
Edwards, Courtney, and Yang Sat, Nov 8, 4:00 - 4:30, Pueblo B

A FPGA Paint Brush Application

Vince Edwards

Vince.Edwards@selu.edu

Michael Courtney
Michael.Courtney@selu.edu

Kuo-pao Yang

kyang@selu.edu

Southeastern Louisiana University
Hammond, Louisiana 70402, USA

Abstract

This paper describes a Field Programmable Gate Array (FPGA) paint program similar to the

one found on the Windows operating system. This paint brush application uses a modern

educational kit that has recently been available for Computer Science hardware courses. The

educational package employs state-of-the-art technology in both hardware and software. This

new technology is currently being used in many universities and many electronic commercial

products. With an integrated design environment and its reconfigurable capabilities on the

board where hardware can be changed on the fly, we implement the system-on-chip

application and immediately see execution results. Further development of this program can

lead to a more complex and sophisticated application.

Keywords: Hardware/software co-design, Embedded computing education, FPGA-based

design, System-on-chip

1. INTRODUCTION

We have developed a FPGA-based program

similar to the Microsoft Paint application on

the Windows operating system. This FPGA

paint brush application is displayed on a VGA

monitor and uses a mouse to draw different

figures, to fill colors, and to clear drawing

area. The VGA monitor and the USB mouse

are connected to a reconfigurable education

board. This project is hardware and

software co-design accomplished using the

custom hardware and its software toolkit.

Program execution is conventionally

accomplished by one of two primary

methods. The first is to use hardwired

technology, an Application Specific

Integrated Circuit (ASIC) to perform

operations in hardware. ASICs are designed

to perform specific sets of instructions for

accelerating a variety of applications, and

thus they are very fast and efficient.

However, the circuits cannot be changed

after fabrication. The circuits need to be

redesigned and re-fabricated if any parts of

the application require modification.

The second method is to use software-

programmed microprocessors, which

execute a set of instructions to perform

computations for general purposes. By

interpreting the software instructions, the

functionality of the system is altered without

changing any hardware. However, the

downside of this flexibility is that the

Proc ISECON 2008, v25 (Phoenix): §3722 (refereed) c© 2008 EDSIG, page 1

Edwards, Courtney, and Yang Sat, Nov 8, 4:00 - 4:30, Pueblo B

performance degrades. The processor needs

to read each instruction from memory,

decode its meaning, and then execute it, so

the performance is significantly poorer than

that of an ASIC.

Reconfigurable computing is intended to fill

the gap between hardware and software

methods, achieving potentially much higher

performance than microprocessors, while

maintaining a higher level of flexibility than

ASICs. Reconfigurable devices, field

programmable gate arrays (FPGAs), contain

arrays of computational logic blocks whose

functionality is determined through multiple

programmable configuration bits. Custom

digital circuits are mapped into the

reconfigurable hardware to form the

necessary circuit. A variety of applications

that have been shown to exhibit significant

speedups using reconfigurable FPGA

hardware include data encryption (Elbirt

2000), automatic target recognition

(Rencher 1997), error detection (Atieno

2006), string pattern matching (Weinhardt

1999), boolean satisfiability (Zhong 1998),

data compression (Huang 2000), and

genetic algorithms (Graham 1996).

This project is based on an existing one at

Cornell University (ECE 2008) and then we

made a number of fine adjustments to fit it

into our environment. In this project, an

interface is created between the hardware

and software by taking full advantage of the

system-on-a-programmable-chip (SOPC)

builder, which provides features to ease

writing software and to accelerate system

simulation. We then developed and altered

the application using the Integrated

Development Environment (IDE), which

comes with the software package. The

mouse is integrated and gives the user the

ability to draw or paint, or basically just

manipulate all functions of the program.

The monitor is used to display the functions

that are being transmitted from the DE2

board onto the screen.

2. EQUIPMENT AND SOFTWARE

PACKAGE

The DE2 package that we used includes the

hardware board and software (Yang 2008).

