
Abraham and Milligan Sat, Nov 8, 11:30 - 11:55, Kachina A

Software Plagiarism in Undergraduate

Programming Classes

Samuel Abraham

sam@sienaheights.edu
Department of CIS

Siena Heights University
Adrian, MI 49221

Gregg Milligan II

milligangregg@yahoo.com
Department of CIS (Student)

Siena Heights University

Adrian, MI 49221

Abstract

In recent years software plagiarism became a big concern for many programming instructors.

The goal of this paper is to give its reader a better understanding of software plagiarism in

undergraduate programming classes, the extent in which plagiarism is used in undergraduate

classes, various methods used by the students to plagiarize, and some deterrents used by

institutions to combat the problem of plagiarism. The paper also discusses some

consequences faced by the students for their plagiarism activity.

Key Words: Cryptomnesia, Ghost phenomenon, Intellectual property, Natural language

plagiarism, Plagiarism, Plagiarism detection, Plagiarism detection software , Plagiarism

deterrents, Plagiarism methods, Program specification, Program units, Software plagiarism.

1. WHAT IS SOFTWARE PLAGIARISM?

In general, plagiarism is claiming, part or all

of a body of intellectual property (written,

cinematic or audible), was created

completely independent of all other

intellectual works when, in fact, it was

copied or based from one or more separate

intellectual works. Plagiarism includes

paraphrasing material without giving credit

to the author(s) of the paraphrased

material. Software plagiarism is a form of

plagiarism, which specifically applies to

computer program source code. This type of

plagiarism is becoming a big concern for

institutions of higher learning.

2. PLAGIARISM & ACADEMIC
INSTITUTIONS

In academic institutions, the most common

reason for concern is that software

plagiarism, performed by students, prevents

these students from achieving the main goal

of writing code: To learn how to write and

interpret software code (Clough, 2000). For

example, if a student plagiarizes source

code, he or she does not benefit from the

experience of writing code, which is the

most effective way of learning and

understanding this subject, when paired with

the study of text-book or in-class

instruction. Instead, a plagiarizing student

copies part or all of a program from an

Proc ISECON 2008, v25 (Phoenix): §3344 (refereed) c© 2008 EDSIG, page 1

Abraham and Milligan Sat, Nov 8, 11:30 - 11:55, Kachina A

outside source without fully understanding

the copied material. The student may also

arbitrarily alter the plagiarized code, in order

to make it appear unique, but this still does

not help the student fully understand the

code. The core problem with students’

software plagiarism is the fact that it

impedes learning. Another reason for

concern is that such plagiarism denies credit

for those who deserve credit for their

intellectual work.

3. HOW COMMON IS SOFTWARE
PLAGIARISM?

Statistics on the frequency of plagiarism

within universities are rare. Bowyer & Hall

(2001) speculate that this is because many

universities are reluctant to keep

comprehensive records of plagiarism or to

release these records because they are

afraid that it will violate the privacy of the

students. Another reason may be that

universities are hesitant to release records,

which may reflect poorly upon the

institution’s reputation. In a survey of 242

students at Duke University, nine percent

(22 students) admitted to plagiarizing a

programming assignment, “at least once.”

Of all students surveyed, 40 percent deemed

software plagiarism as a “serious” problem

(Bowyer & Hall, 2001). One flaw of this

survey is that “serious” is not clearly

defined. For example, “serious” could be

interpreted as the seriousness of the

problem where fewer instances of plagiarism

result in a less serious problem than many

instances of plagiarism. Alternately,

“serious” could be interpreted as applying to

the ethical weight of plagiarism. For

example, a student may consider plagiarism

not to be “serious” and, therefore, consider

it to be an appropriate solution to

completing and submitting assignments. An

additional flaw of surveys, in general, is that

in many cases, students may be hesitant to

answer honestly concerning sensitive topics,

such as plagiarism, even if the survey

results are promised to be recorded

anonymously.

