
Frank Fri, Nov 7, 5:00 - 5:30, Kachina A

A Critical Learning Skill

Ronald I. Frank
rfrank@pace.edu

IS Dept. Pace University,
Pleasantville, NY 10570

Abstract

This is a "heads-up" about an important (critical) learning skill we all need to learn about,

teach, and develop. The skill is to be able to distinguish cognate word meanings. Technical

terms derived from ordinary English have specific and different meanings from their ordinary

antecedents. First, students have to be explicitly made aware of this phenomenon. Second,

special attention has to be applied to isolating technical meanings when and wherever they

occur. Third, repetition of the cognate meaning is the key to instilling the new meaning in

the students' vocabulary. We give some examples of terms having this characteristic,

followed by classroom experience and an final summary.

Key Words: Learning Skills, Pedagogy, Semantics

1. INTRODUCTION

The problem.

Ordinary words are sometimes usurped for

highly specialized technical use. The

learning skill is to recognize the

specialized, often unique, technical

meaning stipulated by the writer or

speaker. The problem is well documented

for mathematics and discussed in detail in

(Edwards & Ward 2004). It is my

observation that this is also a problem for

computing. Being a new field, we

introduce terms at a high rate, often by

bending the meaning of existing words to a

new use.

Cognates are words in different languages

that derive from a common root (OED,

2005). This is exactly what often happens

in computing. In (Edwards & Ward 2004),

students were not aware that word

definitions (what they understand) can be

either "extracted" from previous

experience or "stipulated" in the subject at

hand. Being unaware of this difference,

the students fell back on their natural

extracted word understanding and missed

the stipulated meanings, thereby missing

the technical concepts being taught Our

responsibility is to recognize that we too

have this problem and therefore we need

to focus on its remediation. We need to

teach students to be aware of the cognate

problem, to adjust for the difference, and

to learn correct meanings. The learning

skill is to be able to distinguish (filter)

words read or heard so that the correct

technical meaning and ideas are

recognized.

Some people deny the existence of this

problem. The fact that many texts go to

the trouble of isolating word lists for each

chapter, is a very direct proof that

technical terminology is a central learning

issue in computing. See, for example,

(Dennis, 2005).

Outline of this note.

To better understand the learning skill, we

first define the problem and its solution.

Then we'll build a useful analogy and apply

it to filtering technical readings and

lectures for better understanding. We then

discuss how to develop this learning skill,

and show some examples of where it is

needed. There is a short summary of skill

building at the end, and a bibliography.

As instructors we have to explicitly teach

both the fact of stipulated meanings and

then the critical learning skill and how to

develop it.

Proc ISECON 2008, v25 (Phoenix): §2744 (refereed) c© 2008 EDSIG, page 1

Frank Fri, Nov 7, 5:00 - 5:30, Kachina A

Some people think this is merely the

problem of knowing about contexts, and

that meanings change with contexts. It is,

and it is more. When in a specific technical

context, the precision of definition is often

very much higher than it is in common

experience. This is from the very nature of

science and technology, which draw

precise distinctions in order to isolate and

analyze phenomena. Also, who is to say

that we naturally and consciously learn

about contexts and consciously learn to

evaluate meanings relative to the current

context? It seems from the cited study

(Edwards & Ward 2004), that this is NOT a

skill that either comes naturally nor is it

usually taught. It is probably true that we

all do adjust to context to some extent, in

an unconscious untutored way. The point

of this article is that the mental adjustment

has to be tutored and conscious and

practiced.

Anyone who has studied modern computer

languages such as C++, C#, and Java is

aware of the concept of "overloading". A

function or method name can be reused

(redefined) in a program (or object) so

long as the argument list in each definition

occurrence is unique in its number of

arguments and or the type sequence of its

arguments. This allows the compiler to

disambiguate function calls. The point of

this article is that our mental adjustment

that allows us to dynamically disambiguate

has to be tutored and conscious (and

practiced).

2 THE SOLUTION

1. First we must consciously understand

and realize (internalize) that there is a

difference in some words (terminology)

between what we know and what we

have to learn in a new field. This can

be taught by examples such as those

below.

2. We must focus on the stipulated

meanings in the field under study and

learn these new meanings. This is

often aided by making notes in a

notebook for review of definitions and

procedures (if the words describe a

process). This is a neglected language

learning skill itself.

