
Pereira, Martinez, Felice, and Meliendrez Fri, Nov 6, 10:00 - 10:25, Crystal 4

Introducing Good Design Principles
in an early System Engineering Course

Claudia Pereira
cpereira@exa.unicen.edu.ar

Liliana Martinez

lmartine@exa.unicen.edu.ar

Laura Felice
lfelice@exa.unicen.edu.ar

Martín Meliendrez

mmeliendrez@alumnos.exa.unicen.edu.ar

Facultad de Ciencias Exactas
 Universidad Nacional del Centro de la Provincia de Buenos Aires

Tandil - 7000 - Argentina

Abstract

A System Engineering curriculum should involve elements or concepts that reflect a trend
towards distinguishing the true software professional from the occasional programmer. In
order to introduce some fundamental concepts in an early stage of a System Engineering
career, this paper proposes the application of a global project in a second year, where
students have to integrate the concepts learned and acquire the necessary skills to work in a
professional environment. Also, the used methodology throughout the course, which
introduces good design principles early in the career, is detailed. In particular, a global project
which puts emphasis on reuse is presented.

Keywords: algorithm design techniques, programming teaching, software reusability,
capstone project

1. INTRODUCTION

A System Engineering curriculum should
involve elements or concepts that reflect a
trend towards distinguishing the true
software professional from the occasional
programmer. This trend has important
consequences for universities. What matters
is to teach students fundamental ways of
thought that will accompany them
throughout their careers and help them grow
in this ever-changing field. As Bertrand

Meyer analyses in (Meyer, 2001), a software
curriculum should involve five
complementary elements:

• principles: lasting concepts that underlie
the whole field;

• practices: problem-solving techniques
that good professionals apply consciously
and regularly;

• applications: areas of expertise in which
the principles and practices find their best
expression;

Proc ISECON 2009, v26 (Washington DC): §2343 (refereed) c© 2009 EDSIG, page 1

Pereira, Martinez, Felice, and Meliendrez Fri, Nov 6, 10:00 - 10:25, Crystal 4

• tools: state-of-art products that facilitate
the application of these principles and
practices; and

• mathematics: the formal basis that makes
it possible to understand everything else.

We use a methodology based on the points
mentioned above to teach in the second-
year course of the System Engineering
career “Analysis and Design of Algorithms I”
at Universidad Nacional del Centro de la
Provincia de Buenos Aires (ADA1, 2009).
This methodology starts at abstraction level
defining the problem domain and identifying
the involved abstract data types (ADTs).
They are formally specified and organized in
libraries to enable their reuse. Abstraction
mechanisms are of paramount importance in
object-oriented programming (Stroustrup
1997), which is a programming paradigm to
define the abstract data types and their
relationships.
The problem definition corresponds to
clarifying the initial ideas, which in turn,
would determine the final outcome of the
project. Students are confronted with a
concrete problem, and they need to separate
necessary from unnecessary details:
students try to obtain their own abstract
view, or the problem model. This process of
modeling is called abstraction.

Finally, at implementation level, the formal
specification of data types and the
algorithms that use them are implemented
in C++ language (Dale, 1998) (Stroustrup
1997). These algorithms are based on
problem-solving techniques that are taught
throughout the course such as greedy
method, divide and conquer, backtracking
and dynamic programming.

The problem solution to be defined depends
on the student’s knowledge about
programming languages, algorithms design

techniques and available development

environments (IDEs).

The learning is mainly based on problem
solving. On the one hand, the students solve
practical exercises corresponding to each
topic of the course. On the other hand, they
develop a capstone project based on real
situations, which allows students to integrate
the learned concepts and thus, prepares
them to work in a professional environment.
In this paper, we focus on the global project

of the course and present a study case
which puts emphasis on reuse.

This paper is organized as follows. Section 2
presents the methodology applied in the
course. Section 3 describes the course
content and the teaching strategies. Section
4 describes practical aspects of the global
project. Section 5 describes a study case
developed by a student group. Finally,
Section 6 considers conclusions.

2. THE METHODOLOGY

The goal of ADA1 is to introduce the
following basement for software
development: ADT specification, integration
of specification and implementation,
construction of component library and
software reusability. In order to achieve this
goal, the proposed methodology starts at
abstraction level, which formally describes a
problem independently of the data type
representations and of a particular
programming language, and concludes at
implementation level with efficient programs
written in C++ language.