The best methods for trying to

pinpoint the prevalence of software

plagiarism usually include careful personal

observation in a position that works directly

with students and their assignments, such

as a tutor or, better still, the professor or

assistant who grades the assignments and is

mainly tasked with the detection of

plagiarism. A tutor may only be able to infer

about the prevalence of plagiarism since he

or she usually does not grade the submitted

assignments. However, experience as a tutor

occasionally reveals suspected or blatant

cases of plagiarism. For example, after a

student receives help with a tutor and

develops a good understanding of the

assignment, his or her friends, who are still

struggling with the assignment, may receive

assignment solutions from the friend student

without putting in the effort to develop a

good understanding. This same situation

also sometimes occurs when more than one

student is being tutored at the same time

and one student manages to develop an

understanding more rapidly.

One inference is that software

plagiarism is relatively more prevalent than

“natural language” plagiarism (book reports,

papers, etc); although fewer students write

software code compared to those who write

papers, it is inferred that a higher

percentage of those who write code have

plagiarized. The primary reason for this

inference is that it is more difficult for most

university students to write a sufficiently

working program than to write a sufficiently

intelligible paragraph. Programming is less

forgiving when it comes to grammatical rules

and less predictable in the logical meaning of

its output. Because of this, it is inferred that

more students are tempted to plagiarize

software code and, therefore, end up

plagiarizing.

Another factor, however, may suggest

the opposite of this initial inference: Most

programming students have chosen

Computer Programming as their main focus

of study. Therefore these students are likely

to take computer programming seriously and

are therefore less likely to plagiarize

software code. In addition to this, there are

only a few required programming classes in

their chosen field of study compared to the

greater number of required classes that

involve writing. These two factors suggest

that software plagiarism may be less

prevalent than other types of plagiarism.

In one study that examined natural

language plagiarism, 449 students were

surveyed, 32 percent or “142” students

responded that they never plagiarized. The

Proc ISECON 2008, v25 (Phoenix): §3344 (refereed) c© 2008 EDSIG, page 2

Abraham and Milligan Sat, Nov 8, 11:30 - 11:55, Kachina A

other 68 percent or “307” students admitted

to plagiarizing “through either traditional

and/or Internet means” (Lester, Chaky,

Diekhoff & George M, 2002). Although any

specific conclusion cannot be made from the

comparison between the software and

natural language plagiarism study, it is

evident that a higher ratio of students

plagiarized natural language assignments

compared to the ratio of students that

plagiarized software assignments in the first

study. These two studies cannot be

accurately compared because of the

difference in the approach they have taken

to conduct the study.

4. PLAGIARISM METHODS

Students use different methods to plagiarize

their code and a good understanding of

these methods are essential to identify

plagiarism and then to respond to these

activities. The following list contains

different factors that can be used to classify

plagiarism methods:

Who is being plagiarized?

o How many sources are being

plagiarized? For example, is the

student plagiarizing content from

one or more sources?

o Are they willing participants? For

example, did the author(s) of the

plagiarized code give this code to

student(s) knowing that it would be

plagiarized or did the student(s)

plagiarize code without the author’s

knowledge? This will determine

whether the author is penalized in

response to the act of plagiarism.

For example, like many other

universities, the University of

Western Australia differentiates

between knowing and unknowing

accomplices in plagiarism within its

Computer Science and Software

Engineering written policy (U of WA,

2003).

o What is their affiliation with the

university? For example, is the

author of the plagiarized code a

graduate or an undergraduate

student within the same class as the

plagiarizing student? This may

determine whether the author is

penalized in response to the act of

plagiarism (if collusion with the

plagiarist occurred) and whether the

plagiarism can be detected by

comparing the plagiarized

assignment to other assignments

within the same class. For example,

the “ghost phenomenon” refers to a

situation where the original work is

unavailable to a course instructor,

making it more difficult to detect

plagiarized work by comparing it to

its original, remote or “ghost”

source (Bowyer & Hall, 2001)

Disguising the plagiarized work? The

following list outlines the common

modifications plagiarists generally apply

to plagiarized material. This list ranges

from minimal modifications to the most

drastic modifications, which are often

the most difficult to manually detect as

plagiarism. Examples of modifications,

mentioned in the list, have been

included to help better explain these

different levels of modification:

o No modification. For example, a

simple cut-and paste of program

code (Bowyer & Hall, 2001).

o Comment modification (Clough,

2000). For example, deleting

comments, adding comments or

changing the wording of comments.

o Data type modification (Clough,

2000). For example, changing a

floating-point number to a double

data type.

