
Connolly Fri, Nov 7, 3:00 - 3:25, Kachina B

Complecto Mutatio: Teaching Software Design

Best Practices Using Multi-Platform

Development

Randy Connolly
rconnolly@mtroyal.ca

Department of Computer Science & Information Systems,
Mount Royal College

Calgary, Alberta T3E 6K6, Canada

Abstract

This paper argues that students can best appreciate the benefits of software design principles

when they have to work on a project in which requirements change repeatedly in some sub-

stantial way over the course of a semester. This paper describes two different semester-long

projects in which substantial change was enforced upon the students by making them develop

a system that had to work on three different user interface platforms (text-based console,

desktop Windows, and a mobile Pocket PC). By making the students plan and adapt for this

change the students were better able to truly appreciate the benefits of good design and were

willing to take the extra effort to implement a design that reflects the principles taught in most

object-oriented design courses. One of the key principles engaged by this approach was the

importance of a layered architecture to software projects driven by change.

Keywords: software design, layers, user interface, extreme programming, agile software de-

velopment, mobile computing, game development

1. INTRODUCTION

“Observe always that everything is the result

of change, and get used to thinking that

there is nothing Nature loves so well as to

change existing forms and to make new

ones like them.”

-- Marcus Aurelius (1882)

“Software changes its own requirements.”

-- Ken Beck (2000)

As Beck’s quote indicates, Emperor Marcus

Aurelius’s advice to himself to be stoic in the

face of change is as relevant today for soft-

ware developers as it was in the 2nd century

AD for Roman emperors. Of course, today’s

developers are generally less concerned with

barbarian incursions and unreliable Praeto-

rian Guards and more concerned with shift-

ing requirements and fast-approaching

deadlines. For if we replace the word “Na-

ture” in Aurelius’s maxim with “Clients” we

will then have some very sound advice for

any practicing or prospective software de-

veloper. From this author’s own experience,

clients very much do love to change existing

(Windows or Web) forms and force develop-

ers to make new ones that are very much

like the old ones but yet different enough to

cause anguish to the project deadlines!

Certainly many software design researchers

and practitioners have noted the ubiquity of

change in the typical software project. For

instance, one high-profile study showed that

business rules for a typical software project

changed at the rate of 8% per month; an-

other study indicated that over 40% of re-

quirements arrive only after development is

well under way (Larman, 2004). These

types of figures do lead one to conclude, as

does Hazzan and Dubinsky that for us devel-

opers, “Changes are all around us” (2006a).

While change may be a good thing from a

Proc ISECON 2008, v25 (Phoenix): §2554 (refereed) c© 2008 EDSIG, page 1

Connolly Fri, Nov 7, 3:00 - 3:25, Kachina B

global, evolutionary perspective, it does re-

sult in significant problems for software de-

velopers. “Managing the effect of changing

requirements remains one of the greatest

challenges of enterprise software develop-

ment.” (Datta and Engelen, 2006).

The commonplace and yet problematic na-

ture of change in the software development

world is perhaps the principal reason for the

decline in commitment to waterfall develop-

ment models and the concomitant rise in

interest in iterative and agile methodologies.

In fact, the subtitle of one of the key texts

(Beck, 2000) in the field of iterative devel-

opment is the English equivalent of the Latin

words in the title of this paper, namely, Em-

brace Change. In Beck’s celebrated formu-

lation of the extreme programming (XP) ap-

proach, developers must have the courage

to face up to change and use a method that

frees the developer from excess documenta-

tion and analysis so as to be able to respond

quickly to changing requirements.

The Latin word complecto captures the feel-

ing that Beck claims that developers need

towards change perhaps better than the

English equivalent, since it also connotes the

grappling embrace of hand-to-hand combat.

Developers do indeed often struggle with the

inevitable strife caused by changing re-

quirements. Yet as some authors have

noted, a developer’s attitude towards

change does not have to be just that of a

warrior; it can also be that of a lover. That

is, rather than just fighting change, develop-

ers and designers should see “change and

adaptation as unavoidable and indeed es-

sential drivers” in the creation of more main-

tainable and adaptable software (Larman,

2005).

