
Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

Evaluating Design: A Formative Evaluation of

Agent Development Environments Used For

Teaching Rule-Based Programming

Mark A. Cohen

mcohen@lhup.edu
Business Admin, Computer Science, and Information Technology

Lock Haven University
Lock Haven, PA 17745, USA

Frank E. Ritter

ritter@ist.psu.edu

Steven R. Haynes
shaynes@ist.psu.edu

College of Information Sciences and Technology
The Pennsylvania State University

University Park, PA 16802, USA

Abstract

We present two development environments designed to make it easier for students to create

intelligent agents by taking advantage of established software engineering principles. This

paper reports the results of a formative evaluation of the Herbal and the Vacuum Cleaner

Environments. Findings from the study suggest design changes geared towards making these

environments more useful for teaching rule-based programming and agent development.

Keywords: formative usability study, Herbal, intelligent agents, rule-based programming

1. INTRODUCTION

Teaching students how to program

intelligent agents can be difficult. One way

to simplify the task of teaching intelligent

agent development is to improve the

development tools by taking advantage of

established software engineering principles

such as high-level languages, maintenance-

oriented development environments, and

software reuse. These principles have

recently been realized in the Herbal

integrated development environment

(Cohen, Ritter, & Haynes, 2005), which is a

collection of tools that allows students and

professional modelers to learn or engage in

intelligent agent development by exploiting

modern software engineering principles.

The Vacuum Cleaner Environment (Cohen,

2005) is another tool that can be used to

help students learn agent development.

This environment is simple enough to

introduce to undergraduates, yet complex

enough to allow for the creation of

interesting agents. In addition, the

environment is colorful and entertaining,

thus holding the interest of students.

This paper reports the results of a formative

evaluation (Scriven, 1967; Rosson & Carroll,

2002) of Herbal and the Vacuum Cleaner

Environment, which lead to design changes

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 1

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

that have made both environments more

useful for teaching agent development.

Overview of the Task

The Vacuum Cleaner Environment is based

on a very simple virtual world introduced in

a widely used Artificial Intelligence textbook,

Artificial intelligence: A modern approach by

Stuart Russell and Peter Norvig (2003). In

the Vacuum Cleaner World, a vacuum

cleaner resides in an environment that

contains two squares: A and B. Each square

can be either clean or dirty. The vacuum

cleaner’s percepts allow it to detect what

square it is in and the state of the square

(i.e., clean or dirty). In addition, the

vacuum cleaner can perform four actions:

move left, move right, clean, or do nothing.

This environment is useful because its entire

state space, consisting of only eight states,

can be easily illustrated and explored, yet is

complex enough to let us discuss efficiency

and strategies. In addition, if a performance

measure is used, the concept of agent

rationality (Russell & Norvig, 2003) can be

introduced.

There are several implementations of the

Vacuum Cleaner World available. For

example, the Pyro robotics toolkit (Blank,

Kumar, Meeden, & Yanco, 2006) includes an

implementation in Python. Another

interesting extension of the Vacuum Cleaner

World, created by Musicant and Exley

(2004), allows students to program a

physical robot to navigate a simplified

version of the Vacuum Cleaner World.

Additional implementations, in a variety of

languages, are included on the official

website for Artificial Intelligence: A Modern

Approach (aima.cs.berkeley.edu).

While these implementations are useful for

introducing basic agent programming

concepts, they are either too simplistic for

more advanced rule-based programming, or

require the overhead of expensive hardware.

To effectively evaluate Herbal, a custom

graphical vacuum cleaner environment was

created in Java (Cohen, 2005). This

environment supports rule-based programs

written in two widely used agent

architectures: Jess (jessrules.com) and Soar

(sitemaker.umich. edu). A screenshot of the

Vacuum Cleaner Environment is shown in

Figure 1.

Figure 1: The Vacuum Cleaner Environment.

2. METHOD

This section describes the method used for

the study conducted in parallel with an

undergraduate artificial intelligence class.