o Text format modification. For

example, getting rid of or adding

indents within the code and

condensing statements onto fewer

lines. This can drastically change the

look of the source code if it is

examined only briefly.

o Selection structure modification

(Clough, 2000). For example,

changing a nested If statement to

more than one separate If

statements or converting a Switch

statement to an If Else statement.

o Identifier modification (Clough,

2000). For example, changing the

names / order of programmer-

defined variables and functions.

o Adding superfluous statements /

variables (Clough, 2000). For

example, including variables or

coded statements within the

Proc ISECON 2008, v25 (Phoenix): §3344 (refereed) c© 2008 EDSIG, page 3

Abraham and Milligan Sat, Nov 8, 11:30 - 11:55, Kachina A

program that are not needed or used

for processing.

o Mixing both plagiarized and unique

statements in the same program

(Clough, 2000). For example, writing

part of the program, but then copy

and pasting the other part.

o Breaking logical units into smaller

units, creating more logical units, or

combining logical units. For example,

converting one plagiarized function

into two or more smaller functions.

This is a more advanced type of

plagiarism that requires sufficient

knowledge of programming. As

plagiarism techniques become more

advanced, it becomes more logical to

direct efforts towards writing

legitimate code rather than

plagiarizing.

Why do they plagiarize?
Some reasons why students plagiarize

include:

• Seeking the easiest or most

“economical” route. This stems from the

perception that it is more beneficial to

breeze through assignments than to

learn from them. In order to change this

perception, an instructor can stress the

fact that the purpose of assignments is

to benefit students by helping them

develop knowledge and giving them

practice that can lead to success, self-

sufficiency and gaining important skills

(Harris, 2004). Alternately, using

plagiarism to breeze through

assignments cheats the plagiarist of

such benefits.

• Lack of interest and low priority. Low

priority assignments that seem

unappealing are usually neglected until

plagiarism becomes a desperate option

to complete the assignment on time.

Instructors can reduce instances of such

plagiarism by creating assignments that

may be more appealing to students or

letting the students choose their own

assignment topics (Harris, 2004).

• Procrastination and underestimation of

required time and effort. Instructors can

reduce the prevalence of this type of

plagiarism by setting “intermediate” due

dates where small pieces of large

assignments are due (Harris, 2004). This

way, students are less motivated to

plagiarize in order to meet deadlines

that have become impossible to meet

because of excessive procrastination.

• Low confidence in ability to adequately

complete assignments. Instructors can

ameliorate this type of motivation for

plagiarism by “reassuring” students

about additional sources of help, such as

through tutors or other sources of out-

of-class instruction (Harris, 2004).

Instructors can also stress that excess

criticism will never be given for original

work.

• “Thrill” of breaking rules. Instructors can

be conscious of emphasizing the positive

aspects of avoiding plagiarism rather

than “angrily condemning” the negative

aspects of plagiarism; some students

feel influenced to resist this kind of

condemnation. One positive aspect of

citing sources, rather than plagiarizing,

is that citations show that the student

has conducted research and taken the

time to understand another author’s

opinion, findings or method for solving a

coding problem (Harris, 2004).

5. METHODS TO DETER PLAGIARISM

The main methods for deterring software

plagiarism include educating students about

what constitutes plagiarism, modifying

course grading structure and the ability to

adequately detect plagiarism (many

software applications exist, which help

detect student software plagiarism) (Bowyer

& Hall, 2001). Additional methods to deter

plagiarism include requiring detailed code

specifications and in-code comments and

modifying course grade structure. Both of

these methods help reveal students’

understanding of their submitted assignment

code and are difficult to fake when the

student has a poor understanding of the

assignment. Each of these plagiarism

deterrent methods is discussed in more

detail in the following paragraphs.

