appropriate 
to an MVDBMS session. 

  

MVJArray A Java implementation of 
the MVDBMS BASIC 
Dynamic Array structure. 

  
MVJFile A class which represents 

read/write operations to 

and from MVDBMS files. 
  
MVJ A library of static 

definitions (including 
command and delimiters) 
and helper methods. 

The MVJArray and MVJFile classes are worth 

discussing in further detail. 

MVJArray: Dynamic Array Class 

MVDBMS share a number of important 
features from the PICK model. Data 
operations are not constrained to the well 
known Database/Table/Columns/Rows 
model implemented in RDBMS. Instead data 

is represented by a textual structure known 
as an Item. Items are stored in Files and 
each Item has an identity or Item ID that is 
unique to that file. These Items have a data 
structure that consists of Attributes, which 
are analogous to RDBMS rows, Values which 

are analogous to RDBMS fields and Sub 
Values for which there is no RDBMS 
equivalent. If manipulating this structure as 
a raw string we find that these structural 
elements are delimited by single ASCII 
codes to determine their hierarchy. 
Attributes are delimited by ASCII 254, 

Values are delimited by ASCII 253 and Sub 
Values are delimited by ASCII 252. Whilst 
the RDBMS data model is analogous to a 
spreadsheet, the MVDBMS data model has a 
data structure similar to an XML document. 
(Raw XML documents can be stored in 
MVDBMS data files with no special handling 

or modification.) 
 
Popular development languages such as 
C++, Java and C# have support for  the 

Table/Query/Record Set components 
required for RDBMS. They do not support 
the multi-dimensional data model of the 
MVDBMS. In order to bring the MVDBMS 

data structure to the Java API it is necessary 
to create a collection of classes that model 
the MVDBMS Dynamic Array.  
 
Dynamic Arrays are an important feature of 
the MVDBMS BASIC language. They are the 
mechanism by which multi-dimensional data 

is transported and manipulated. Dynamic 
Arrays grow and shrink as required and 
support operations to insert, delete, extract 
and assign values. 
  
Consider the following program snippet: 

 
SomeVariable = “Hello World” 
 
Following execution we now have a variable 
called “SomeVariable” which contains the 
string “HelloWorld”. However in MVDBMS 
BASIC we can go further: 

 
SomeVariable<2, 1> = “Good morning” 
 
Following execution of this line the string 
variable has now become a Dynamic Array 
which contains the two data attributes “Hello 
World” and “Good morning”. Inspection of 

the raw data would reveal that a single 
multi-value data element appears exactly 
the same as a single attribute data element: 
 

Raw data: 

<1> Hello World 

<2> Good morning 

 
Continuing with the exercise: 
 
SomeVariable<2, 2> = “Good evening” 
 
Our Dynamic Array still contains two 
attributes but the second attribute now has 

two values which are “Good morning” and 
“Good evening”. Now inspection of the raw 
data will show the multi-values appearing on 
attribute 2. 
 

Raw data: 

<1> Hello World 

<2> Good morning]Good evening 

 

Using the <> operators with Dynamic Arrays 
we can insert, replace, delete and extract 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 13



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

the three basic data elements of MVDBMS; 
attributes (AM), multi-values (VM) and sub-
values (SM). This behaviour may seem 
strange but is exactly what the experienced 

MVDBMS programmer will expect. An 
important consideration when designing the 
Client API was how to implement a Java 
class which provided programmers who use 
this development framework with a familiar 
data model with which to work and how to 
implement this multi-dimensional data 

storage object within the two dimensional 
world of Java? 
 
Exploration and experimentation of the Java 
language revealed that Vectors were the 
closest data model to MVDBMS Dynamic 

Arrays. “(Vectors) implement a grow-able 

array of objects.” (Sun Microsystems 2006). 
Java Vectors provide indexing and iteration 
based upon having an element zero whilst 
Dynamic Arrays begin at attribute 1. It was 
therefore necessary to write a wrapper class 
which would either ignore element zero or to 

invisibly adjust the indexing. It was decided 
to ignore element zero and reserve it for 
future use. For example it could be used to 
hold an instance of a class which determines 
the type of Dynamic Array sub-structure 
being implemented; Attribute, Value or Sub-
Value.  