Yet despite the current wide-spread use of

iterative approaches in real-world software

development and the attempt by many

teachers to integrate these more agile proc-

esses into computer science education

(Jones, 2003; Koster, 2006; McKinney and

Denton, 2005; Sherrell and Robertson,

2006), the essential ingredient of change

can be difficult to add into a typical one se-

mester course. If we accept the premises of

the constructivist, problem-centered learning

approach (Ben-Ari, 2001), students will only

learn the benefits of these agile methods if

they gradually engage in their use, since

“methodology embodies meaning only after

engaging in the process.” (Laware and Wal-

ters, 2004) Several software engineering

educators have tried different approaches to

achieve this aim (Hazzan and Dubinsky,

2006b; Loftus and Ratcliffe, 2005; Mitra and

Bullinger, 2007; Reed et al, 2004). Yet, as

Christensen has noted, “many programming

assignments in education are formulated by

using the exact same parameters as [water-

fall-based] industrial projects.” (Christensen,

2008) That is, students are typically given a

complete and unchanging set of functional

requirements that must be implemented by

some fixed deadline. The result is that “the

predominant way of stating assignments

contributes to the same negative impact on

quality as is often observed in industrial pro-

jects.” (Christensen, 2008) This is a particu-

larly unfortunate shortcoming since the

value of many of the most important soft-

ware design best practices can only be ap-

preciated in a project that is undergoing a

significant amount of change.

To avoid this problem some researchers

have advocated integrating change into the

students’ software assignments by making

the assignments in a semester form part of

a larger, integrated project (Christensen,

2008; LeJeune, 2006; Loftus and Ratcliffe,

2005). By changing an assignment’s re-

quirements over time, the key pedagogical

reward is that “the value of the design phase

becomes very clear after a design feature

must be modified.” (Laware and Walters,

2004)

The rest of this paper details this author’s

approach to forcing students to manage

changing requirements in two different se-

mester-long development projects. The

novel element in these courses was the

change element. Each project had to be

implemented on three different user inter-

face platforms: text-based console, desktop

Windows, and a mobile Pocket PC. The pa-

per will also examine what was perhaps the

most lasting lesson learned by the students

in this approach: the importance of design

principles in general and of layered architec-

tures in particular, to software projects

driven by change.

2. THE PROJECTS

In our three-year applied degree program,

students are exposed to a variety of applica-

tion development environments. Students

take three programming-focused courses

Proc ISECON 2008, v25 (Phoenix): §2554 (refereed) c© 2008 EDSIG, page 2

Connolly Fri, Nov 7, 3:00 - 3:25, Kachina B

(from structured to object-oriented) using

Java and C#, two courses devoted to web

application development, and two courses

teaching database design and development.

The course referred to in this paper is an

additional fifth-semester course in Windows

development that uses C# and Windows

Forms within Microsoft’s .NET Framework.

In one version of the course, the develop-

ment project was a game based on a popu-

lar board game. Within the field of educa-

tion, there is “an abundance of literature to

support the use of games as tools that help

learners.” (Mungai, Jones, and Wong, 2002)

Within the context of computer science, a

variety of researchers have found game as-

signments to be helpful for teaching and mo-

tivating introductory programming students

(Becker, 2001; Giguette, 2003). Game pro-

jects also provide an ideal context for teach-

ing the more “higher-order” and abstract

software development topics such as archi-

tecture, design patterns, and software

methodology. Indeed, it has been noted

that games can provide “an extremely pro-

ject-oriented, upper-division course to exer-

cise and enhance the programming and

problem-solving skills of advanced students”

(Jones, 2000). It should also be noted that

in this section, unlike the first mentioned

section, the student body was entirely male.

In the other version of the course, which had

a mixed gender balance, the development

project was a restaurant browsing and or-

dering application. Since this cohort had

already had a game project in their third

programming course, it made sense to have

them finally do a more “real-world” project.

The number of students in each version of

the course was quite low (less than twenty).

The students worked in pairs, but did not

pair program or follow any explicit method-

ology. A small number of design artefacts

(i.e., class diagrams and screen prototypes)

also had to be created at various points dur-

ing the semester.

Change was a vital part of both projects.

Each project was broken down into four dis-

tinct milestones. In three of the milestones

the project had to be adapted to a com-

pletely different user-interface platform. In

the first milestone the students had to pro-

vide a text-based console version of the ba-

sic project functionality (see Figure 1).

Figure 1. Console version of game pro-

ject (first milestone)

In the second milestone the students had to

convert their first milestone to work as a

Windows Forms application (see Figures 2

and 3).

Figure 2. Windows Forms version of

game project (second and third mile-

stones)

Figure 3. Windows Forms version of

restaurant project (second and third

milestones)

Rather than changing the user interface, the

third milestone made other changes to the

projects. In the game project, the third

milestone added animation and XML-based

load and save game functionality. In the

Proc ISECON 2008, v25 (Phoenix): §2554 (refereed) c© 2008 EDSIG, page 3

Connolly Fri, Nov 7, 3:00 - 3:25, Kachina B

restaurant project, the third milestone added

web service-driven mapping as well as the

ability to add reviewer comments.

