
Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

MTSolution: A Visual and Interactive Tool for a
Formal Languages and Automata Course

Mariano Martínez

mmartine@exa.unicen.edu.ar

Rosana Barbuzza
rbarbu@exa.unicen.edu.ar

PLADEMA - ISISTAN

María Virginia Mauco
vmauco@exa.unicen.edu.ar

INTIA

Liliana Favre
lfavre@exa.unicen.edu.ar

INTIA

Departamento de Computación y Sistemas
Facultad Cs. Exactas

Universidad Nacional del Centro de la Pcia. de Buenos Aires
(7000) Tandil, Buenos Aires, Argentina

Abstract

There is a need to introduce Information Systems students to advances in languages and
automata theory in the early stages of their formation. Visualization and interactivity allow
students to play an active role in the learning process, experimenting with the concepts to
receive feedback. For this purpose, we propose MTSolution, an educational, visual and
interactive software tool that allows teachers and students to experiment with different kinds
of abstract models (automata, grammars and regular expressions). With this tool, students
can improve their understanding and self-evaluate their own skills designing and testing
models. In particular, MTSolution supports the concept of sub-machine providing a library of
Turing machines that can be reused in modular designs. MTSolution is based on a client-server
architecture and it is implemented in Microsoft Visual C++.NET.

Keywords: software tools, Automata, Turing Machine, grammars, formal languages

1. INTRODUCTION

The emergence of new tools, techniques and
paradigms forces a continuous re-evaluation
of the topics covered and teaching-learning
didactic strategies used in IS educational
curricula (Armoni, 2006; Chesñevar, 2004).
Modern IS students should understand the
basis for IS modeling as well as the
pragmatical implications of impossibility and
intractability results.

With the growth in volume of online data, for
example in databases and on the Internet,
the focus of research in information retrieval
has shifted to new applications in information
management and decision support that
demands asymptotically efficient algorithms.
Activities such as Data Mining, Data
Warehousing, Latent Semantic Indexing, and
On Line Processing open directions for
research in combinatorial algorithms,
models, complexity and computability. In

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 1

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

addition, modeling languages such as the
Business Process Modeling Notation (BPMN),
the Unified Modeling Language (UML), and
the Business Process Execution Language
(BPEL) are based on concepts from automata
theory. Modeling behavior among
components in UML requires designing
interaction diagrams, state diagrams, or
activity diagrams which are all based on
automata theory. Other applications are
related to modeling of concurrency and
synchronization of processes, and cellular
automata, among others.

The Undergraduate Degree Program in
Systems Engineering in our career has
incorporated, since 1996, "Computer Science
I" as an introductory course in the theory of
formal languages and automata (FLA)
(Favre, 2000). The main purpose of this
course is to present an introduction to the
study of computational processes and to
explore their scope in the context of an
automata and grammar hierarchy, with a
suitable approach for first-year
undergraduate students. The intention is to
provide insights on essential questions about
the nature of computation: What is an
algorithm? What can be computed? When is
a given algorithm intractable?

At first, as happened with traditional FLA
courses, we used lectures and pencil-paper
problem solving approach to teach course
contents. From our teaching experiences, we
noticed that students were not as motivated
and interested as in programming courses,
though they could understand the concepts.
Then, we considered the inclusion of a
software tool to experiment with FLA
concepts, as interactivity and visualization
are keys to motivate and improve
understanding. Several tools have been
developed for experimenting with automata
and grammars, and most of them are freely
available via the Internet. However, almost
all have been designed as tools for more
advanced students (Rodger, 2004) or to
cover a subset of FLA concepts (Barwise,
2005; Grinder, 2003; Forlan Project, 2007;
White, 2006).

We then developed MTSolution, an
educational, visual and interactive tool that
can be used as an aid in learning the basic
concepts of FLA theory and consolidating
knowledge inside and outside classroom.
This tool integrates automata and grammars

with an appropriate approach for first-year
undergraduate students, who have a wide
diversity of theoretical background and prior
computing experience.