 
The MVJArray class implements MVDBMS 
Dynamic Array text based functions. Future 
development of the class should enable 
complex insert or replace operations where a 
Dynamic Array can be inserted or appended 

to another Dynamic Array. As far as possible 
the inner workings of the MVJArray class 
have been hidden from the application 
developer. However some aspects of the 
Java language such as strong typing of 
primitives were unavoidable. 
 

It is anticipated that there will be occasions 
when application programmers may need to 
perform Dynamic Array operations separate 
from read/write operations. For this reason 
the MVJArray Dynamic Array class is 
available without needing to reference a 
parent class. 

MVJFile: Read/Write Class 

The MVJFile read/write functions are 
important operations in the Client API. These 
functions are responsible for retrieving and 

saving data. MVDBMS BASIC contains a rich 
array of read/write functions and naturally 
the approach for using these functions is 
appropriate for a procedural language. To 

translate these functions from MVDBMS 
BASIC to Java Classes was once again a 
challenge. 
 
As an example of the programming 
differences let us consider the elementary 
programming pattern of updating a record 

from a file as illustrated the following code 
snippet. 
 

  

1   OPEN “MYFILE” TO F.MYFILE ELSE 

STOP 201,”MYFILE” 

2   READU MYARRAY FROM F.MYFILE, 
“MYRECORD” LOCKED 

3 *   Code to handle record locked for 
update by another process 

4     … 

5   END THEN 

6 *   Code to update the record 

7     … 

8   END ELSE 

9 *   Code to handle record not found. 

Create new record? 

10     … 

11   END 

12   WRITE MYARRAY ON F.MYFILE, 

“MYRECORD” 

13   CLOSE F.MYFILE 

  

 
In line 1 we open a file to a file variable. The 
file name is expressed as a literal string. 
Whilst custom dictates that file variables 
begin with “F.” we can use any non-reserved 

word. If the file cannot be opened the 
program execution reports error message 
201 with the file name and halts. 
 
In line 2 the READU command attempts to 
read a record called “MYRECORD” into the 
given variable and lock the record against 

other simultaneous updates. The three 
possible outcomes to a READU operation 
are; LOCKED when another process already 
has an update lock on the record, THEN 
when the record is read and ELSE if the item 
does not exist. The programmer can insert 
statements to handle these events 

accordingly. 
 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 14



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

Finally on line 12 the updated record is 
written back to the file and any update locks 
release. The file remains upon until explicitly 
closed in line 13 or the program terminates. 

 
There are additional points to note which are 
not immediately apparent from the example. 
 

• MVDBMS BASIC does not require the 
programmer to declare or type 
variables. 

 
• Programmers can use any name for 

variables provided the name does 
not clash with reserved names. 

 
• All data is available within a program 

as text or strings. Numbers are 
stores as text. Any casting occurs in 
response to context (arithmetical 
operations) and is usually invisible to 
the programmer. 

 
• Data within a variable becomes a 

Dynamic Array by virtue of having 
multiple attributes (fields), values 
(sub-fields) or sub-values (sub, sub-
fields).  

 
Error! Reference source not found. 
illustrates the same MVDBMS BASIC 

example as we might implement it a Java 
Client API. Whilst the flow of the Java code 
in the illustration is inappropriate for Object 
Oriented Programming it does allow a direct 
comparison between the programming 
approaches for MVDBMS BASIC and the Java 

Client API. 
 