Finally, in the fourth milestone the students

had to convert their Windows Forms version

to run on a hand-held Pocket PC (see Fig-

ures 4 and 5).

Figure 4. Pocket PC version of game

project (fourth milestone)

Figure 5. Pocket PC version of restau-

rant project (fourth milestone)

The rationale for this approach was men-

tioned in the introduction: namely, to give

the students exposure to the kind of re-

quirements change encountered in most

real-world projects. While there is certainly

nothing new in trying to expose students to

requirements change, what was perhaps

innovative about the approach taken in the

course (and what was especially useful from

a pedagogical standpoint) was the manner in

which students were exposed to change:

that is, by forcing the students to progres-

sively adapt their projects to radically differ-

ent user interface platforms.

The experience gained by the students here

was especially beneficial in several important

ways. First, the vast majority of change in

real-world projects is in fact at the user in-

terface level. Second, the students became

truly appreciative of the benefits of proper

object-oriented design, especially the gen-

eral object-oriented principle that one should

separate that which varies from that which

stays the same (Gamma et al, 1995). The

students also begin to appreciate what Ad-

ams (2006) calls the Janus Principle: “De-

sign and write object-oriented applications

so that they support multiple, reusable,

user-interfaces with minimal redundant cod-

ing.”

In order to adapt their milestones to these

different user-interface platforms, the stu-

dents were forced to refactor their initial

milestone in order to make future transitions

less time-consuming. Almost without excep-

tion, in the first milestone students inter-

twined user interface logic into their basic

domain model and were faced with spending

time eliminating the console user interface

elements from their design. To help with

this initial refactoring, the students were

taught how to separate their domain logic

and their user interface logic into two dis-

tinct layers.

Using Layered Architectures

What is a layer? A layer is simply a group of

classes that are functionally or logically re-

lated (Buschmann et al, 1996). Using layers

is a way of organizing your software design

into groups of classes that fulfill a common

purpose. Thus, a layer is not a thing, but an

organizing principle.

Layers have of course been an essential part

of professional software design since the late

Proc ISECON 2008, v25 (Phoenix): §2554 (refereed) c© 2008 EDSIG, page 4

Connolly Fri, Nov 7, 3:00 - 3:25, Kachina B

1990s (Evans, 2004). The reason for this

convergence on layered architectures is that

a layer is not a random grouping of classes.

Rather, each layer in an application should

be cohesive (that is, the classes should

roughly be “about” the same thing and have

a similar level of abstraction). Cohesive lay-

ers and classes are, of course, generally

easier to understand, reuse, and maintain.

The goal of layering is to distribute the func-

tionality of your software among classes so

that the coupling of a given class to other

classes is minimized. When a given class

uses another class, it is dependent upon the

class that it uses; any changes made to the

used class’s interface may affect the class

that is dependent upon it. When an applica-

tion’s classes are highly coupled, changes in

one class may affect many other classes. As

coupling is reduced, a design becomes more

maintainable and extensible.

There are many advantages to be gained by

designing an application using layers. The

first and most important benefit of using

layers is that the resulting application should

be significantly more maintainable and

adaptable by reducing the overall coupling in

the application. If there is low coupling be-

tween the layers combined with high cohe-

sion within a layer (along with a well-defined

interface for accessing the layer), a devel-

oper should be able to modify, extend, or

enhance the layer without unduly affecting

the rest of the application.

This discussion on layers is not that different

from what is generally covered in any upper-

level design or software engineering course.

In this author’s experience, students typi-

cally are able to echo this material on layers

in exams relatively successfully but have a

much harder time integrating it into their

actual programming practice. To the stu-

dents, layers and other design best practices

often seem like an unnecessary burden for

the typical three- to five-week programming

assignment. In this project by contrast,

student attitudes towards design began to

change due to the need to adapt their pro-

jects to the different user-interface plat-

forms.

Managing Change via Proper Design

By refactoring their first milestone design

into layers the students were able to more

easily implement the subsequent platform

changes in the remaining milestone. In this

author’s opinion, the students had become

truly receptive to the idea that proper design

will actually save them time and effort. Sur-

veyed student comments at the end of the

course did seem to verify this impression.

Over half the surveyed students indicated

that the most important thing learned in the

course was “spending time doing good de-

sign actually saved me time in the long run

because I had to do less coding and debug-

ging,” as one student noted.

The key changes in the third milestone (i.e.,

XML-driven and animation or mapping) re-

quired the students to further subdivide their

application layers. A new data layer was

created in order to isolate the XML interac-

tion and remove it from their domain layer.