In this paper, we describe the architecture
and functionality of MTSolution. MTSolution
design differs from previously mentioned
tools in that it is based on a client-server
architecture, thus allowing students to
practice either on a single computer for
homework assignments, or in a network
environment for computer labs. MTSolution
allows one to define and manipulate different
kinds of abstract models such as automata,
regular expressions and grammars. It may
be used to design and simulate deterministic
and non-deterministic versions of finite
automata (FA), pushdown automata (PDA)
and Turing machines (TM). MTSolution also
supports the concept of sub-machine
providing a library of TM that can be reused
in modular designs, thus linking and
emphasizing crucial concepts of software
reuse and modularity.

MTSolution has been used along the course
and it has proven to be a motivating link
between theory and practice, covering most
of FLA concepts. The tool is easy to download
and install, and it is available in (Martínez,
2007), in Spanish and English. This web site
also contains a full description of the tool as
well as step-by-step development of some
examples.

This paper is structured as follows. Section 2
describes the architecture and components
of MTSolution, exemplifying FA, PDA, TM,
and grammars. In Section 3, we present the
evaluation of the use of MTSolution in a FLA
course. Finally, conclusions and future work
are mentioned in Section 4.

2. MTSOLUTION

MTSolution is an educational, visual and
interactive tool based on a client-server
architecture that can be used as an aid in
learning the basic concepts of FLA theory.
Working in a didactic, visual, interactive,
more intuitive and friendly environment
users can design, debug and run different
types of deterministic and non deterministic
finite state machines (FSM), recognizers or
transducers, and experiment with grammars
and regular expressions (RE). With
MTSolution users can create FA, PDA, and

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 2

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

multi-tape composite TM and execute them
on arbitrary input strings, in continuous or
step-by-step mode, receiving immediate
visual feedback. They can also work with RE,
regular (RG), context-free (CFG) and
context-sensitive (CSG) grammars randomly
showing strings they derive or deciding if a
particular string may be derived by the
grammar or not. In addition, MTSolution
assists users in the conversion of FA, RE and
RG between each other.

Architecture

MTSolution is based on a client-server
software architecture. Clients and servers
may be placed independently on computers
in a network, possibly on different hardware
and operating systems. Generally, clients
rely on servers for resources or processing
power (in our case, fast server and
workstations or PC's for students). However,
in MTSolution a single computer can be both
a client and a server depending on the
software configuration. Thus, MTsolution can
be used either to practice with a single
computer for homework assignments or to
assist in classrooms in a network
environment.

MTSolution server executes FSM and
simulates parsing and generation of strings
as requested by clients, while clients
interpret the results returned by the server.
Basically, this model allows the separation of
functionalities for string recognition and user
interface, encouraging incremental and
easier development and testing, and better
maintainability of client and server modules.
By providing a protocol of communication
between client-server modules, it is possible
to design FSM editors in different platforms,
and languages, among others.

Figure 1 describes the architecture of
MTSolution. MTServer is the application
server; its main functions are the simulation
of FSM execution and string parsing and
generation. Before execution, MTServer
transforms each FSM into a TM. MTEditor is
the FSM editor and it allows creating, saving,
and recovering recognizer or transducer FA,
PDA and TM. It contains several special
algorithms to work with regular languages
(RL). In addition, to design transition
diagrams for FA and PDA, we used the
framework Unidraw (Vlissides, 2007) which

offers many facilities to create graphical
editors.

Gramatika is the editor of grammars. It
provides functions for editing, saving and
recovering definitions of RG, CFG, and CSG
(according to Chomsky hierarchy). It also
has some special algorithms to transform RG
into FA. Besides, it allows the random
derivation of strings in the language of the
grammar or the verification of membership
of a string to the grammar language.

AFTools is a Dynamic Linking Library (DLL)
which contains common and reusable
components and functions for the different
MTSolution applications.

Main features of MTSolution

The following are some of the features that
make MTSolution a helpful tool for teachers
and students, especially for beginner CS
students:

• Formal definition of abstract models:
MTSolution encourages students to
understand the importance of formalism. For
example, when designing automata or
grammars the first step is the definition of
the alphabets to be used. In addition, the
tool automatically completes, updates and
shows the formal definition of FA, PDA, and
TM throughout their creation or modification
process. It also shows error messages when
it detects an invalid situation, e.g. when
trying to define two initial states for a FA or
using the same symbol as terminal and
nonterminal in the definition of a grammar.