The goal of this study was to improve the

design of Herbal and the Vacuum Cleaner

Environment. Specifically, this study was

designed to measure four different factors:

• The students’ impressions of rule-based

programming in general, and Jess

specifically.

• The students’ impressions of graphical

development environments in general, and

Herbal and the Vacuum Cleaner

Environment specifically.

• The students’ impressions of higher-level

methods for organizing rules in general,

and the use of the Problem Space

Computational Model (PSCM) specifically.

In the PSCM, behavior is defined as

movement through a problem space,

which is a high-level tool useful for

partitioning knowledge (Newell, 1990).

• The students’ impressions of the Herbal

high-level language.

This study took advantage of cognitive

dimensions research (Blackwell & Green,

2003) to evaluate the Herbal Integrated

Development Environment. These

dimensions provide a framework and a

common vocabulary that can be used to

judge the design of a notational system like

Herbal. In addition, Blackwell and Green

(2000) have shown that the use of cognitive

dimensions in questionnaires can be useful

for evaluating usability.

Table 1 shows the eight cognitive

dimensions selected as usability evaluation

criteria. These dimensions were chosen

because they measure the degree in which

the principles that mediated the design of

Herbal were achieved (i.e., embracing high-

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 2

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

level languages, enabling reuse, and

supporting maintenance-oriented

development).

Table 1: The Cognitive dimensions used to

evaluate the design of Herbal.

Cognitive
Dimension

Description

Closeness of
mapping

How closely does the behavior
representation language match
the way that the modeler
describes the behavior?

Error-proneness How easy is it to make errors
using the behavior
representation language?

Hidden
dependencies

How easy does the behavior
representation language make it
to create hidden dependencies
between model entities?

Premature
commitment

How often is the developer
forced to make a commitment in
the model before there is
enough information to make the
commitment?

Provisionality How easy is it to make
provisional commitments that
can be corrected at a later time?
Provisionality allows modelers to
easily examine design options
and construct what-if scenarios.

Role-
expressiveness

How easy is it to discover why a
modeler has chosen a particular
design? Explicit support for

design rationale, as discussed
earlier, improves a systems
role-expressiveness.

Viscosity How easy is it to make changes
to an existing model? The less
the viscosity, the easier it is to
change the model.

Visibility How easy is it to view the
elements in a model, including
their internal details?

Participants

The seven participants recruited for this

study were undergraduate students

majoring in Computer Science (CS) or

Computer Information Science (CIS) at Lock

Haven University; they were enrolled in an

upper-level Artificial Intelligence course at

Lock Haven. Enrollment in this course was

the only requirement for participating in the

study. Participants were not paid for taking

part in this study. Seven students in the

class agreed to participate: one CIS student

and six CS students.

Apparatus

Participants used Dell Desktop computers

running Linux to complete the required

tasks. These desktops are all located in the

Lock Haven Penguin Lab and are equipped

with a keyboard, a mouse, a 100MB external

hard-drive, and a 17-inch flat screen

monitor.

The required software for this experiment

was installed on each machine. The

software was Eclipse (3.2.1), Java (1.5),

Herbal (2.0.2 Pre-release D), Jess (6.1), the

Vim text editor, and the Vacuum Cleaner

Environment (2.0).

Design

As part of the course requirements, all

students were asked to complete four

assignments. The first assignment asked

the participants to create a Jess program

that simulated customers entering a bank

and waiting in a queue for service. This

assignment measured the participants’ initial

impressions of rule-based programming in

Jess, and of graphical development

environments in general.

The second assignment required the

participants to create two vacuum cleaner

models. The purpose of this assignment was

to measure participants’ impressions of rule-

based programming in Jess, graphical

development environments, and the Vacuum

Cleaner Environment.

The third assignment asked the students to

use Jess modules to create a vacuum

cleaner agent that operated in the PSCM.

The purpose of this assignment was to

measure the participants’ impressions of

problem spaces and the PSCM from the

perspective of organizing and modularizing

rules.

The fourth assignment was to repeat

assignment Three, but to use an early

prototype of the Herbal high-level language

and development environment to create the

agent. The purpose of this assignment was

to measure the participants’ impressions of

Herbal.