At abstraction level, the problem domain is
defined and the entities that intervene in the
problem are identified. The classes of
objects are identified and algebraically
specified in NEREUS specification language
(Favre, 2006). The fundamental design
principles of this specification language are
complete and incomplete specifications,
genericity, inheritance and clientship. These
language features allow the incremental
construction of specifications reusing
previously specified types for the solution of
other problems. The organization in libraries
of types and designs facilitates the reuse.

At implementation level, the formal
specifications are translated to C++
language code and integrated with
algorithms that intervene in the solution of
the problem. Throughout ADA1 the students
solve practical exercises that use the type
library and apply different techniques of
algorithm design such as greedy method,
divide and conquer, backtracking and
dynamic programming.

In System Engineering career, students
learn several programming languages that
correspond to different paradigms. In the
first year of the career, the principles of
structured programming are taught and

Proc ISECON 2009, v26 (Washington DC): §2343 (refereed) c© 2009 EDSIG, page 2

Pereira, Martinez, Felice, and Meliendrez Fri, Nov 6, 10:00 - 10:25, Crystal 4

Pascal is the programming language used. In
third year, the course of Object Oriented
Programming introduces the basic and
advanced concepts of the paradigm. They
use Java language. For this reason, in ADA1
(second level), C++ language is used to
establish a connection between structured
and object oriented programming. C++ is a
hybrid object oriented language that allows
working with object classes that belong to
the problem domain and functions that
manipulate them in an independent way.

By applying this methodology, the students
are able to:

• acquire a high abstraction level of
thinking, distinguishing the essential from
the irrelevant in a class specification,

• distinguish specifications from
implementations,

• learn, throughout the practices, the ability
to decide what information will be hiding
(information hiding),

• increase the reuse of types and design to
reduce the time and effort required to
build software systems.

Partially, this methodology was published in
Favre et al. (1998), Favre et al. (2000) and
Felice et al. (2002).

3. COURSE DESCRIPTION

ADA1 is a second year course in our
University. This first semester course is a
nine-hour per week program, three-hour
theoretical classes, three-hour practical
classes and three-hour computer laboratory
practices. The suggested methodology
emphasizes active learning via concrete
laboratory experiences.

ADA1 provides the students with the
fundamental concepts such as computational
complexity, recursion, ADT and design
techniques of algorithms like backtracking,
divide and conquer, dynamic programming
and greedy method. The integration of the
algorithms with ADT libraries constructed by
the students plays a central role in the
course. This course is strongly articulated
with a second semester course -Analysis and
Design of Algorithms II (ADA2, 2009)- which
continues with this methodology covering
more advanced topics such as graph theory
and approximation and geometric
algorithms.

Teaching strategies that encourage
constructivist learning are used to carry out
the proposed methodology. Learning, in a
constructivist view, is an active process
which involves complex interaction between
previous knowledge of the student, social
context and the problem to solve (Jonassen,
1999). These strategies are:

• Problems resolution: students solve
practical exercises either individually or in
groups. This strategy stimulates the
connection between learned knowledge
and its application in actual and concrete
situations.

• Development of a global project: this
project, developed in groups of two or
three students, integrates the main issues
of the course. This strategy encourages
interaction among the students who work
together to reach a common goal.

The resolution of problems is based on
classical exercises that cover the course
topics. The first topics like computational
complexity, recursive programming and
abstract data types give students a solid
foundation for further study. The remaining
topics, algorithm design techniques, provide
students with the conceptual tools to solve
problems using computers. The practical
problem of implementation in large is
addressed in the second part of the
semester, when C++ language is used to
examine how abstractions are expressed
efficiently.

The global project is a large-scale
development where the proposed
methodology is applied to solve a problem
based on a real and concrete situation. In
particular, game applications are a proper
topic for the development of the project
(Felice and Fernandez, 2006). The project
allows students to achieve:

• identification of the ADTs that intervene in
the problem,

• algebraic specification of the ADTs reusing
type libraries and design,

• selection and combination of algorithm
techniques to solve the problem, and

• implementation of the whole project.

4. THE GLOBAL PROJECT

The goal of the global project is to provide
students with real experience in solving
large complex “real world” problems. The
focus is the design, production,

Proc ISECON 2009, v26 (Washington DC): §2343 (refereed) c© 2009 EDSIG, page 3

Pereira, Martinez, Felice, and Meliendrez Fri, Nov 6, 10:00 - 10:25, Crystal 4

documentation and maintenance of the
project with particular emphasis on concepts
like reusability both in programming and
data design.