3. We have to develop the skill of

recognizing the context being

discussed and therefore which meaning

of a term we should use. How do you

get to Carnegie Hall (the learning

skill)? Practice, practice, practice.

How do you learn a new term?

Practice it. I.e., use it at least three

times in context.

2 A USEFUL ANALOGY

A useful analogy is filtering light through a

polarized lens (Larimore, 1965, or

Wikipedia) as in Polaroid sunglasses.

Polarized lenses let through light with a

given linear polarization, say up-down.

They filter out (block) light with horizontal

(left-right) polarization. This takes out the

glare from water, glass, metallic painted

cars, and other non-bare metal,

horizontally polarizing surfaces, making it

easier to see them. In some cases, it

changes a blindingly bright scene into one

that can be seen and appreciated. The

blindingly bright light comes from the light

energy being concentrated in the

horizontal mode by surfaces that polarize

the light. The trick to understanding

polarized light and lenses is to realize that

light can simultaneously contain light

waves oscillating in ALL directions

(circularly polarized light). The blindingly

bright scene mentioned above contains

mostly blinding horizontal light AND some

useful vertical light. When the Polaroid

lens filters out most of the horizontal light

component, what's left is the clearly seen

mostly vertically polarized view that can be

appreciated.

3. APPLYING THE ANALOGY

Applying this analogy to words in our brain

is direct. Our brain "sees" words in that

the incoming words (written or aural) carry

meaning, which is sensed in our brain.

What many people fail to realize is that

words, like light, can simultaneously carry

many meanings. Some meanings are at or

near to what was intended, and other

meanings are completely orthogonal

(independent of) to what was intended.

Just like circularly polarized light some of

the correct meaning of words can get

through without filtering (along with a lot

of confusing garbage leading to some but

poor or confused understanding).

Proc ISECON 2008, v25 (Phoenix): §2744 (refereed) c© 2008 EDSIG, page 2

Frank Fri, Nov 7, 5:00 - 5:30, Kachina A

In technical work, the "light" (word

meaning) is often highly polarized in one

direction. If we let in even a little of the

wrongly directed light (other meanings) we

miss the intended meaning completely.

4 DEVELOPING THE LEARNING SKILL

How do we develop this filtering skill?

First, by fully realizing that words

simultaneously carry multiple meanings.

Next, by noting that in most cases there is

one useful technical meaning that is

intended in the context at hand, and that

most other meanings are either not closely

related, or if closely related, they can differ

by a significant nuance. This is analogous

to light that is polarized far away from the

vertical, or if nearer to the vertical, is still

significantly off the vertical.

This situation of confounding the meaning

of words is particularly bad in computing.

Computing is a fast-changing field that

requires new terms at a high rate of

introduction. The easiest way to coin a

new term is to take an old one and refit it

to a new meaning. Usually a term is

chosen and its use modified slightly. It

then is misused by the press or colleagues

who mutate its meaning until it can take

on a radically different meaning.

The way to build the required critical

learning skill (filter) so that it is available

to apply in real-time, is to carefully note

down those terms that are defined at

variance to well known "common usage",

and then review the list once in a while.

Writing using the new terms helps a great

deal. By explicitly realizing the variant

meaning when we come across it, we tell

our brain to note it. When we write it

down and then review it, we reinforce the

new meaning in our head. A well known

principle of learning is based on The

Bellman's Rule of Three, (Carroll, 2008):

using it three or more times will solidify it

in our filter.

"Just the place for a Snark! I have

said it twice:

That alone should encourage the crew.

Just the place for a Snark! I have said

it thrice:

What I tell you three times is true."

5 SOME EXAMPLES

Effort

In IS project management we deal with

the effort to do a project. We all know

what effort is. Not so. The COCOMO

(Boehm, 2000) and related models of

information systems development projects

use the term "effort" in estimating project

cost and duration. Effort is defined ONLY

and precisely as person-months spent, and

nothing else.

Object

In object oriented analysis and design an

object is a thing. Some noun or pronoun

naming a thing. True but only slightly

relevant as a learning tool. An object

(Dennis, 2005) is an instance of an

encapsulation of data and the code needed

to manipulate the data. This kind of an

object can be used to represent the thing

of interest - but it is not the thing itself.

Process

In operating systems a process is,

informally, a more or less clearly defined

procedure for doing something. This does

not help us understand operating systems.