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 3

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

Data collection consisted of participant

observation and quantitative and qualitative

survey questionnaires derived from cognitive

dimensions research (Blackwell & Green,

2000). Participant observations and open-

ended survey questions were coded based

on the cognitive dimensions in Table 1.

Portions of the assignments were completed

during class time so that participant

observation could be conducted. Upon

completion of each assignment, surveys

were administered to the participants. Table

2 provides a summary of the four tasks

performed by the participants.

Table 2: Summary of the experimental

design for the formative evaluation.

Task Data
Collected

Purpose

Experiment 1:

A Jess program
modeling
customers
waiting in a
queue at a
bank

• The Jess
source code

• Completed
survey

• Participant
observations

To measure
student
impressions of
rule-based
programming
and graphical
development
environments

Experiment 2:

A simple
vacuum
cleaner agent
that cleaned a
room

A vacuum like
the first one,
but also keeps
track of how
many squares
it cleaned

• The Jess
source code

• Completed
survey

• Participant
observations

To see if the
participants’
impressions
of rule-based
programming
and graphical
development
environments
changed after
using the
Vacuum
Cleaner
Environment

To measure the
students’
impressions of
the Vacuum
Cleaner
Environment

Experiment 3:

A vacuum that
uses Jess
modules and
problem
spaces

• The Jess
source code

• Completed
survey

• Participant
observations

To measure the
participants’
impressions of
problem spaces
and the
Problem Space
Computational
Model

Task Data
Collected

Purpose

Experiment 4:

A vacuum that
operated in
problem
spaces

• The Jess
source code

• Completed
survey

• Participant
observations

To measure the
participants’
impressions of
Herbal

Procedure

The study began with each participant

reading and signing the consent form as well

as completing a User Background Survey,

which collected basic information about his

or her background and expectations prior to

participating in the study.

During the semester, participants were

assigned each of the four assignments in

order. When participants were given class

time to work on the assignments,

observations about the participant’s

performance, as well as the interactions

between the experimenter and the

participant, were noted by the experimenter.

When participants finished each assignment,

they were asked to complete a user reaction

survey. The surveys were designed to

measure the four objectives given in the

Methods section.

The first assignment asked participants to

create a Jess program that simulated

customers entering a bank and waiting in a

queue for service. The simulation operates

by generating random numbers that

determine how much time will elapse before

the next customer enters the bank, and how

much time it will take for the teller to service

the current customer. The simulation was

run for 1,000 simulated minutes, and during

this time customers were added to a queue

when they enter the bank and, as the teller

becomes available, customers were removed

from the queue to be serviced by the teller.

Participants worked alone on this

assignment and used the Vim text editor to

create their programs. Although difficult to

control, participants were asked not to use

graphical development environments and

debuggers. When the assignment was

finished, participants were each asked to

complete User Reaction Survey #1.

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 4

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

The second assignment required the

participants to create two vacuum cleaner

agents. The first agent was a simple agent

that cleaned a dirty room. This agent was

run without the ability to remember facts

(no state), no penalty for movement, no

radar sensor, and in an environment two

squares wide and one square tall.

Participants were asked to record the best

possible score for a run of 10 steps and the

average score of their agent. The second

agent operated in the same environment;

however, this agent was allowed to maintain

state and was assigned a penalty for each

movement. Students were asked to

minimize the penalty by remembering where

the vacuum had been so it stopped moving

when all squares were visited. Participants

worked alone on this assignment and used

the Vim text editor to create their programs.

Again, graphical development environments

and debuggers were discouraged. When the

assignment was finished, participants were

each asked to complete User Reaction

Survey #2.

Problem spaces are simulated in Jess using

Jess modules (Friedman-Hill, 2003). The

third assignment asked the students to use

Jess modules to create a vacuum cleaner

agent that operated in problem spaces. The

problem space hierarchy and the

relationships between them are shown in

Figure 2.

Figure 2: Problem space hierarchy for

assignments 3 and 4.