The Cyclone II chip on the DE2 board is

reconfigurable and is currently used in many

electronic commercial products. A block

diagram of the DE2 board is shown in Figure

1. The Cyclone II is a SRAM based FPGA

device with 475 I/O pins. All connections

are made through the Cyclone II device, and

thus developers can configure the FPGA

through the USB blaster to implement any

system design. The FPGA will retain this

configuration as long as power is applied to

the board. The EPCS16 chip provides non-

volatile storage of the bit stream, so that the

information is retained even when the power

supply to the DE2 board is turned off. When

the board's power is turned on, the

configuration data in the EPCS16 device is

automatically loaded into the Cyclone II.

The DE2 board offers a rich set of features

as shown in Figure 1 and Figure 2. This

board contains standard connectors for

microphone, line-in, line-out (16-bit audio

CODEC), video-in (TV Decoder), and VGA

(10-bit DAC); these features can be used to

create CD-quality audio applications and

professional-looking video. It is also

possible to connect other user defined

boards to the DE2 board by means of two

expansion headers.

The Altera Quartus II software is comprised

of an integrated design environment that

includes everything from design entry to

device programming. Developers can

combine different types of design files in a

hierarchical project. The software

recognizes schematic capture diagrams and

hardware description languages such as

VHDL and Verilog. The Quartus II Compiler

analyzes and synthesizes the designed files

and then generates the configuration bit

stream for the assigned device. It then

downloads the configuration bit stream into

the target device via the USB connection.

System developers can simulate the

designed component, examine the timing

issues related to the target device, and

modify the I/O pin assignments before the

configuration is downloaded onto the chip on

the DE2 board. The Quartus II computer-

aided design tools work with both the chips

on the DE2 and other Altera devices. NIOS

II processors implement a 32-bit instruction

set based on a general-purpose RISC

architecture (Yiannacouras 2005, 2006).

Because it is a soft-core configurable

processor (Sheldon 2006), FPGA developers

can choose from a myriad of system

configurations, picking the best-fit CPU core

(Sharma 2004), selecting processor

peripherals, and meeting performance goals.

Proc ISECON 2008, v25 (Phoenix): §3722 (refereed) c© 2008 EDSIG, page 2

Edwards, Courtney, and Yang Sat, Nov 8, 4:00 - 4:30, Pueblo B

The software development environment of

the NIOS II IDE uses a standard GNU GCC

compiler tool chain and Eclipse IDE to

compile projects. The NIOS II IDE provides

a helpful interface for building complex

embedded programs. System designers can

create their own custom peripherals that can

be integrated with NIOS II processor

systems. For performance-critical systems

that spend most CPU cycles executing a

specific section of code, it is a common

technique to create a custom peripheral that

implements the same function in hardware.

Using this approach, performance is

improved significantly. The processor is free

to perform other functions in parallel while

the custom peripheral operates on data.

3. RESULTS AND DISCUSSIONS

This project focuses on the development of

the FPGA paint brush application shown in

the Figure 3. It downloads the configuration

bit streams from the host computer onto the

Cyclone II FPGA through the USB blaster

port. An existing VGA controller on the

board handles a VGA monitor with the

resolution of 640x480. The NIOS II software

in this project is used to interface the

ISP1362 USB drive for the mouse and also

interacts with the VGA adapter implemented

in the hardware. The movement of the

mouse cursor is sent to the VGA adapter.

The software development module sends

coordinates and colors to be displayed at

particular pixels on the VGA screen. The

mouse is used to control all functions of the

application such as drawing lines or circles,

etc.

This software module runs the various

algorithms for drawing the various shapes

and sends these values to the SRAM. The

VGA controller reads from the SRAM and

displays on the VGA screen. The complete

functionality of the paint brush application

and the realization of different figures and

shapes on the VGA screen was replicated

using various graphics algorithms.