  

1 // Create a MVJConnection instance 

2 MVJConnection conn = new 

MVJConnection(MVJLib.MVTYPE_UV); 

3 try { 

4   conn.connect(host, account, 
password, user); 

5  

6 } catch (MVJConnectionException e) { 

7   // Code to handle connection failure 

8  

9 } 

10  

11  

12 // Open file 

13 try { 

14   MVJFile myfile = 

conn.openFile(“MYFILE”); 

15  

16 } catch (MVJFileNotOpenException e) { 

17   // Code to handle failure to open file 

18  

19 } 

20  

21  

22 // Read record from file with update 
lock 

23 MVJArray myArray = null; 

24 try { 

25   myArray = 
myFile.readu(“MYRECORD”); 

26   // Code to update the record 

27   … 

28  

29 } catch (MVJFileReadLockedException 
e) { 

30   // Code to handle record locked for 
update by another process 

31   … 

32  

33 } catch (MVJFileReadFailException e) { 

34   // Code to handle record not found. 
Create new record? 

35   … 

36  

37 } 

38 myFile.write(myArray, “MYRECORD”); 

39  

40 myFile.close(); 

  

 
In lines 1 to 9 we create an instance of 
MVJConnection. This is the root class which 
provides a path between the Client and the 
multi value database host. This step is not 

necessary in the multi value BASIC example 
since the code would already be running 
within an account on the multi value 
database server. 
 
Lines 12 to 19 open a file on the multi value 
database host and make a handle available 

in the API. If the file cannot be opened, 
perhaps because the name is wrong or 
changed, then an exception is thrown and 
the file object will be null. The intention in 
binding the creation of subordinate API class 
instances, such as MVJFile, to the 
MVJConnection object that the relationship 

and dependence of subordinate classes to 
the parent object are reinforced in the minds 
of the programmer. 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 15



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

 
The READU operation posed an interesting 
Java code challenge. As discussed above the 
READU operation has three possible 

outcomes and is always expected to return a 
Dynamic Array even if it contains null. Lines 
22 to 37 present an elegant Java solution 
using exceptions. MVJFile read operations 
always return an MVJArray Dynamic Array 
object, but throw an exception depending on 
the outcome of the read operation. The 

application programmer is then free to take 
whatever action is appropriate depending on 
the intentions of the operation. In this way 
the application developer is presented with a 
familiar and intuitive API whilst maintaining 
a programming approach appropriate to 

Java. 

Java Web Application 

The Web Application component provides a 
gateway into the MVJAPI Service. This area 
of the framework development was expected 
to present the least work since it draws 
largely on established, well documented, 

third-party components. However, this area 
of development nearly caused a failure to 
complete the project. 
 
AXIS documentation suggests two 
approaches for handling Web sessions: One 
approach is to use HTTP cookies whilst the 

other approach is to use SOAP headers. 
Since the MVJAPI development framework is 
not browser based HTTP the appropriate 
choice was to use SOAP headers to maintain 
sessions. 
 

The topic of Web Services in general 
together with Apache Tomcat and AXIS in 
particular was researched. Sources included 
the Apache documentation, text books and 
articles on the Internet. As Web Services is 
an area of rapid and continual development 
it was found that the available 

documentation and tutorials were usually 
lagging behind the current version of 
software and utilities. Nevertheless, 
development of Web Services test 
components was progressed in logical steps, 
starting with the ubiquitous “Hello World”. 
 

After much work it was discovered that the 
available documentation for implementing 
sessions within Apache AXIS was incorrect 
and that one of the software tools emitted 

an incorrect configuration file. These findings 
were reported back to the Apache AXIS 
author and the Web Services project 
development continued. 

 
In order to implement sessions in AXIS it is 
necessary to specify the service scope as 
“session”. This is done by adding a 
<parameter> statement to the <service> 
element in the WSDD deployment file. 
  

    <parameter… 

    <parameter name=”scope” 
value=”session”/> 

  </service> 

</depoloyment> 

 

Available documentation insists that it must 
be installed for both requester and response 
on the client and server sides. 
 

ON THE SERVER: 

• The REQUEST is checked for a session ID 

header. If present, we look up the 

correct SimpleSession. If not, we create 

a new session. In either case, we install 

the session into the MessageContext, 

and put its ID in the SESSION_ID 

property. 