When the agent in the third assignment

started, it entered the FindTopLeft problem

space, which caused it to go immediately to

the top left square on the board, cleaning

dirty squares along the way. The

FindTopLeft problem space used the MoveUp

and MoveLeft problem spaces to accomplish

its goal and the MoveUp and MoveLeft

problem spaces used the Clean problem

space to make sure squares were cleaned

along the way.

After the agent arrived at the top left

square, it walked the perimeter of the board,

cleaning any dirty squares it encountered

during its travels. While the agent walked

the perimeter, it was asked to assert the

following three facts: a fact that represents

the height of the board, a fact that

represents the width of the board, a fact

that represents the total number of squares

on the board. The MoveUp, MoveLeft,

MoveDown, and MoveRight problem spaces

accomplished this behavior.

After the agent walked the entire perimeter,

it entered a problem space called Wander

that caused the agent to explore the board

using the following algorithm. If the agent

was on a dirty square, it cleaned it. If there

was a dirty square adjacent to the agent, it

should move to that square. If there were

no dirty squares near the agent, it should

randomly move to a new square, if the

agent had visited every square on the board

since it began to wander, it should stop

moving.

As in the first two assignments, participants

worked alone on assignment three and used

the Vim text editor to create their programs.

Graphical development environments and

debuggers were forbidden. When the

assignment was finished, participants were

asked to complete User Reaction Survey #3.

The fourth assignment was to repeat

assignment number three, but to use Herbal

to create the agent, instead of Vim.

Participants worked alone on assignment

four. When the assignment was finished,

participants were asked to complete User

Reaction Survey #4.

3. RESULTS

Data were collected using surveys and

participant observation. Many of the

questions in the surveys were designed to

measure the cognitive dimensions listed in

Table 1. Although all of the participants

completed each of the four required

assignments, not all participants choose to

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 5

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

complete each survey (despite several

reminders).

Table 4, Table 5, Table 6, and Table 7 (in

the Appendix) show quantitative results for

each of the four surveys. The number of

participants that completed each survey is

indicated in the caption of each table. In

addition, if a question or result mapped to a

cognitive dimension, it is indicated in the

table.

Table 8 (in the Appendix) shows the

qualitative results from Survey #4, and

Table 9 (in the Appendix) shows the

observations made while the participants

were working on the assignments. The

responses to the open-ended questions, and

the observations made while programming,

were coded based on the related cognitive

dimensions. This coding is displayed in

Table 8 and Table 9.

4. DISCUSSION

The small number of students enrolled in the

Artificial Intelligence class limited the

number of participants in this study to

seven. This small sample size does make it

difficult to generalize the study’s findings.

However, the following discussion suggests

design changes that may help make the

Herbal and Vacuum cleaner environments

more useful for teaching rule-based

programming and agent development.

Responses to the first two surveys (Table 4

and Table 5) indicate that after the first

assignment, participants were divided about

their comfort level with Jess syntax. Two

out of six found the syntax challenging, one

was neutral, and three did not find the

syntax difficult at all. The level of comfort

with Jess syntax was not surprising:

especially because this evaluation was

conducted in an upper-level, CS/CIS course

using students with considerable

programming experience.

The participants comfort level with Jess

syntax increased after completing the

second assignment, with five out of seven

disagreeing with the statement that Jess

syntax is difficult. Reasons for becoming

more comfortable with Jess syntax could be

related to gaining more experience with the

language.

In addition, participants agreed that being

able to view a running agent visually in a

graphical environment would help make

agent programming easier. They also

expressed the need for more than just

console output for debugging their agents.

Responses to these same questions

remained strong after they were introduced

to the Vacuum Cleaner Environment in the

second assignment.

Survey #2 (Table 5) shows participants were

positive about the effectiveness of the

Vacuum Cleaner Environment. Participants

found that the environment made the

programming assignments easier and more

enjoyable. In addition, participants felt that

the Vacuum Cleaner Environment was

created with just the right amount of

complexity.