In ADA1 course, the global project has been
implemented for years and its feedback
allows improving the project design each
time.

The number of students that attend this
course is approximately 150. The project is
developed within an eight-week time frame
by students in groups of two o three.

Each group is assigned a mentor who
belongs to the teaching staff of ADA1
course. The mentor advises and helps the
groups throughout the project development.
The group-mentor contact takes place during
the computer laboratory practices.

Project organization: practical aspects

The teaching staff formulates the project
taking into account:

• experiences and knowledge of the
students,

• the problem to solve must be interesting
and relevant to represent a challenge for
the students,

• deliverables and established time frame of
each project stage should be carefully
designed.

Then, the mentors develop the project
schedule. Essentially, it is carried out in two
stages in which the groups should produce
the following deliverables.

Stage 1 - deliverables for the specification:
In this stage, the problem domain is
described and algebraically specified. Each
group has to submit a report with the
following contents:

• definition and specification in the NEREUS
language of the entities that intervene in
the problem making explicit the reused
TDAs,

• class diagram that depicts the TDAs and
its relationships,

• possible data structures to implement the
TDAs,

• analysis of the suitable techniques to
solve the problem.

Stage 2- deliverables for the implementation:
In this stage, the TDAs and the algorithms
that solve the problem are implemented.
The deliverables consist of:

• a report containing the implementation
details,

• CD/DVD containing source code and
executable file

The mentor checks the deliverables of each
stage and gives students feedback. In case
there were mistakes, students should re-do
the deliverables accurately.

Finally, each group presents the deliverable
final version of the project to their peers and
mentor. Each group member must
demonstrate their involvement in the project
to get through it.

5. A STUDY CASE

In this paper, we partially show a final
project developed by a student group of 2
members at the end of the first semester,
2008 (Meliendrez, 2008). They had to
implement board games that allow playing
human vs. computer. The computer had to
play intelligently.

One of the project aims was to construct a
design that fulfils the needs of most board
games. To find out their common features,
students required a thorough understanding
of every possible game. The design should
be extendible for other board games.
However, the implementation was restricted
to classical Checkers and Chinese Checkers
Board. The classical Checkers game board
has 64 squares (Figure 1.a) and the Chinese
Checkers board is a six-point-star called
David star (Figure 1.b). Both games are
board games played between players
alternating movements. Briefly, the
objective of the Checkers game is to
eliminate all opposing checkers or to create
a situation in which it is impossible for the
opponent to make any movement. Normally,
victory will be due to complete elimination.
On the other hand, the aim of the Chinese
Checkers game is to be the first player to
move all ten pegs (pieces) across the board
and into the opposite triangle.

Another project aim was to apply algorithm
design techniques in order to simulate the
computer intelligence to play the game.

Next, deliverables for stage 1, class diagram
and the proper techniques to solve the study
case problem are partially depicted.

Proc ISECON 2009, v26 (Washington DC): §2343 (refereed) c© 2009 EDSIG, page 4

Pereira, Martinez, Felice, and Meliendrez Fri, Nov 6, 10:00 - 10:25, Crystal 4

a) Classic b) Chinese

Figure 1. Checker Boards

The Software Design

As Meyer mentioned in (Meyer, 1997), in
many cases the abstraction is not unique;
how best to abstract a certain notion
depends on what the programmer wants to
do with the notion and its variants. Consider
for example our study case: at least four
abstractions are possible.

Figure 2 (see appendices) partially shows
the class diagram obtained. The main ADTs
are detailed below.

Board: it declares the common methods for
any type of board, such as methods to
charge the starting positions, to move a
piece, to get the position of a piece. Board is
an abstract class; thus, particular types of
boards specialize such abstract class, and
implement methods according to its
features.

Checkers and Chinese Checkers Boards:
are concrete boards which have their own
attributes and implement the abstract
methods of Board such as move and
insertPiece.

Piece: each piece has a color and a position
in the board. This class declares the
common methods getColor and
getMovement. Pieces have particular
movements according to the rules of each
game. For instance, in the Checkers game
there is a distinction between the common
piece and the checker movements. Thus,
getMovement will be implemented by each
subclass: ChineseCheckersPiece,
CheckersPiece and KingCheckersPiece.