• Step-by step visualization of

conversion algorithms: MTSolution shows the
step-by-step execution of the algorithms to

Figure 1 - MTSolution architecture

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 3

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

transform FA into RE or RG, RE into FA,
NDFA into DFA, DFA into DFA with minimal
states, allowing in some cases user's
intervention. For example, when converting a
FA into a RE the student may choose, in each
step, the state to remove, thus helping
students to check the result previously
obtained using pencil and paper with the
solution provided by the tool.

• Definition of Transducers: The inclusion
of these kinds of machines that produce an
output associated with an input, helps to
show several concrete applications that can
be modeled with FA, PDA and MT, thus
motivating students to learn and use
abstract models. For example, using
MTSolution students may solve exercises
such as substituting each occurrence of two
or more blanks in a text file with a single
blank, adding two binary-coded natural
numbers, calculating the number of
occurrences of a given string in a text file or
modeling a vending machine which dispenses
candy bars or drinks, among others.

• Composite parameterized multi-tape

TM: The natural way to construct a complex
TM is to start from simpler and more
reusable ones, as happens when developing
a complex program. MTSolution provides
facilities to compose TM. This way of
designing TM allows us to emphasize the
important and recurring concepts of
abstraction, reusability and modular design
introduced in programming courses.

• Step-by step execution of machines:
Recognizers and transducers FA, PDA and TM
may be run at full speed or in a step-by-step
mode. The last option allows users to step
through transitions one at a time,
highlighting the current transition and
showing the input string already scanned. In
this way of execution, the instantaneous
description of the machine is shown, giving
users the possibility of following exhaustively
the recognition process of a string. This helps
users to better understand the machine
behavior, thus detecting and correcting
errors.

• Facilities for simulation and definition:
Input strings to test machines or grammars
may be provided interactively or may be
loaded from a text file. Both possibilities are
also available for definition of alphabets
(input, stack, tape). This allows one not only
to reuse alphabet definitions but also to

provide students a set of input strings to test
correctness of machines and grammars.

• Informative error messages: When
MTSolution detects a mistake, it shows an
appropriate error message connecting the
theoretical concepts with the concrete
problem in order to guide students in
correcting the error. This is mainly important
when students are working on their own and
do not have a real teacher to assist them.

• Random generation of strings: In
contrast with traditional parsing, which given
an input string and a grammar tries to
decide if the string is in the language of the
grammar or not, this functionality shows
grammars as generative devices. Taking as
input a grammar and a length, MTSolution
randomly generates strings, no longer than
length, that belong to the language of the
grammar. For each generated string, it
shows the corresponding derivation and the
productions used.

MTEditor

MTEditor, the automata editor, is basically
composed by a main panel, a menu bar and
toolbars that allow users to easily edit, save,
recover and run FA, PDA and TM (Figure 2).
Recognizer or transducer FA or PDA can be
created on a simple canvas, by drawing

Figure 2 – File option in MTEditor menu

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 4

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

states and transitions at chosen locations.
Multi-tape and composite TM can be defined
by giving the transition table. FA, PDA and
TM may be run with arbitrary input strings in
order to answer if the string is accepted or
not by them, in case of a recognizer one, or
to return the corresponding output string, if
executing a transducer. The automata
design, editing and executing interface is
modern, simple, intuitive, friendly, and easy
to understand and use.

MTEditor also contains algorithms to perform
the following transformations: non
deterministic finite automata with ε-
transitions (NDFA-ε) to non deterministic
finite automata (NDFA), NDFA to
deterministic finite automata (DFA), DFA to
minimal state DFA, FA to RE or RG and RE to
NDFA-ε.

Next, we present three examples to illustrate
FA/PDA design and execution, and composite
TM definition and simulation. Later, we give
some examples of the application of the
algorithms on FA provided by MTEditor.

Finite and Pushdown Automata: To define
a new FA/PDA the corresponding option from
the main menu should be selected. First,
input alphabet should be defined; in case of
PDA definition, stack alphabet should be also
specified. Next, states and transitions may
be added by using a mouse to draw states
on a scrollable area, clicking and connecting
states with transitions, and right clicking on
any component to obtain a context menu to
modify its properties, such as state name,

initial or final state, or transition label. Figure
3 shows how to specify a transition in a PDA.
The transition table is dynamically built by
MTSolution and it is available by clicking the
tabbed pane Table (Figures 10 and 11,
Appendix).