Responses from Survey #3 (Table 6)

validated the use of the PSCM as the

foundation for the Herbal high-level

language. Participants agreed that the

PSCM made agent programming easier

because it componentized their agents. In

addition, responses showed that participants

favored the idea of a development

environment and debugger that supported

the PSCM. Results from Survey #3 illustrate

that a higher-level language that allows

programmers to organize rules into higher-

level structures was appreciated, and that

the PSCM is a good choice for this purpose.

Results from Survey #4 (Table 7), which are

directly related to the design of Herbal, are

mixed. Most participants felt that they

would rather program using pure Jess than

the Herbal Development Environment. They

also felt strongly that Herbal needed better

visualizations of the agent’s structure. In

addition, participants were not convinced

that Herbal made it easier to make changes

to agent code. They also felt that Herbal

forced them to work in a particular order

when developing agents. This means that

Herbal poorly supports the Visibility,

Viscosity, Provisionality, and Premature

Commitment dimensions. In addition, mixed

responses from participants about the time it

takes to learn and use Herbal also indicated

a need for design changes.

However, some responses in Survey #4

were positive. For example, participants

found it easier to reuse model components

using Herbal than when programming using

pure Jess. In addition, participants found

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 6

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

the XML high-level language used by Herbal

to be easy to read and understand.

Interestingly, in Survey #4 half of the

participants preferred programming by

editing the Herbal XML high-level language,

while the other half preferred the GUI editor.

Herbal was designed to support both

methods of programming because it was

believed that preferences, and requirements,

for both styles of programming exist

(Powers, Ecott, & Hirshfield, 2007). These

results support this design choice.

Responses to the open-ended questions

(Table 8) and the participant observations

(Table 9) were used to help discover the

reasons behind some of the negative

responses in Survey #4. These reasons

were used to help improve the design of

Herbal. For example, the frustration with

the order that Herbal enforced while creating

agents is evident in both the open-ended

questions and the participant observations.

Participants did not like having to provide a

complete specification for a component at

the time it was created. They also did not

like having to remove references to a

component before the component could be

deleted. These problems made it difficult to

create and change an agent. This feedback

suggests the need for design changes for

better support of the Viscosity,

Provisionality, and Premature Commitment

cognitive dimensions.

Another problem indicated in both the open-

ended questions and participant

observations was poor support for the

Visibility cognitive dimension. Specifically,

participants requested better visualizations

of the model structure. The need for this

type of visualization was also evident during

participant observation.

Participants also had trouble getting

comfortable with some of the terminology

used by Herbal. For example, participants

struggled with the difference between a

problem space and an operator. Discussions

with participants suggested that it helped to

refer to problem spaces as behaviors or

goals.

Participant observations and survey

responses indicated that participants had

trouble finding and fixing errors in their

agents. One possible factor was that the

console method of debugging caused

execution to be traced using rules instead of

the PSCM terminology used when the agent

was created. Participants were trying to see

what problem space their agent was in, and

which operator was recently applied, but the

trace they were using contained a list of

rules. This mismatch between the behavior

representation language and the way that

trace describes the model’s behavior

resulted in poor support for the Closeness of

Mapping dimension. A good debugger or

tracing tool that maps directly to the PSCM

rather than the rules would help here.

Finally, bugs within the Herbal GUI editor,

that allowed participants to make fatal

mistakes (e.g., the GUI editor stopped

functioning when an invalid model

configuration was accidentally created) that

could only be fixed in the XML code,

frustrated participants, and this frustration

was evident during participant observation

and in open-ended responses.

5. CONCLUSIONS

There were several important lessons

learned during the formative study described

here, and many of these lessons resulted in

changes in the Herbal design. For example,

participants felt strongly that Herbal needed

a better visualization of the agent structure.

This feedback resulted in the development of

the Model Browser View in Herbal. This

window shows a hierarchical view of a

model’s structure, giving the programmer a

high-level picture of the model and its

components.