CheckersGame: it is the class responsible
for playing. It is made by selecting the
strategy corresponding to each game. The
first design proposed by students was
improved introducing design patterns. This
more advanced topic was suggested by the

mentor. In order to encapsulate the
algorithms corresponding to Checkers and
Chinese Checkers games, and to make them
interchangeable, the best solution is the
behavioral pattern Strategy (Gamma, 1995,
pp. 315). Hence, different algorithms were
implemented for each game. Figure 3 shows
the Strategy pattern and Figure 4 depicts its
application for this particular problem (see
appendices).

Algorithms design techniques

In order to implement the machine
intelligence for each game, different topics
given in the course were used. The method
getBestMovement of MaxMinStrategy class
implements the movements of the computer
in the classical Checkers game using the
backtracking technique. In particular, Min-
Max strategy which is applied in two-player
games is implemented (Aho et al., 1983).

The method getBestMovement of
EuclideanDistance-Strategy class
implements the movements of the computer
in the ChineseCheckers game using a
heuristics based on the Euclidean distance
algorithm (Cormen et al., 1990).

The implementation

The project implementation was developed
in Code::Blocks Integrated Development
Environment. The main idea is that this
application runs in many platforms, so the
used libraries are multi-platform. During the
development of this project the C++ GCC
(GNU Compiler Collection) was used. For
Windows platforms, MinGW (native software
port of the GNU) could be used.

6. CONCLUSIONS

This paper presents the application of a
global project that integrates the learned
concepts throughout the second-year course
´Análisis y Diseño de Algoritmos I´ of
System Engineering career. In addition, a
teaching methodology that provides
students with strong conceptual foundations
since the beginnings of the career is
presented.

The application of our approach has
demonstrated good results. A high rate of
students has met the course expectations.
On the one hand, by applying the proposed
methodology students acquire a high
abstraction level of thinking distinguishing

Proc ISECON 2009, v26 (Washington DC): §2343 (refereed) c© 2009 EDSIG, page 5

Pereira, Martinez, Felice, and Meliendrez Fri, Nov 6, 10:00 - 10:25, Crystal 4

specifications from implementations.
Moreover, they increase the reuse of types
and design to reduce the time and effort
required to build software systems. On the
other hand, the development of a global
project based on real situations allows
students to integrate the learned concepts
and to acquire the skills that they need to
work in a professional environment.

Since 2004 we have integrated global
projects to ADA1 and ADA2 courses.
Throughout these years, student’s feedback
has revealed that both classes of laboratory
and mentor guide are essential to carry out
successfully the development of the project.
Some global projects were published at
student’s symposiums (Ridao 2005,
Defelippe, 2009, Martínez, 2009, Iaruzzi,
2009, Ferrante 2009, Fernandez 2005).
Fernandez (2005) obtained an award at EST
2005 symposium. These publications
demonstrate the success of our approach.

7. REFERENCES

ADA1 (2009) URL:
www.exa.unicen.edu.ar/catedras/aydalgor

ADA2 (2009) URL:
www.exa.unicen.edu.ar/catedras/aydalgo2

Aho, A.; Hopcroft, J.; Ullman, J. (1983)
“Data Structure and Algorithms”.
Addisson- Wesley.

Cormen, T.; Lieserson, C.; Rivest, R. (1990)
“Introduction to Algorithms” Ed. The MIT
Press.

Dale, N; Weems, C. (1998) “Programming
in C++”, Jones and Bartlett Publishers.
ISBN 0-7637-0537-3.

Defelippe, F. (2009) “Algoritmos heurísticos
de resolución para puzzles de piezas
deslizantes”. “38º Jornadas Argentinas de
Informática e Investigación Operativa”
(38 JAIIO) August 2009. Mar del Plata.
Argentine. pp. 346-359. Ed. Silvia Castro,
Javier Orozco. ISSN 1850-2946.

Favre, L. (2006) “A Rigorours Framework for
Model-Driven Development”. In Advanced
Topics in Database Research Series. Vol
5. Chapter 1. IGP (Idea Group
Publishing). Keng Siau Ed. USA. pp: 1-27.

 Favre L.; Felice L.; Martinez L.; Pereira C.
(1998) “Análisis y Diseño de Algoritmos:

Un enfoque a partir de especificaciones
algebraicas”. In: “IV Congreso
Iberoamericano de Educación Superior en
Computación”. Entidad organizadora:
CLEI. Ecuador 13-16 de Octubre. pp: 19-
28.