A process (Stallings, 2005) is a single

thread of executable code and ALL of the

resources (such as CPU time, files, main

memory space, and CPU registers) needed

for its execution, and their important

values (the state). This specific kind of

process can execute the first mentioned

kind.

Agile

In software development, to be agile is to

be quick-moving, nimble, or active (OED,

2005), reacting to the changing

environment. Again, an analogous but not

precise meaning. The agile manifesto

(Ambler 2008) provides explicit criteria to

judge whether or not a project is being

done in an agile manner (four guidelines

and 12 principles).

Group

In discrete math we use a group of things.

Sort of a set of similar things. Yes, but not

helpful. Every element of a group

possesses a very specific set of properties

(Gallian, 2002). If a thing fails to have

Proc ISECON 2008, v25 (Phoenix): §2744 (refereed) c© 2008 EDSIG, page 3

Frank Fri, Nov 7, 5:00 - 5:30, Kachina A

even one of the properties, it is NOT a

member of the group. A group is exactly:

a. A set of elements.

b. A binary operation (*) combining two

elements to give a third: d = a*b.

c. The operation is associative: a*(b*c) =

(a*b)*c.

d. There is a special element (called the

identity) e such that a*e = e*a = a for

ALL elements a in the group

e. For each element a there is an element

b (called the inverse of a) such that

a*b = b*a = e.

The trick is to remember EXACTLY what

the group properties are. IF you do, you

will get the old joke that YOU too can join

the group and associate with it only if you

bring your own inverse

Interface

In Object Oriented Programming (Java and

UML in particular) we use the term

"interface" (Flanagan, 1999). Everyone

should know the general meaning of the

term and its use to describe the graphics

mode of computer use. The OOP meaning

includes the general meaning: the protocol

for communication between two system

components. The OOP meaning has some

very specific additional meanings. So

many that to just quote the general

meaning of interface is to miss the critical

difference. The protocol of the interface is

the set of callable variables and methods.

The interface (the set of variables and

methods) has a stipulated name. If Class A

is to provide the interface, it must:

a. Have a statement in a class (A) that it

provides the named interface.

b. Provide the declarations in A of all

callable elements of the interface - its

variables and methods.

c. Provide the definitions in A of all

callable elements of the interface - its

variables and methods.

This major critical difference is that the

author of class A must create the details of

the named interface (write the set of

variables and methods) and place them

inside class A.

Declaration/Definition

In example 6 above, we used two words in

a highly precise technical meaning that

may have slipped by unappreciated. We

referred to both the declarations and the

definitions of the interface elements. To

declare a variable, for example, is to

mention it in a stipulated syntax that

causes memory to be assigned to hold it.

However, to define it is to actually state

the value to be held in memory.

Package

Package is another object-oriented term

(Dennis, 2005) that is confusing. An OO

package is a package, in the vernacular

sense, but it is also used in a limited

technical sense, especially in Java

(Flanagan, 1999). It is most often used to

refer to a construct which contains closely

related classes (a library) that perform a

specific set of tasks. For example, java.io

or java.lang.

Equals

"Equals" is a widely used term. In math
we distinguish = from ≡ (identity). The

first glyph means "has equal value", as in x

= 2. The second glyph means "always has
equal value" as in x ≡ (2x-x), for all

possible x values.

In programming, we have different ways

things can be equal. Two data items

stored in different locations can have the

same (=) value. Two data items, referred

to by different names can be equal

because their names actually refer to the

same memory location. This is a stronger

form of being equal. It is analogous to the
math meaning of identity.

So what do we mean when we program "A

= B" ? Actually neither! We mean take

the value of B and assign it (store it into)

A. Whether we store the actual data item

or only store B's address in A is up to the

programming language and syntax we are

using. If we store the data then A and B

are different but equal in value. If we

store B's address in A, they are identical

since both names refer to the same stored

data item.

If at a later time we want to query their

equality, we could say (A == B) which is a

test of their values and is true or false. In

the second case above it yields false. The

values of the memory data differ. One is a

Proc ISECON 2008, v25 (Phoenix): §2744 (refereed) c© 2008 EDSIG, page 4

Frank Fri, Nov 7, 5:00 - 5:30, Kachina A

value and one is an address. In this case,

the syntax gives us a smarter test. We

could say (A.equals(B)), which tests this

case properly and returns true only if they

both refer to the same stored item.