Once completed the FA/PDA definition, it
may be executed on an arbitrary input
string. Figure 10 shows a stepwise execution
of the FA recognizing the language
L = { x / x ∈ {a, b}∗ and (x contains
substring aa or x contains substring ba)},
given the string abaa. Figure 11 shows a
stepwise execution of the PDA recognizing,
by final state, the language L = {anbn / n >
0}, given the string aaabbb. For both
automata the input string may be provided
interactively or loaded from a text file, and it
should be entered in the tabbed pane Tapes
which, in these cases, allows the definition of
only one tape, the input tape. MTEditor
sends to MTServer a request of execution
with the FA/PDA already defined and the
given input string.

For an accepted string, MTServer returns the
sequence of transitions followed by the
FA/PDA to recognize the string. Then,
MTEditor uses this transition list to display,
for example, a step-by-step execution; the
current transition is highlighted (in Edition
and Execution panels) as the user goes
forward, and the symbols of the string
already scanned are shown in the Execution
panel (Figures 10 and 11). In case of PDA
execution, the stack content is also shown.

Composite Turing Machine: One of
the main features of MTSolution is the
possibility to design composite TM by
combining simpler ones. Each basic machine
may be defined as a parameterized multi-
tape TM, with parameters passed by
reference. We detail below the construction
of a composite TM to add two unary-coded
natural numbers (Figure 12, Appendix). The
first number is located in tape M, the second
one in tape N, and the output number is left
in tape M+N. We use three basic sub-
machines. The first one (Init.MT) initializes
the tape, writing the symbol X in a cell and
leaving the read/write head in the next cell.
The second TM, Copy.MT, copies the whole
content of its first parameter tape to the
second parameter tape. Finally, Back.MT
rewinds the parameter tape until it finds the
symbol X, and then it moves right.

Figure 3 - Definition of transitions in PDA

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 5

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

Sub-machines are invoked by the composite
TM by using an alias name. Figure 4 shows
how to associate each .MT file with the
corresponding alias. In this example, we use
the name of each file as alias.

These sub-machines may be used instead of
a target state in the definition of the
composite TM (Figure 12). Each call is
defined as the symbol "@" followed by the
alias name, and the parameters. The first
one is a return state which will be used to
perform a return to the composite TM in case
the sub-machine ends in its final state; the
second one is also a return state but to be
used in case the sub-machine ends in a non
final state. The third parameter is a list of
tape names of the composite TM to be used
by the sub-machine. MTSolution includes an
assistant to guide users in the definition of
sub-machine calls.

The composite TM (add.MT) in Figure 12
proceeds as follows: it calls the sub-machine
Init.MT to initialize M+N output tape. On
return, if one of the numbers is greater than
0, the composite TM goes to state e1, to
begin the addition of numbers; in other case,
it goes to state e3 and finishes. In state e1, if
number in M is greater than 0, it calls
Copy.MT sub-machine to add M number to
M+N tape; the same happens with N number
if it is greater than 0. In both cases, the
return state is the final state of the
composite TM (e2). When both numbers are
greater than 0, the composite TM first adds
M number to M+N output tape, by calling
Copy.MT, and on return it calls Copy.MT
again in order to add N number to the M+N
output tape. On return, it goes to the final
state.

Figure 12 contains the definition and one
possible execution of the composite TM with

input numbers 3 and 2 unary-coded,
displaying the contents of each tape and the
current position of the read/write head of
each tape by highlighting the corresponding
cell.

Algorithms: As we had already
mentioned, MTEditor contains some
algorithms that can be executed on FA. The
option Algorithms, in the main menu, gives
the possibility of choosing the desired
transformation to be applied to a FA (Figure
5). It is important to remark that for all
transformations not only the final result is
shown but also how it was obtained, as we
explain below. The aim is to help students to
follow and test their own results and the
steps performed to get them.

For a concrete FA only applicable options are
enabled. For example, for the FA in Figure 10
the option Deterministic will be disabled
because the FA is already deterministic

Figure 6 – RG derivation from FA

Figure 4 - Definition of alias for TM

Figure 5 – Algorithms option in FA
MTEditor menu

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 6

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

(Figure 5). For this FA we can derive
automatically a RG by choosing Grammar
option in the Menu. Figure 6 describes all the
components of the grammar derived,
indicating how non terminal symbols where
associated to FA states in order to apply the
derivation algorithm for RG from FA defined
in (Hopcroft, 2000). This grammar can be
saved in a file to be opened and edited later
with Gramatika. For the same FA we can also
choose to minimize it or to obtain a RE
describing the same language it recognizes.