Favre L.; Felice L.; Martinez L.; Pereira C.
(2000) “On Teaching a Data Structures
and Algorithms Course through a Rigorous
Approach”. In ISECON 2000 (Information
Systems Education Conference).
Philadelphia, Pennsylvania, USA. 7 pages.

Felice L.; Martinez L.; Pereira C. (2002) “A
formal approach to the teaching of
Abstract Data Types”. In: Proceedings of
2002 Informing Science + IT Education
Conference. Irlanda. ISSN 1535-0703.
pp: 465-472.

Felice, L.; Fernández, M. (2006) “The use of
Games to teach Programming
Algorithms”. In: Proceedings of ISECON
2006: Boot Up IS Education. Nov 2-5,
Dallas. USA

Fernandez, M. (2005) “Algoritmos de
búsqueda heurística en tiempo real.
Aplicación a la navegación en los juegos
de video.” EST 2005 (Concurso de
Trabajos Estudiantiles): 34 JAIIO.
Jornadas Argentinas de Informática e
Investigación Operativa. Rosario.
Argentina.

Ferrante E. (2009) “Clausula: Herramienta
Didáctica para la Enseñanza de Lógica de
Predicados de Primer Orden”. “38º
Jornadas Argentinas de Informática e
Investigación Operativa” (38 JAIIO)
August 2009. Mar del Plata. Argentine.
pp. 412-423. Ed. Silvia Castro, Javier
Orozco. ISSN 1850-2946.

Iaruzzi, E.; Pereyra, A. I. (2009)
“Pathfinding utilizando Algoritmos de
Hormigas Aplicado a laberintos 3D” . “38º
Jornadas Argentinas de Informática e
Investigación Operativa” (38 JAIIO)
August 2009. Mar del Plata. Argentine.
pp. 447-458. Ed. Silvia Castro, Javier
Orozco. ISSN 1850-2946.

Jonassen, D. (1999) “Designing
Constructivist Learning Environments”. In
M. Reigeluth (Ed.) Instructional-design
Theories and Models: A new paradigm of
instructional theory. Volume II. Pages:

Proc ISECON 2009, v26 (Washington DC): §2343 (refereed) c© 2009 EDSIG, page 6

Pereira, Martinez, Felice, and Meliendrez Fri, Nov 6, 10:00 - 10:25, Crystal 4

215-239. Mahwah, NJ: Lawrence Erlbaum
Associates.

Martínez, C. (2009) “Heurísticas aplicadas a
la resolución del problema del Viajante
múltiple” “38º Jornadas Argentinas de
Informática e Investigación Operativa”
(38 JAIIO) August 2009. Mar del Plata.
Argentine. pp. 267-280. Ed. Silvia Castro,
Javier Orozco. ISSN 1850-2946.

Meliendrez, M. (2008) “Reuso de diseño y
código: aplicación a los juegos de damas
y damas chinas”. Internal Report.

Meyer B. (1997) “Object-Oriented Software
Construction”. Prentice Hall., Inc. ISBN 0-
13-629155-4.

Meyer B. (2001) “Software Engineering in
the Academy”. In. Computer (IEEE),
Vol.34, No.5, May 2001, pp: 28-35.

Ridao Freitas, I; Vidal, S (2005) “Algoritmos
de resolución para el cubo de Rubik”. EST
2005 (Concurso de Trabajos
Estudiantiles): 34 JAIIO. Jornadas
Argentinas de Informática e Investigación
Operativa. Rosario. Argentina.

Stroustrup, Bjarne (2000) The C++
Programming Language (Special Edition).
Addison Wesley. Reading Mass. USA.
2000. ISBN 0-201-70073-5. 1029 pages.
Hardcover.

Proc ISECON 2009, v26 (Washington DC): §2343 (refereed) c© 2009 EDSIG, page 7

Pereira, Martinez, Felice, and Meliendrez Fri, Nov 6, 10:00 - 10:25, Crystal 4

Appendices

Figure 2. Adaptation of Strategy Pattern

Figure 3. Strategy Pattern

Figure 4. Adaptation of Strategy Pattern

Proc ISECON 2009, v26 (Washington DC): §2343 (refereed) c© 2009 EDSIG, page 8