In addition, participants were annoyed by

the fact that Herbal forced them to work in a

particular order when developing agents. To

correct this problem, “soft” warnings were

implemented in Herbal. During normal

development, an agent is often only partially

completed in a work session. With the

addition of soft warnings, an incomplete

agent produces a message that is passively

displayed in the Eclipse output window.

When a warning is displayed, the developer

is allowed to continue without interruption.

This makes it possible for developers to work

in any order by building or editing models

that are not yet complete.

The participants’ difficulty debugging models

indicated poor support by Herbal for Role

Expressiveness and Closeness of Mapping.

To correct this problem, working sets (Ko,

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 7

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

Aung, & Myers, 2005) that leveraged

existing design rationale, were added to

Herbal. These working sets should make it

easier for modelers to find task relevant

model components during maintenance. In

addition, a graphical debugger was built that

traces model execution using PSCM

components rather than rules.

To correct the participants’ problems with

terminology some of the model components

were renamed. For example, the concept of

a behavior was introduced to help users

understand problem spaces, and a Design

Pattern Wizard was created to make it easy

for users to create new model behaviors that

are ultimately represented as problem

spaces.

Finally, several bugs in the GUI Editor were

discovered during this study. These bugs

frustrated participants and made it difficult

for them to complete the tasks. All the bugs

identified during the formative evaluation

were fixed.

Results from this study also helped confirm

many of the design decisions that were

made early on in development process. For

example, the choice to use the PSCM as the

basis of the Herbal high-level language was

confirmed by participants, as they indicated

that the PSCM made agent programming

easier. In addition, the emphasis on reuse

during Herbal’s design was successful as

participants found it easier to reuse model

components using Herbal.

The decision to use XML for Herbal’s high-

level language was also supported by this

study. Finally, the design decision to allow

users to edit Herbal code using both the GUI

Editor and by directly editing the XML code

was appreciated by participants. Table 3

summarizes the lessons learned during this

study, and the changes that were

implemented to address these lessons.

Table 3: Summary of the design changes

resulting from the formative study.

Formative Result Design Change

Herbal needed a better

visualization of the agent
structure

Added a Model Browser

View

Herbal forced them to
work in a particular
order

Implementation of
“soft” warnings

Difficulty debugging
models

Implementation of
working set feature
that leverages existing
design rationale, and a
graphical debugger
based on the PSCM

Problems with some
PSCM terminology

Aliases renamed to
input/output variables,
impasses presented as
conditions for entry,
and behavior design
pattern associates
problem spaces with
agent behaviors

Participants encountered
frustrating bugs in the
GUI editor

Bugs fixed

6. REFERENCES

Blackwell, A. F., & Green, T. (2000). “A

cognitive dimensions questionnaire

optimised for users.” Proceedings of the

12th Annual Meeting of the Psychology

of Programming Interest Group, 137-

152.

Blackwell, A. F., & Green, T. (2003).

Notational systems: The coginitive

dimensions of notations frameworks. In

J. M. Carroll, HCI models, theories, and

frameworks (pp. 103-133). San

Francisco, CA: Morgan Kaufmann.

Blank, D. S., Kumar, D., Meeden, L., &

Yanco, H. (2006). "The Pyro toolkit for

AI and robotics." AI Magazine , 27.

Cohen, M. A. (2005). "Teaching agent

programming using custom

environments and Jess." The Newsletter

of the Society for the Study of Artificial

Intelligence and the Simulation of

Behavior , 120, p. 4.

Cohen, M. A., Ritter, F. E., & Haynes, S. R.

(2005). "Herbal: A high-level language

and development environment for

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 8

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

developing cognitive models in Soar."

Proceedings of the 14th Conference of

Behavior Representation in Modeling and

Simulation (pp. 133-140). Orlando, FL:

U. of Central Florida.

Friedman-Hill, E. (2003). Jess in action:

Rule-based systems in Java. Greenwich,

CT: Manning Publications Company.

Ko, A. J., Aung, H. H., & Myers, B. A.

(2005). "Eliciting design requirements

for maintenance-oriented IDEs: A

detailed study of the corrective and

perfective maintenance tasks."

Proceedings of the International

Conference on Software Engineering (pp.