For a concrete FA only applicable options are
enabled. For example, for the FA in Figure 10
the option Deterministic will be disabled
because the FA is already deterministic
(Figure 5). For this FA we can derive
automatically a RG by choosing Grammar
option in the Menu. Figure 6 describes all the
components of the grammar derived,
indicating how non terminal symbols where
associated to FA states in order to apply the
derivation algorithm for RG from FA defined
in (Hopcroft, 2000). This grammar can be
saved in a file to be opened and edited later
with Gramatika. For the same FA we can also
choose to minimize it or to obtain a RE
describing the same language it recognizes.

In case of minimization, the result for FA in
Figure 10 is shown in Figure 13 (Appendix)
while Figure 7 describes the partitions
obtained and useless states eliminated based
on the FA minimization algorithm proposed
in (Aho, 1986) (A state is useless if it does
not reach a final state or if it is not reachable
from the initial state).

RE derivation is performed by using
Thompson´s algorithm (Aho, 1995) and it
involves user participation. Users have to
choose the order in which they want to
eliminate states until they get a FA with two
states: the initial and a final one (it may be
the case that only one state remains, this
happens when the initial state is also a final
one). The application of the RE derivation
algorithm applied to FA from Figure 10 is
shown in Figure 14 (Appendix).

Gramatika

Gramatika is the editor of grammars and it
provides functions for editing, saving and
recovering definitions of left and right-linear
RG, CFG, and CSG. During grammar edition,
the application checks if every typed
production matches the appropriate
production pattern for the grammar in
construction, showing error messages in case
of discrepancy. Other functions give the
possibility of verifying if a given string can be
generated by the grammar or not, displaying
when possible the corresponding derivation.
Besides, Gramatika may generate, in a
random way, strings belonging to the
language specified by the grammar which
are no longer than a length given by the
user.

For RG, Gramatika automatically generates
the corresponding NDFA, which may be
recovered from MTEditor to be transformed
into DFA or RE.

We show an example of the definition of a
right-linear RG for the language:

L = { x / x ∈ {0, 1}∗ and (x contains
substring 00 or x contains substring 11)},
using Gramatika. The first step is the
selection of New Right-linear Grammar from

Figure 7 –Information of minimization
algorithm for FA in Figure 10

Figure 8 - Derivation of 0100

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 7

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

the main menu. Next, terminal and
nonterminal symbols should be defined, also
indicating the Start Symbol. The last step is
the specification of the production set (Figure
15, Appendix).

With a grammar users can verify if an
arbitrary string could be parsed or not
(Figure 8) or randomly generate strings to
test if the grammar only derives strings of
the expected language (Figure 9).

3. EVALUATION

MTSolution has been successfully class-
tested since last year. It has been used in
lectures, to introduce for example automata
design and execution, for homework
assignments, and in a computer lab with
students and teachers working
simultaneously on the same examples. In
the last semester, we also used it as a
grading tool. We carried out an experience
with a small group of 20 students randomly
chosen, making them work with MTSolution
to solve all the exercises involving FA, PDA,
and CFG. Each student of this group had to
use MTSolution in a lab to solve the exams
given by the teachers to grade students
understanding of FA, PDA, and CFG. For
example, students were asked to design the
automata to recognize languages like L =
{ x / x ∈ {a, b}* and x ends in aabaa}, or
L = {e2j hj+1 am dk bp / p > m; m>0; k, j ≥
0}.

As the students could simulate their
automata and grammar behavior using the
tool, they could test them to correct errors in
their designs more easily than the rest of the
students, which used paper and pencil. As a
consequence, in the first group 90% of the
students passed all the exams, while in the
other only 60% of the students could
succeed. Further evaluation of MTSolution is
planned as it will be used in class and as a
grading tool for the all the students.

Students report positive experiences with its
use (we have approximately 200 students
per year). They found MTSolution easy to
install and very intuitive to use, and so they
were quite enthusiastic in working with the
tool on practical exercises. Students also
appreciated the assistance provided by
MTSolution to correct mistakes when
designing automata or grammars.