To handle the complexities of animation, the

students were encouraged to split the user

interface into two separate layers: a presen-

tation display layer that implemented only

the visuals of the user interface, and a pres-

entation helper layer that contained the

presentation logic.

The payback for this additional effort arrived

in the fourth and final milestone. On the

face of it, this milestone was quite intimidat-

ing. The students had to move their project

to a completely different piece of hardware:

a hand-held Pocket PC running Windows Mo-

bile 2003. Yet because the students were

using the Compact .NET Framework, they

were able to port their domain, data, and

presentation helper layers with little or no

change. The students only had to redesign

and re-implement their presentation view

layer in order to fit their project’s user inter-

face into the constrained space of the de-

vice; as well, their user interfaces had to be

changed in order to accommodate the lim-

ited GUI controls available to Windows

Forms in the Compact .NET Framework. As

a result, the final milestone was by far the

easiest: most students reported that it only

took a day or two to complete. Certainly at

this stage of the course the students in both

sections had become true believers in the

benefits of proper software design. For the

very first time in this author’s teaching ex-

perience, students had not just memorized

the design principles nor simply believed in

them as an article of faith because the pro-

fessor told them so. Instead, the students

had their own empirical evidence of their

utility in managing requirement changes in a

Proc ISECON 2008, v25 (Phoenix): §2554 (refereed) c© 2008 EDSIG, page 5

Connolly Fri, Nov 7, 3:00 - 3:25, Kachina B

software project. This then is the principle

message of this paper: forcing the students

to adapt to change by developing a project

on multiple user-interface platforms allowed

the students to internalize and integrate

software design best practices into their own

emerging development practices.

3. TEACHING EVALUATION

It can, of course, be difficult to construct a

project that can be successfully completed

by students and which also supports the

pedagogical goals for a course. Trying to

also integrate change into it makes this

process even more difficult. Having the stu-

dents adapt a project to different user inter-

face platforms is one way to achieve this

goal in a relatively painless way for an in-

structor. In this project, the .NET environ-

ment was used, but a similar effect could be

achieved by using the Java platform. For

instance, the students could create the ap-

plication first for a Java console interface,

then a richer Swing interface, followed by a

Java Micro Edition interface or a Google An-

droid interface.

Student Evaluation

The students’ written evaluations after the

course indicated that there was a great deal

of satisfaction with their learning in regards

to software design. Several of the students’

comments attributed this to the multiple

user-interface development approach taken

in the course. While the number of students

in each section of the course was too low for

any meaningful statistical analysis, for what

it is worth, the average final exam mark for

both groups was over 10% higher than the

previous year. In the follow-up sixth semes-

ter course (advanced web development), the

majority of the students now adopted a lay-

ered architecture in their capstone project.

More importantly, the average design mark

for the follow-up course’s project was signifi-

cantly higher (over 25% higher) compared

to the two previous years. Of course, there

are a number of factors independent of this

paper’s theme which could also account for

these changes. Nonetheless, it might be

some (albeit heavily qualified) evidence that

the students who had the multi-platform

project better integrated the benefits of

software design into his or her future prac-

tice.

4. CONCLUSION

It can be difficult to get students to fully ap-

preciate the benefits of a proper software

design. For most assignments, proper de-

sign just seems to be an instructor-enforced

hassle because it generally only increases

the amount of work for the student in a

given assignment. To appreciate the benefit

of a proper design, students need to work on

a project with substantially changing re-

quirements. In such a project, students are

able to see for themselves that proper de-

sign can save time and effort.

This paper described two semester-long de-

velopment projects in which change was en-

forced upon the students. The most impor-

tant of these changes was that the project

had to be implemented on three quite differ-

ent user interface platforms. This provided

the kind of dramatic change necessary for

the students to truly appreciate and willingly

implement a software design that reflects

the precepts and principles taught in most

object-oriented design courses.

5. ACKNOWLEDGMENTS

Pocket PCs were made available to the stu-

dents thanks to a Dell Mobile Computing Pi-

lot grant.

6. REFERENCES

Adams, J (2006). “OOP and the Janus Prin-

ciple.” Proceedings of the 37th SIGCSE

Technical Symposium on Computer Sci-

ence Education, 38 1 (March).

Aurelius, M (1882). The Meditations of Mar-

cus Aurelius, iv 36. Translated H.

Crossley. Macmillan, London.

Beck, K (2000). Extreme Programming Ex-

plained: Embrace Change. Addison-

Wesley, Boston.