 

• The RESPONSE gets a session ID header 

tacked on, assuming we found a 

SESSION_ID property in the 

MessageContext.  

 

ON THE CLIENT: 

• The RESPONSE messages are checked 

for session ID headers. If present, we 

pull the ID out and insert it into an 

option in the AxisClient. This works 

because a given Call object is associated 

with a single AxisClient. However, we 

might want to find a way to put it into 

the Call object itself, which would make 

a little more sense. This would mean 

being able to get to the Call from the 

MC, i.e. adding a getCall() API (which 

would only work on the client side).... 

 

• When REQUESTS are generated, we look 

to see if an ID option is present in the 

AxisClient associated with the 

MessageContext. If so, we insert a 

session ID header with the appropriate 

ID. 

 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 16



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

(Jax Systems LLC, 2005) 
 
 
Thread safety is usually a concern in Web 

Services but not when implementing 
sessions. When using session scope the web 
service container (Tomcat) creates a new 
instance of the service for each request. 
Thread safety is an issue for “request” and 
“application” scopes where one instance of 
the web service is shared by all requests. 

9. EVALUATION 

Proof of concept 

As stated above continual testing was a part 
of the development process. In this respect 
the MVJAPI application framework was 
evaluated and proven. However as a RAD 
tool, proof of concept required the successful 
creation of a trivial client-server GUI 

application. 
 
The aim was to create a single screen GUI 
application with which to store basic book 
details on the MVDBMS server. An idea 
borrowed from the Microsoft Visual Basic 
“Northwind” demo application. 

 
The demo application has four fields: 
 
• ISBN 
• Title 
• Author 
• Publisher 

 
The ISBN is unique to each book and serves 
as the MVDBMS Item Id. The application also 
has four controls: 
 
• Connect 

• Next 
• Save 
• Exit 
 
The Connect button connects the application 
to the MVDBMS resource using hard-coded 
details. In real-world applications a dialogue 

box would be generated in which the user 
would supply all necessary connection 
details. On clicking the Connect button the 
demo application performs the following 
tasks: 
 

• Connects to the MVJDEMO database 

MVDBMS resource 

• Disables the “Connect” button 
• Enables the “Next” and “Save” 

buttons. 
• Open the “BOOKS” file 

• Executes a selection statement to 
select all the book records currently 
in the file 

• Read the first ISBN from the active 
select list. 

• If an ISBN was retrieved then read 
the record from the open file and 

populate the text box with the 
details. If no ISBN was retrieved 
then clear the form ready to accept 
new details. 

 
The user may then input or amend the 

details as required then click the “Next”, 
“Save” or “Exit” buttons. 
 

• Clicking the “Save” button sends the 
current record details to the 
MVDBMS to write them to file. 

• Clicking the “Next” button retrieves 

the next ISBN from the currently 
active select list. If an ISBN was 
retrieved then the details are read 
and the text boxes populated with 
the details. If no ISBN was retrieved 
then the form is cleared ready to 
accept new details. 

• Clicking the “Exit” button 
disconnects from the MVDBMS 
resource and terminates the demo 
application. 

 
In real applications it would be necessary to 

provide appropriate validation and error 
handling. These niceties were not required 
to establish that the development application 
framework works as required. 
 

10. CONCLUSIONS AND 
IMPLACATIONS FOR FURTHER 

RESEARCH 

The development framework presented here 
is one of many approaches that would meet 
the needs of MVDBMS developers needing to 
move their applications forward with a high 
quality GUI. With so much momentum 

behind software design reliant upon 
Relational Database it is doubtful that new 
adopters will find the solution attractive. 
 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 17



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

The design and selected technologies exceed 
the criteria listed above and it is difficult to 
imagine that this development framework is 
without commercial merit. It does however 

require further research and investment 
before it can be offered as a commercial or 
Open Source solution: 
 
• Support is required for all suitable 

MVDBMS. 
 