Plagiarism Education

According to Bowyer & Hall (2001) and Barry

(2006) the most common excuse for

plagiarism is ignorance. A student may claim

that he or she was not aware of committing

plagiarism. However, if students are clearly

informed of what constitutes plagiarism, this

excuse cannot be used. The proper method

of citing code sources can be taught, so that

students can cite sources, within code

Proc ISECON 2008, v25 (Phoenix): §3344 (refereed) c© 2008 EDSIG, page 4

Abraham and Milligan Sat, Nov 8, 11:30 - 11:55, Kachina A

comments, when necessary. However,

students should also be aware that a greater

percentage of their code should be original

and not borrowed from other sources,

similar to a written paper. Barry (2006)

suggested that in order to combat this type

of plagiarism some courses use assignments

that are specifically designed to educate

students about plagiarism. For example,

students can be required to read an original

source code document and then to read

source code that plagiarizes from this

original document. Next, the students are

asked to identify the section of the code they

believe to be plagiarized. “Feedback” is

given to the students about their responses;

students are given both definitions and

examples of plagiarism and graded on the

accuracy of their assignment responses.

Such assignments are graded based on

students’ submitted description of plagiarism

and their application of this description by

avoiding plagiarism in their submitted work.

In cases where this educational method was

used, the scores of students were higher

when issued a second similar assignment,

which indicates that students developed a

better understanding of plagiarism from the

first assignment.

Carpenter (2002) suggested that an

additional cause of plagiarism is an

interesting phenomenon called

cryptomnesia. Cryptomnesia occurs when a

person is exposed to an idea, such as a

programming solution or an idea expressed

in natural language and then later recalls

this idea without remembering that it came

from an external source. The person then

‘innocently’ uses the idea as if it was

original. Studies have shown that this

phenomenon exists and is not always

intentionally feigned. For example,

participants in one study were asked to

illustrate completely “novel” alien creatures

after viewing example creatures. Participants

who viewed examples, tended to add similar

characteristics “such as four legs or

antennae” in their own illustrations without

consciously knowing how much their

creature renditions were being influenced by

the examples (Carpenter, 2002).

Personal experience with cryptomnesia

includes unconsciously re-using similar

programming solutions that have been

employed or understood in the past. For

example, when presented with a

programming problem, programming ideas

that have been previously used or

understood seem to be the first to be evoked

by the mind (whether the original source is

consciously recalled or not). It is important

to note that cryptomnesia is likely to occur

less frequently in programming since

producing code requires more conscious

effort than, for instance, expressing an idea

through natural language. While a person is

exerting effort to understand code, it

becomes harder to forget that the code

solution stems from an external source. One

article confirms this concept by expressing

“when there [are] fewer perceptual and

contextual cues--such as the distinctiveness

of the voice associated with” expressing the

idea, then it is easier for cryptomnesia to

occur (Carpenter, 2002). The high amount of

conscious effort, required to understand

source code, is the “distinctiveness” that

should make programming cryptomnesia

infrequent.

Modifying Course Grading Structure

 This deterrent method stems from the idea

that removing students’ reasons for

plagiarizing is an effective way of dealing

with plagiarism. For example, in a study of

such a method, it was assumed that many

students plagiarize because they want to

achieve a certain grade without offering the

required level of effort. Therefore, the

grade-rewards for homework assignments

were eliminated and the course grade

depended only on in-class activities, such as

exams. Although, there were “no incidents

of plagiarism” the downfall of this approach

proved to be that many students did not

offer a desired level of effort on

assignments; although these assignments

helped students prepare for quizzes and

other in-class activities, they were only

indirectly determinant of grades (Bowyer &

Hall, 2001).

Requiring Detailed Documentation

 Both specifications and comments describe,

in natural language, the purpose and

function of coded statements. Without a

good understanding of the code, it is hard to

fake specifications and coded comments.

Therefore, students may be less likely to

plagiarize code, knowing that they must also

be able to describe it, in their own words.

Also, if an insufficient specification or no

specification is provided along with

Proc ISECON 2008, v25 (Phoenix): §3344 (refereed) c© 2008 EDSIG, page 5

Abraham and Milligan Sat, Nov 8, 11:30 - 11:55, Kachina A

completed code, this may help foster

suspicion of plagiarism.

Employ Plagiarism Detection Software

Many software plagiarism detection

applications exist, which can be used to

automate much of the process of plagiarism

detection. The main considerations that

should be taken when choosing to use one of

these applications are as follows: Cost /

access; to what existing software code does

the application compare the submitted code;

length of time needed to detect for

plagiarism; reliability of the application when

met with different types of plagiarism

methods; and is the detection software

language specific? Some software

plagiarism detection software can be

accessed for free over the Web. An

application called JPlag is one example of

such software (Clough, 2000).