4. CONCLUSIONS AND FUTURE WORK

MTSolution is a didactic, interactive and easy
to use educational tool integrated in an
undergraduate course in FLA Theory. This
course is a good starting point to make
students aware of the basic notions of
language processing and computational
process limitations in the early stages of
their formation. These topics are addressed
in a way that emphasizes the reuse of
existing TM and the modular design. The
principles underlying MTSolution are
abstraction, formality, modularity and reuse.
MTSolution design is based on a client-server
architecture. A small server engine interprets
TM and grammars, returning a result to
client/s. This software architecture allowed
us to follow an incremental implementation
and testing. Besides, maintenance, updating,
and addition of new components to the tool
are easier to perform.

MTSolution was implemented in Microsoft
Visual C++.NET, thus improving run-time
performance.

MTSolution is useful as a classroom aid tool
either to work in a network environment or
in an isolated computer.

Teachers and students considered the tool to
be easy to teach and learn. In this way, FLA
concepts remain in the center with the tool
collaborating as an assistant.

Figure 9 - Random generation of a string

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 8

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

We continue evaluating, and extending
MTSolution as an integrated educational tool,
on the basis of our teaching experience and
student suggestions.

We plan to extend the tool to work with
closure properties of regular and context-free
languages.

REFERENCES

Aho, A., Sethi, R., and Ullman, J. (1986)
Compilers: Principles, Techniques and
Tools. Addison Wesley.

Aho, A. and Ullman, J. (1995) Foundations of
Computer Science, Computer Science
Press.

Armoni, M., Rodger, S., Vardi, M., and
Verma, R. (2006) “Automata Theory – Its
Relevance to Computer Science Students
and Course Contents”, 37th SIGCSE
Technical Symposium on Computer Science
Education, pp. 197-198.

Barwise, J. and Etchemendy, J. (2007) Logic
Soft from CSLI, http://www-
csli.stanford.edu/hp/Logic-software.html
(Accessed September 2007).

Chesñevar, C., Gonzalez, M.P., and
Maguitman, A. (2004) “Didactic Strategies
for Promoting Significant Learning in
Formal Languages and Automata Theory”,
9th Annual Conference on Innovation and
Technology in Computer Science
Education, pp. 7-11.

Favre, L, Mauco, M.V., and Barbuzza, R.
(2000) “Introducing First-year Students to
Theoretical Computer Science",
Information Systems Education
Conference, ISECON 2000, Philadelphia,
EE.UU.

Grinder, M.T. (2003) “A Preliminary Empirical
Evaluation of the Effectiveness of a Finite
State Automaton Animator”, 34th SIGCSE
Technical Symposium on Computer Science
Education, pp. 157-161.

Hopcroft, J., Motwani, R., and Ullman, J.
(2000) Introduction to Automata Theory,
Languages, and Computation (2nd
Edition). Addison Wesley.

Martínez, Mariano (2007) MTSolution
http://users.exa.unicen.edu.ar/\simmm
artine/ (Accessed September 2007).

Rodger, S., Bressler, B., and Finey, T. (2004)
Reading, S. “Turning Automata Theory into
a Hands-on Course”, 37th SIGCSE
Technical Symposium on Computer Science
Education, pp. 379-383.

The Forlan Project (2007),
http://people.cis.ksu.edu/~stough/forlan/
(Accessed September 2007).

Vlissides, J. Generalized Graphical Object
Editing (2007)

http://www.ivtools.org/ivtools/unidrawinfo.ht
ml. (Accessed September 2007).

White, T., and Way, T. (2006) “jFAST: A Java
Finite Automata Simulator”, 37th SIGCSE
Technical Symposium on Computer Science
Education, pp. 384-388.

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 9

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

Appendix

Figure 10 - Example of FA Execution

Figure 11 - Example of PDA Execution

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 10

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

Figure 12 - Example of a composite TM

Figure 13 – Minimum FA for FA in Figure 10

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 11

Mart́ınez, Barbuzza, Mauco, and Favre Sat, Nov 3, 4:00 - 4:25, Ellwood 2

Figure 15 – Definition of right-linear RG

Figure 14 – Steps of RE derivation for FA in Figure 10

Proc ISECON 2007, v24 (Pittsburgh): §3722 (refereed) c© 2007 EDSIG, page 12