• The Client API needs features to handle 
Administration and Security. 

 
• A reporting package is required. This 

could be implemented as an Eclipse 
“plug-in” using a visual designer 

interface that maintains a similar look 
and feel to SWT Designer. 

 
• The Web Service component needs to be 

wrapped in a self contained Tomcat 
Servlet. This will simplify installation and 
provide better security. 

 
• Examine the use of XML to transport 

MVJAPI Dynamic Arrays. This may 
enable Java and .NET programmers to 
use DOM and SAX libraries to manipulate 
the data if preferred. 

 

• The Web Service should implemented 
over Secure Socket Layer (SSL) 
networking to provide better security.  

 

11. REFERENCES 

Bend, John George. (2006) A RAD 

framework for cross-platform GUI 

development of MVDBMS client-server 

applications. Liverpool University. 

Apache Foundation. Tomcat 
http://tomcat.apache.org/ 

Apple Computers Inc, (2006). Mac OS X 
released on Intel. 
http://www.apple.com/macosx/ 

Automatic Data Processing Inc. (2006) 

http://www.adp.com/ 

Bernstein, Philip A. Middleware (2006) A 
Model for Distributed Services. 

Communications of the ACM 

Bourdon, Roger J. (1987). The PICK 

Operating System. A practical guide. 

Addison-Wesley. ISBN 0201180553 

Carnegie Mellon, Software Engineering 
Institute, Software Technology Roadmap. 

http://www.sei.cmu.edu/str/descriptions/mi

ddleware.html 

Chappell, D. A., Jewell, T. (2002). Java Web 
Services.  O’Reilly. ISBN: 0596002696 

Computer Weekly. (January 2002) Council 
Saves with open source. 

http://www.computerweekly.com/SiteMapAr
ticle/Articles/2002/01/31/c1056217/18489

7/Councilsaveswithopensource.htm 

DM Review (2002)  
http://www.dmreview.com/editorial/dmrev
iew/print_action.cfm?articleId=5736 

Eclipse Org. SWT graphical toolkit.  

http://www.eclipse.org/swt/ 

Garrett. Jesse James. (2006) Ajax – A new 
approach to Web Applications. 

http://www.adaptivepath.com/publications/e
ssays/archives/000385.php 

Gnome Desktop  http://www.gnome.org/ 

Instantiations, SWT-Designer  

http://www.swt-designer.com/ 

Guojie, Jackwind Li. (2005). Professional 

Java Native Interfaces with FSWT/JFace. 

Wrox. ISBN: 0470094591 

Jax Systems LLC. (2005). Docjar. 

http://www.docjar.com/docs/api/org/apache
/axis/handlers/SimpleSessionHandler.html 

KDE Desktop http://www.kde.org/ 

Mono Project, Mono http://www.mono-
project.com/Main_Page 

Novel, Ximian Desktop 

http://www.novell.com/linux/ximian.html 

OSI, June 2003. West Yorks Police pilots 

Linux desktops 

http://www.osix.net/modules/article/?id=2
38 

Sisk, Jonathan E. (1990) PICK For 
Professionals. Advanced Methods and 

Techniques. TAB Books Inc. ISBN 
0830601252 

Snell, J., Tidwell D., Kulchenko P. (2002) 

Programming Web Services with SOAP. 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 18



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

O’Reilly. ISBN: 0596000952 

Tincat Group Inc. (2006) 

http://www.w3schools.com/browsers/brows
ers_stats.asp  

 

12. BIBLIOGRAPHY 
 

Bequet, H., Kunnumpurath, M.M., Rhody, S., 
Tost, A. (2002). Beginning. Java Web 

Services. WROX. ISBN: 1861007531 

Brittain, J., Darwin, I.F. (2003). Tomcat: The 

Definitive Guide.                     O’REILLY. 
ISBN: 0596003188 

Bourdon, R. J. (1987). The PICK Operating 
System. A practical Guide. 