6. PLAGIARISM DETECTION SOFTWARE

Reliability of the Detection Software
For example, in the case of the “ghost”

source, will the plagiarism detection tool be

able to detect the plagiarism. This depends

upon what the submitted code is compared

to. Some detection applications only

compare submitted code to other submitted

code and do not build a long-term database

of submitted code. Therefore, the user is

likely to submit the code from only one

class; if a student plagiarizes the work of a

previous student, an application without

records of this previous assignment will not

detect the plagiarism. This limitation is found

within the Measure of Software Similarity

(MOSS) plagiarism detection software

(Bowyer & Hall, 2001).

Time Needed to Detect Plagiarism

Depending upon the algorithm and number

of comparisons processed by the plagiarism

detector, the length of time needed to

complete these comparisons varies. For

example, one advanced application called

CodeMatch can require hours or days to

complete its detection processing.

CodeMatch uses a combination of common

plagiarism detection algorithms and is one of

the more thorough detection applications, as

indicated by its use in major business

copyright infringement cases (Zeidman,

2004).

Reliability of the Application
Most plagiarism detection software can

detect plagiarism sufficiently well, but some

of these applications specialize in detecting

certain kinds of plagiarism and are not as

well suited in detecting other kinds. For

example, MOSS is one application that

ignores “comments and identifier names”

during the detection process (Zeidman,

2004). The reason for this is, most likely, to

prevent MOSS software from being mislead

if a plagiarist tries to hide the plagiarism

through altering comments and identifier

names. However, in the cases where

plagiarism can be detected through copied

identifiers and comments, this quirk, of

programs like MOSS, is not helpful.

Five main detection algorithms, used by

CodeMatch software, include the following.

Word Matching (matches between non-

keyword words are counted); Partial Word

Matching (matches between character

sequences within non-keyword words are

counted); Source Line Matching (matches

between non-comment code lines are

counted); Comment Line Matching (matches

between comment code lines are counted);

and Semantic Sequence Matching

(similarities between code segment

operations / purposes are counted

regardless of how these operations are

coded) (Zeidman, 2004). Case is ignored

within all algorithms so altered case does

not hinder the process of detecting

plagiarized code.

Language Specific Detection Software

Some detection software is more language

specific than other software while some

software is designed to detect plagiarism

within a wide variety of different languages.

For example, MOSS is designed to detect

plagiarism within C, C++, Java, Pascal, ADA

and more (Bowyer & Hall, 2001). The reason

for language specificity is that some

detection software relies on the unique

‘back-end’ details of a specific language in

order to detect plagiarism (Clough, 2000).

7. PLAGIARISM CONSEQUENCES

The most lenient and common consequence

for software plagiarism is credit denied for

the plagiarized assignment and a warning.

Other consequences include an ‘F’ grade for

the assignment / course; exclusion from the

Proc ISECON 2008, v25 (Phoenix): §3344 (refereed) c© 2008 EDSIG, page 6

Abraham and Milligan Sat, Nov 8, 11:30 - 11:55, Kachina A

final test (U of WA, 2003); expulsion from

the computer science program and expulsion

from the university. Attempts at plagiarism

may be recorded on a student’s record

becoming a hindrance when attempting to

find employment (Bowyer & Hall, 2001).

Most universities are very careful about

ensuring that plagiarism has, in fact,

occurred and are thorough when deciding

the best way to respond to these incidents.

They recognize that plagiarism is a sensitive

issue for both the University and the student

and is not taken lightly when an accusation

of plagiarism is made. For example, in all

examined university policies on plagiarism,

before the student is “proven guilty” he or

she is required to (or given the opportunity

to) present evidence that he or she did not

commit plagiarism. The University of

Western Australia’s “Policy on Plagiarism”

states that students’ suspected of plagiarism

will first be “interviewed” before culpability is

determined (U of WA, 2003). In another

university, suspected plagiarism is handled

by, first arranging a student-professor

meeting and requesting a “written summary

of any information that might help in

understanding why the programs were rated

as highly similar” (Bowyer & Hall, 2001).

Universities are usually very careful about

taking precautions against falsely accusing

students of plagiarism.