Bresenham’s Algorithm (Harris 2004) is used

for line and circle drawing. The Edge Fill

Algorithm (Smith 1979) is used for detecting

the edges of a closed figure and filling color

inside its boundary. The Fencing Technique

(Chalmers 2003) is applied to reduce the

scan area. This decreases the number of

pixels being inverted for every polygon color

fill and thus achieves better speed and

performance. The functionalities provided

by this paint brush application are drawing a

point, line, square, circle, polygon, clearing

the pixels using the eraser, spray paint, fill

color, pick color, clear drawing area and

various color options in a color pallet at the

bottom of the screen.

Now that we have completed our

implementation, our FPGA drawing program

works as the follows. First, the user chooses

a specific function such as a line or circle,

and then chooses the color at the bottom of

the screen. The default color is black and

the color remains the current color at the

bottom left corner of the screen until

another color is chosen. Next, the user

selects a starting point on the canvas to

start the shape and then an endpoint to

complete the shape.

We discovered some drawbacks to the Altera

system. Analysis of the memory and CPU

usage of the program revealed that Altera’s

IDE takes a lot of time and consums a lot of

memory in order to compile the code and

transfer downloadable bit streams, when

even a small change is made to the

program. With this being the first year FPGA

was introduced to our IS department we

encountered issues adapting to the learning

curve of the software. First issue was

finding the right drivers and getting them to

work with the board. There where specific

instructions on obtaining the updated drivers

located on the Altera website and

downloading it to the system. We could not

get the computers to recognize the USB

blaster from the DE2 board. We finally got

that to work. Then, we had second issue

with the VGA monitor not showing anything

except for a white screen with very faint

lines going up and down. It started to work

after we slightly modified the VGA controller

from the DE2 default design settings.

The most important thing we have learned

from this project is the Principle of

Equivalence of Hardware and Software (Null

2006). We choose this FPGA Paint Brush

project because we are interested in learning

how to work with hardware and

understanding the difference between this

hardware approach and Microsoft Paint. This

project encourages student research and

development. We also realize that using

FPGA gives a concrete structure to abstract

Proc ISECON 2008, v25 (Phoenix): §3722 (refereed) c© 2008 EDSIG, page 3

Edwards, Courtney, and Yang Sat, Nov 8, 4:00 - 4:30, Pueblo B

lessons. IS students may also discover after

programming the board, that the FPGA can

be reprogrammed at any time which can

reduce development cost since the

instructions can be programmed at any

time. We now believe this principle:

anything that can be done with software can

also be done with hardware, and anything

that can be done with hardware can also be

done with software.

4. CONCLUSION

This project introduces a FPGA Paint Brush

application similar to Microsoft Paint. It is

based on the existing project at Cornell

University and then we made a number of

fine adjustments to fit it into our

environment. Altera’s Quartus II and NIOS

II IDE are employed to compile the

implementation, simulate the results,

program and control the Cyclone II FPGA

chip through USB ports on the DE2 board.

This project broadens the traditional

knowledge of our IS majors, since we

usually do not have opportunities to work

with real hardware. Though the paint

program that we are using is just a mock

version of the original Microsoft Paint

features, the implementation of this program

helps our IS students to understand and

appreciate the work that goes into larger,

more complex hardware solutions.

5. REFERENCES

Atieno, L., Allen, J., Goeckel, D., Tessier, R.

(2006) “An Adaptive Reed-Solomon

Errors-and-Erasures Decoder.”

Proceedings of the 2006 ACM/SIGDA

14th International Symposium on Field

Programmable Gate Arrays, Monterey,
California, 150-158.

Chalmers, A., Cater, K., Maflioli, D. (2003)

“Visual attention models for producing

high fidelity graphics efficiently.”

Proceedings of the 19th Spring

Conference on Computer Graphics
(SCCG’03), 39-46.

Elbirt, A., Paar, C. (2000) “A FPGA

Implementation and Performance

Evaluation of the Serpent Block Cipher.”

ACM/SIGDA International Symposium on
FPGAs, 33-40.