Parameter

Parameter is an overloaded word, meaning

that is has multiple technical meanings. A

parameter is a constant that can change.

It does not change as often or as much as

a variable, but it can change. A constant

never changes. There are religious wars

over when a parameter is a variable or a

constant.

On the other hand, a parameter is an

element in a list that is sent into a program

through its calling sequence. The input

parameter can be a constant, a variable, or

a parameter (first meaning). So, what am

I saying when I say that "the first

parameter is the variable x, the second

called parameter is a constant c, and the

third is a parameter of the process"?

(Flanagan, 1999).

List

The word "list" used in 10 above is another

example. The meaning there is of a

sequential set of symbols, which are

usually names set off by commas -

something like a shopping list. However,

list also has a technical meaning. It is a

data structure wherein each piece of data

is paired with an address field containing

the address of the next list item.

There are also two special list items. The

first, (called TOP) has no data and is just

the address of the actual first data/address

list item. The second is actually the very

last list item. It has a data field but no

valid address in its address field. Instead,

it contains a marker that indicates to list

processing programs that they have

processed to the end of the list.

What is interesting and confusing is that

the simple list - in the parameter list - is

often stored in a - list data structure for

further processing.

6 CLASSROOM EXPERIENCE

I lecture on this problem and in each

course I emphasize the most problematic

terms. I urge students to take noted that

include tech-term meanings. The words

then appear on tests. All of the test words

are reviewed afterwards in class to further

practice their meanings. Some students

still have a continuing difficulty mastering

technical word meanings.

7 SUMMARY

There are unique useful technical meanings

to some ordinary words. We have to

explicitly teach this. We should teach

students to consciously notice them and

develop the habit of writing a word list

down when the terms are first

encountered. Word lists in books should

be emphasized more than is customary in

courses.

We should teach the habit of reviewing the

personal list and using each term at least

three times.

7 REFERENCES

Ambler, Scott, et al.

http://www.agilemanifesto.org/ Last

accessed 1/4/8.

Boehm, B., et. al. Software Cost

Estimation With COCOCMO II. Pp.392

on. Prentice Hall PTR, Upper Saddle

River, NJ. 2000. ISBN 0-13-026692-2

Carroll, Lewis, The Hunting of the Snark:

The Bellman's Rule of Three, Fit the

First, The Landing.

http://etext.virginia.edu/etcbin/toccer-

new2?id=CarSnar.sgm&images=image

s/modeng&data=/texts/english/moden

g/parsed&tag=public&part=1&division

=div1 Last accessed 1/4/8.

Dennis, A., Wixom, B., and Tegarden, D.,

Systems Analysis and Design with UML

2.0. 2nd Ed. Wiley, Reading, MA.

2005. ISBN 978-0-471-34806-1

Edwards, B. S., & Ward, M. B. "Surprises

from Mathematics Education Research:

Student (Mis)use of Mathematical

Definitions". MAA Monthly, Vol. 111,

pp. 411-424, May 2004.

Flanagan, D. Java In A Nutshell 3rd Ed.

Pp. 61 on. O'Reilly. Sebastopol, CA.

1999. ISBN 1-56592-487-8.

Proc ISECON 2008, v25 (Phoenix): §2744 (refereed) c© 2008 EDSIG, page 5

Frank Fri, Nov 7, 5:00 - 5:30, Kachina A

Gallian, J. A. Contemporary Abstract

Algebra 5th Ed. P. 43. Houghton

Mifflin, NY. 2002. ISBN 0-618-12214-

1

Larmore, Lewis. Introduction to

Photographic Principles, Pp. 76-81.

Dover Pubs. NY 1965. Lib. of Congress

65-20484.

OED. The Shorter Oxford English

Dictionary Sixth Ed. Oxford University

Press USA. (2002 - 2007). CD ROM

Version 3. (2005) ISBN 978-0-19-

923176-8.

Stallings, W. Operating Systems 5th Rd.

Pg. 66. Pearson Prentice Hall, Upper

Saddle River, NJ. 2005. ISBN 0-13-

147954-7

Wikipedia.

http://en.wikipedia.org/wiki/Polarizatio

n Last accessed 1/4/8.

Proc ISECON 2008, v25 (Phoenix): §2744 (refereed) c© 2008 EDSIG, page 6