126-135). New York: ACM Press.

Musicant, D. R., & Exley, A. (2004). "Easy

integration of LEGO Mindstorms into

vacuum world simulations." Proceedings

of the Special Interest Group on

Computer Science Education. Norfolk,

VA: ACM Press.

Newell, A. (1990). Unified theories of

cognition. Cambridge, MA: Harvard

University Press.

Powers, K., Ecott, S., & Hirshfield, L. M.

(2007). "Through the looking glass:

teaching CS0 with Alice." Proceedings of

the Special Interest Group on Computer

Science Education, 39 (1), 213-217.

Rosson, M. B., & Carroll, J. M. (2002).

Usability engineering: Scenario-based

development of human-computer

interaction. San Francisco, CA: Morgan

Kaufmann.

Russell, S., & Norvig, P. (2003). Artificial

Intelligence: A modern approach.

Supper Saddle River, NJ: Prentice Hall.

Scriven, M. (1967). The methodology of

evaluation. In R. Tyler, R. Gagne & M.

Scriven (Eds.), Perspectives of

curriculum evaluation (pp. 39-83).

Chicago: Rand McNally.

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 9

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

Appendix

Table 4: Quantitative results from User Reaction Survey #1 (N=6).

Impressions of rule-based programming and graphical development environments

I understand the main constructs in Jess but I find it difficult to implement them because

the Jess syntax is difficult.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

0 2 1 3 0

Programming agents would be easier if the behavior of my running agent was displayed

visually in a graphical environment.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

1 4 1 0 0

Using print statements to print the progress of my agent in a console window is all want in

order to help me create and debug my agents.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

0 0 3 3 0

I would enjoy programming in Jess more if there were a better development environment.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

1 2 3 0 0

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 10

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

Table 5: Quantitative results from User Reaction Survey #2 (N=7).

Impressions of rule-based programming, graphical development environments, and the

Vacuum Cleaner Environment

I understand the main constructs in Jess but I find it difficult to implement them because

Jess syntax is difficult.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

0 1 1 5 0

Programming agents would be easier if the behavior of my running agent was displayed

visually in a graphical environment.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

2 4 1 0 0

Using print statements to print the progress of my agent in a console window is all want in

order to help me create and debug my agents.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

0 0 2 5 0

The vacuum cleaner graphical agent environment made programming agents more fun.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

4 3 0 0 0

The vacuum cleaner graphical agent environment made it easier to learn how to create rule-

based agents.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

1 4 2

The vacuum cleaner graphical agent environment had just the right amount of complexity to

make it possible to create interesting agents without getting distracted by the details of the

environment.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

1 6 0 0 0

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 11

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

Table 6: Quantitative results from User Reaction Survey #3 (N=6).

Impressions of problem spaces and the Problem Space Computational Model

The ability to group a set of operators and behavior into a problem space makes it easier to

create complicated agents.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

0 4 2 0 0

A graphical environment that simplified the use of problem spaces, operators, and impasses

is needed to make them useful in Jess.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

1 1 3 1 0

Breaking my agent code into problem spaces made it possible to breakup complicated agent

behavior into smaller, less complicated parts.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

3 2 1

It would be easier to use problem spaces if there was a graphical debugger that showed my

agent as it moved from problem space to problem space.

Strongly Agree Agree Neutral Disagree Strongly

Disagree

1 3 2 0 0

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 12

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

Table 7: Quantitative results from User Reaction Survey #4 (N=4).

Impressions of the Herbal Prototype

If given the choice, I would rather use Herbal that pure Jess in order to complete the agent
programming assignments given in this course.

Strongly Agree Agree Neutral Disagree Strongly Disagree

1 0 0 2 1

Herbal would be easier to use if there were better
visualizations of the agent structure.

Measures Visibility

Strongly Agree Agree Neutral Disagree Strongly Disagree

3 1 0 0 0

It takes less time to create an agent using Herbal that to write code in Jess.