Electrical and Computer Engineering (ECE)

at Cornell University (2008) “Advanced

Microcontroller Design and system-on-
chip.” http://www.ece.cornell.edu

Graham, P., Nelson, B. (1996) “Genetic

Algorithms in Software and in

Hardware—A Performance Analysis of

Workstations and Custom Computing

Machine Implementations.” IEEE

Symposium on FPGAs for Custom

Computing Machines, Napa, CA, 216-
225.

Harris, M., Reingold E. (2004) “Line

Drawing, Leap Years, and Euclid.” ACM

Computing Surveys (CSUR), vol. 36, no.
1, 68-80.

Huang, W., Saxena, N., Mccluskey, E.

(2000) “A Reliable LZ Data Compressor

on Reconfigurable Coprocessors.” IEEE

Symposium on Field-Programmable
Custom Computing Machines, 249-258.

Null, L., Lobur, J. (2006) “The Essentials of

Computer Organization and Architecture,

Second Edition.” Jones and Barlett
Publishers.

Rencher, M., Hutchings, B. (1997)

“Automated Target Recognition on

SPLASH2.” IEEE Symposium on Field-

Programmable Custom Computing
Machines, 192-200.

Sharma, A., Compton, K., Ebeling, C.,

Hauck, S. (2004) “Exploration of

Pipelined FPGA Interconnect Structures.”

Proceedings of the 2004 ACM/SIGDA

12th International Symposium on Field

Programmable Gate Arrays, Monterey,
California, 13-22.

Sheldon, D., Kumar, R., Vahid, F., Tullsen,

D., Lysecky, R. (2006) “Conjoining Soft-

core FPGA Processors.” Proceedings of

the 2006 IEEE/ACM International

Conference on Computer-aided Design,
San Jose, California, 694-701.

Smith, A. (1979) “Tint fill.” ACM SIGGRAPH

Computer Graphics, vol. 13, no. 2,
276-283.

Weinhardt, M. and Luk, W. (1999) “Pipeline

Vectorization for Reconfigurable

Systems.” IEEE Symposium on Field-

Programmable Custom Computing
Machines, 52-62.

Yang, K.P., Beaubouef, T., (2008) “A Field

Programmable Gate Array Media Player

for Realmedia Files.” Journal of

Proc ISECON 2008, v25 (Phoenix): §3722 (refereed) c© 2008 EDSIG, page 4

Edwards, Courtney, and Yang Sat, Nov 8, 4:00 - 4:30, Pueblo B

Computing Sciences in Colleges, vol.
23, no. 6, June, 2008, 133-139.

Yiannacouras, P., Rose, J., Steffan, G.

(2005) “The Microarchitecture of FPGA-

based Soft Processors.” Proceedings of

the 2005 international conference on

Compilers, architectures and synthesis

for embedded systems, San Francisco,
California, 202-212.

Yiannacouras, P., Steffan, G., Rose, J.

(2006) “Application-Specific

Customization of Soft Processor

Microarchitecture.” Proceedings of the

2006 ACM/SIGDA 14th Int. Symposium

on Field Programmable Gate Array,

Monterey, California, 201-210.

Zhong, P., Martinosi, M., Ashar, P., Malik, S.

(1998) “Accelerating Boolean

Satisfiability with Configurable

Hardware.” IEEE Symposium on Field-

Programmable Custom Computing
Machines, 186-195.

Proc ISECON 2008, v25 (Phoenix): §3722 (refereed) c© 2008 EDSIG, page 5

Edwards, Courtney, and Yang Sat, Nov 8, 4:00 - 4:30, Pueblo B

Appendices

Figure 1: Block Diagram of the DE2 Board

Proc ISECON 2008, v25 (Phoenix): §3722 (refereed) c© 2008 EDSIG, page 6

Edwards, Courtney, and Yang Sat, Nov 8, 4:00 - 4:30, Pueblo B

Figure 2: Layout and Components of the Altera DE2 Board

Figure 3: FPGA Paint Brush Application

Proc ISECON 2008, v25 (Phoenix): §3722 (refereed) c© 2008 EDSIG, page 7