Addison-Wesley. ISBN: 0201180553 

Chappell, D. A., Jewell, T. (2002). Java Web 

Services. 

O’Reilly. ISBN: 0596002696 

Deitel, H. M., Deitel, P. J. (2003). Java. How 
To Program. Fifth Edition. 

PRENTICE HALL. ISBN: 0131016210 

Deitel, H.M., Deitel, P.J., Nieto, T.R. (2000). 
Internet & World Wide Web. How To 

Program. 

PRENTICE HALL. ISBN: 0130308978 

Dougherty, D. (1989). Pick ACCESS. A Guide 
To The SMA/Retrieval Language. O’Reilly & 
Associates. ISBN: 0937175412 

Gallardo, D., Burnette, E., McGovern, R. 
(2003). Eclipse In Action.             MANNING. 

ISBN: 1930110960 

Graham, S., Davis, D., Simeonov, S., 
Daniels, G., Brittenham, P., Nakamura. Y., 
Fremantle, P., Konig, D., Zentner, C. (2005). 
Building Web Services With Java. Making 

Sense of XML, SOAP, WSDL, and UDDI. 

DEVELOPER’S LIBRARY. ISBN: 0672326418    

Graham, S., Simeonov, S., Boubez, T., 
Davis, D., Daniels, G., Nakamura, Y., 
Neyama, R. (2002). Building Web Services 
With Java Making Sense of XML, SOAP, 
WSDL, and UDDI 

SAMS. ISBN: 0672321815  

 

Gurewich, N., Gurewich, O. (1997). Teach 
Yourself Visual Basic 5 In 21 Days. 
Professional Reference Edition.  

SAMS  Premier. ISBN: 0672311763  

Guojie, J.L. (2005). Professional Java Native 
Interfaces with SWT/JFace.  

WROX. ISBN: 0470094591   

Hunter, J., Crawford, W. (2001). Java 

Servlet Programming. 

O’REILLY. ISBN: 0596000405 

Pick Systems. (1995). Advanced PICK 

Reference Manual. 

Pick Systems. 

Ray, J., (1999). Special Edition Using 

TCP/IP. 

QUE. ISBN: 0789718979    

Weerawarana, S., Curbera, F., Leymann, F., 

Storey, T., Ferguson, D. F.(2005). Web 

Services Platform Architecture. SOAP, WSDL,  

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 19



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

13. APPENDIX 

  

Figure 1 -Value database family tree (Tincat Group Inc., 2006) 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 20



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

 

Figure 2 - Principal components of the development framework 

 

GUI 
Development 
Environment 

Middleware 
(Service) 

Application 
Server 

(Rules & data) 

Application 
Client (GUI) 

Client 
Hardware 

Server 
Hardware 

LAN or WAN 

Middleware 
(API) 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 21



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

 

 

Figure 3 - General Requirements 

Development 
Requirements 

Functional  
Requirements 

Marketing  
Requirements 

Review 
Criteria 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 22



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

 

 

Figure 4 – Bernstein Middleware Services model 

 

Application 
Client 

Application 
Client 

Platform 
Interface 

 

Platform 
Interface 

APIs 
Middleware (Distributed System Services) 

Application 
Server 

Application 
Server 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 23



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

Key 

 
MVDBMS 

Specific Server 

 
Application Business Logic 

(Developer) 

Application Data 
(Developer) 

Server 

 

Apache Tomcat 
Java Servlet Container 

Java Service 
Interface 

Apache AXIS 

Java 
Web App 

Service 

 

Java Framework API 

Client Logic 
(Developer) 

Client GUI 
(Developer) 

Client 

Apache 
AXIS 

SOAP / HTTP 

Service Protocol 

App. developer work 

Project work 

Third party component 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 24



Bend and Sambasivam Sat, Nov 3, 12:00 - 12:25, Ellwood 2

Figure 5 – Technological overview of the development framework 

Proc ISECON 2007, v24 (Pittsburgh): §3325 (refereed) c© 2007 EDSIG, page 25