Strongly Agree Agree Neutral Disagree Strongly Disagree

1 1 1 1 0

It takes less time to learn how to use Herbal than to learn how to write Jess Code.

Strongly Agree Agree Neutral Disagree Strongly Disagree

0 2 1 1 0

The Herbal GUI editor makes it easier than Jess
programming to recognize components of my agent
(problem spaces, operators, etc.).

Measures Visibility

Strongly Agree Agree Neutral Disagree Strongly Disagree

0 1 2 1 0

Herbal makes it easier than Jess to reuse conditions and actions in my agent.

Strongly Agree Agree Neutral Disagree Strongly Disagree

1 1 2 0 0

Herbal’s XML language is easy to read/understand. Measures Closeness of Mapping

Strongly Agree Agree Neutral Disagree Strongly Disagree

0 2 2 0 0

I would rather write code in Herbal using thee XML high-level
language than with the GUI editor.

Measures Closeness of Mapping and
Viscosity

Strongly Agree Agree Neutral Disagree Strongly Disagree

0 2 0 2 0

Herbal makes it easier than Jess to change my agent. Measures Viscosity

Strongly Agree Agree Neutral Disagree Strongly Disagree

1 0 0 3 0

Herbal placed very little restrictions on the order in which I
created my agent.

Measures Provisionality and Premature
Commitment

Strongly Agree Agree Neutral Disagree Strongly Disagree

0 1 1 2 0

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 13

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

Table 8: Qualitative results from User Reaction Survey #4.

Impressions of the Herbal Prototype

What part of Herbal did you find most useful?

Response # Responding Cognitive Dimension

Syntax becomes a non-issue 2 Closeness of mapping

Wiring aliases 1 N/A

What part of herbal did you find most confusing?

Response # Responding Cognitive Dimension

Understanding the order in which to create

components

2 Provisionality and

Premature Commitment

Wiring aliases 2 N/A

Getting a high-level picture of the agent

structure

1 Visibility

If you were in charge of programming Herbal, what improvements would you make?

Response # Responding Cognitive Dimension

Visual representation of the model structure 3 Visibility

Wizard or flow-chart that helps you create

components

2 Provisionality and

Premature Commitment

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 14

Cohen, Ritter, and Haynes Thu, Nov 5, 4:30 - 4:55, Crystal 5

Table 9: Observation of participants completing assignment 4.

Observation Cognitive Dimension

Participants had problems understanding what an alias is in

Herbal. They struggled with this term. Discussions with

participants revealed that it helped them to think of them as

input and output variables.

Closeness of Mapping

Participants had problems understanding when you would

want to use a problem space as opposed to just an operator.

Thinking of the problem space as a behavior seemed to be

very helpful.

Closeness of Mapping

Participants had a hard time understanding the term

impasse. It helped to explain the impasse as a set of

conditions that cause entry into a problem space.

Closeness of Mapping

Participants had problems debugging common problems.

For example, they struggled figuring out why an agent was

not entering a specific problem space or why an operator

was not firing.

Role-expressiveness

Hidden Dependencies

Participants were frustrated by the requirement to fully

specify a component when it was created.

Provisionality,

Premature Commitment

Viscosity

Hidden Dependencies

Participants were frustrated when the system forced them to

delete all references to a component before they could

delete the component.

Provisionality,

Premature Commitment

Viscosity

Participants were frustrated by the lack of warnings. The

system produced errors for situations that occur during

development but were easily corrected later in the

development process. There errors were highly dependent

on the order in which the model was created. The

participants would prefer these to be reported as warnings.

Provisionality,

Premature Commitment

Viscosity

In some cases, participants were allowed to make certain

mistakes that caused the visual editor to stop functioning

and could only be fixed using the XML code.

Error-proneness

Participants continued to express the need for a high-level

visualization of the model and its structure.

Visibility

Participants continually commented that they would have

rather learned Herbal and then Jess instead of the other way

around. They all felt that Herbal is useful in learning how to

program in pure Jess.

N/A

Proc ISECON 2009, v26 (Washington DC): §1754 (refereed) c© 2009 EDSIG, page 15