Becker, K (2001). “Teaching With Games:

The Minesweeper and Asteroids Experi-

ence.” The Journal of Computing in

Small Colleges, 17, 2 (December).

Ben-Ari, M (2001). “Constructivism in Com-

puter Science Education.” Journal of

Computers in Mathematics and Science

Teaching, 20 1.

Buschmann, F., et al (1996). Pattern-

Oriented Software Architecture: A Sys-

tem of Patterns, Volume 1. John Wiley

& Sons, New York, p. 31-51.

Proc ISECON 2008, v25 (Phoenix): §2554 (refereed) c© 2008 EDSIG, page 6

Connolly Fri, Nov 7, 3:00 - 3:25, Kachina B

Christensen, M. E. (2008). “Experiences

with a focus on testing in teaching.” Re-

flections on the Teaching of Program-

ming. J. Bennedsen, M. Caspersen, and

M. Kolling, editors. Springer-Verlag,

Berlin, p. 150.

Datta, S., and R. Engelen (2006). “Effects

of changing requirements: a tracking

mechanism for the analysis workflow.”

Proceedings of the 2006 ACM sympo-

sium on applied computing (April).

Evans, E (2004). Domain-Driven Design:

tackling complexity in the heart of soft-

ware. Addison-Wesley, Boston, p. 68-

71.

Gamma, E., et al (1995). Design Patterns:

Elements of Reusable Object-Oriented

Software. Addison-Wesley, Boston, p.

23-4.

Giguette, R. (2003). “Pre-Games: Games

Designed to Introduce CS1 and CS2 Pro-

gramming Assignments.” Proceedings of

the 34th SIGCSE Technical Symposium

on Computer Science Education, 35 1

(January).

Hazzan, O. and Y. Dubinsky (2006a). “The

concept of change in technology trans-

fer.” Proceedings of the 2006 interna-

tional workshop on Software technology

transfer in software engineering (May).

Hazzan, O., and Y. Dubinsky (2006b). “A

cognitive perspective on software devel-

opment methods: the case of extreme

programming.” Proceedings of the 2006

international workshop on Workshop on

interdisciplinary software engineering re-

search (May).

Jones, C. G. (2003). “Integrating Agile De-

velopment Methodologies into the Pro-

ject Capstone – A Case Study.” Infor-

mation Systems Education Journal, 1 18.

Jones, R. M. (2000). “Design and Imple-

mentation of Computer Games: A Cap-

stone Course for Undergraduate Com-

puter Science Education.” Proceedings

of the 31st SIGCSE Technical Sympo-

sium on Computer Science Education,

32, 1 (March).

Koster, B. (2006). “Agile methods fix soft-

ware engineering course.” Journal of

Computing Sciences in Colleges, 22 2.

Larman, C. (2004). Agile & Iterative Devel-

opment: A Manager’s Guide. Addison-

Wesley, Boston.

Larman, C. (2005). Applying UML and Pat-

terns, Third Edition. Addison-Wesley,

Boston.

Laware, G. and A. Walters (2004). “Real

world problems bringing life to course

content.” Proceedings of the 5th confer-

ence on Information technology educa-

tion (October).

LeJeune, N. F. (2006). “Teaching software

engineering practices with extreme pro-

gramming.” Journal of Computing Sci-

ences in Colleges, 21 3.

Loftus, C., and M. Ratcliffe (2005). “Ex-

treme programming promotes extreme

learning?” Proceedings of the 10th an-

nual SIGCSE conference on Innovation

and technology in computer science

education (June).

McKinney , D. and L. Denton (2005). “Affec-

tive assessment of team skills in agile

CS1 labs: the good, the bad, and the

ugly.” Proceedings of the 34th SIGCSE

Technical Symposium on Computer Sci-

ence Education, 37 1 (March).

Mitra, S. and T. Bullinger (2007). “Using

formal software development method-

ologies in a real-world student project:

an experience report.” Journal of Com-

puting Sciences in Colleges, 22 6.

 Mungai, D., D. Jones, and L. Wong (2002).

“Games to Teach By.” Proceedings of

the 18th Annual Conference on Distance

Teaching and Learning.

Sherrell, L. and J. Robertson (2006). “Pair

programming and agile software devel-

opment: experiences in a college set-

ting.” Journal of Computing Sciences in

Colleges, 22 2.

Reed, K. et al (2004). “Agile management

of uncertain requirements via generali-

zations: a case study.” Proceedings of

the 2004 workshop on Quantitative

techniques for software agile process,

(November).

Proc ISECON 2008, v25 (Phoenix): §2554 (refereed) c© 2008 EDSIG, page 7