8. RECOMMENDATIONS

We discovered that deterring plagiarism is a

very time consuming activity. As faculty we

are very concerned about the negative

effects of plagiarism on our students at the

same time, to deter plagiarism, one has to

go through a number of time consuming

steps. We tried some of the deterring

techniques described in the paper. We

changed the course structure in such a way

that the programming assignments have a

very low percentage while the written and

hands-on tests have a larger percentage in

their final grade calculations. We did not like

the outcome that much. We did not use any

plagiarism detection software as we are a

very small school with very limited funds

and limited faculty time to experiment with

it. We now use a combination of the

techniques described in the paper. We try

to educate the students about the problems

associated with plagiarism and then inform

them of the penalties for plagiarizing

programs. We included this in our syllabi

and then frequently discussed plagiarism

with the students. We also modified our

programming class grade structure so that

programming assignments carry less weight

than before while the written tests and

hands-on tests carry a higher weight. We

also require the students to develop

extensive specification and design together

with good comments on the body of the

code. We are seeing some positive effects

of these changes. Care should be taken

when duplicating our effort in other

situations as we are a small private

institution and we can implement many

things without much external interference.

9. CONCLUSION

Software plagiarism is a problem in many

institutions of higher learning. This is

because plagiarism provides a way for a

student to complete assignments without

gaining a sufficient level of knowledge of the

course material. There are many methods

and tools available to help reduce the

prevalence of plagiarism. Although there are

many methods available to detect

plagiarized programs, the best way to

combat this problem is through the usage of

a combination of methods. Some of these

methods are: convincing students that

academic plagiarism cheats the plagiarist

from gaining invaluable knowledge,

modifying the course grading structure and

requiring detailed documentation with the

programs. It should be noted that the

process of detecting and deterring

plagiarism is a time consuming activity for

faculty members.

REFERENCES

Barry, E. S. (2006, Jun). Can Paraphrasing

Practice Help Students Define

Plagiarism? The Pennsylvania State

University Fayette, Retrieved June 10,

2008, from Unknown URL

Bowyer, K., & Hall, L. (2001). Reducing

Effects of Plagiarism in Programming

Classes. Journal of Inofrmation Systems

Eduction, 12(3), Retrieved May 27,

2008, from

http://www.jise.appstate.edu/Issues/12/

141.pdf.

Proc ISECON 2008, v25 (Phoenix): §3344 (refereed) c© 2008 EDSIG, page 7

Abraham and Milligan Sat, Nov 8, 11:30 - 11:55, Kachina A

Carpenter, S. (2002, Feb). Plagiarism or

Memory Glitch? Monitor on Psychology,

33, Retrieved Jun 10, 2008, from

http://www.apa.org/monitor/feb02/glitc

h.html

Clough, P. (2000, Jul). Plagiarism in natural

and programming languages: an

overview of current tools and

technologies. Department of Computer

Science, University of Sheffield,

Retrieved May 27, 2008, from

http://64.233.167.104/search?q=cache:

hVIhW9S4Yn4J:ir.shef.ac.uk/cloughie/pa

pers/plagiarism2000.pdf+plagiarism+in

+programming&hl=en&ct=clnk&cd=8&gl

=us

Harris, R. (2004, Nov 17). Anti-Plagiarism

Strategies for Research Papers. Virtual

Salt, Retrieved Jun 10, 2008, from

http://www.virtualsalt.com/antiplag.htm

Lester, Chaky M., Diekhoff, M. George

(2002). A comparison of traditional and

internet cheaters. b Net, Retrieved Jun

10, 2008, from

http://findarticles.com/p/articles/mi_qa3

752/is_200211/ai_n9166002/pg_2.

U of WA, (2003). Policy on Plagiarism.

University of Western Australia,

Retrieved May 27, 2008, from

http://www.csse.uwa.edu.au/departmen

tal/publications/policy.on.plagiarism.htm

l

Zeidman, B. (2004, 01). Detecing Source-

Code Plagiarism. Dr. Dobb's Portal,

Retrieved May, 27, 2008, from

http://www.ddj.com/architect/18440573

4

Proc ISECON 2008, v25 (Phoenix): §3344 (refereed) c© 2008 EDSIG, page 8

