
Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

A Framework for Harnessing the Best of Both

Worlds in Software Project Management:

Agile and Traditional

Adam A. Noureddine
adam@microlead.com

Microlead Business Solutions, 7240 Glenview Drive
Richland Hills, Texas 76180, USA

Meledath Damodaran

damodaranm@uhv.edu
University of Houston – Victoria, 3007 N. Ben Wilson

Victoria, Texas 77901, USA

Samira Younes

samirayounes@sbcglobal.net
Lockheed Martin Corporation, 7025 Chase Ridge Trail

Fort Worth, TX 76137, USA

Abstract

According to formal project management methodology, projects go through three key phases.

Out of the three, the executing phase occupies the largest portion of the project life span in

which most of the work needed to achieve the objectives of the project is actually done. In

software projects, executing is the software engineering process. Several methodologies of

engineering processes have been established, each having a set of advantages and disadvan-

tages based on factors such as the size of the project, complexity level, team competence,

etc. The single focus these methodologies often have – such as traditional or agile, present a

major challenge for software project managers. This paper proposes a framework that enables

the project manager to harness the best of known engineering processes in an agile, but dis-

ciplined, manner. The framework provides an effective balance between the need for certainty

and the need for agility in software project management.

Keywords: agile software project management, traditional software project management,

software engineering process.

1. INTRODUCTION

In a paper titled “Why Large IT Projects

Fail?” Peter Henderson (2006) argues that

“requirements drift” is a major source of

problems, amongst other factors, facing In-

formation Technology projects. His conclu-

sion points to two issues: uncertainty and

executing. Uncertainty represents the inevi-

tability of change in many aspects of the

project including requirements, circums-

tances, and stakeholders. It is worth noting

that uncertainty does not apply to all aspects

of the project. For example, requirements

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 1

Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

such as producing high quality work, and

finishing on-time and within budget, remain

as requirements regardless of the uncertain-

ty level. Executing in software project man-

agement is the software engineering process

and it often consumes most project re-

sources.

As requirements drift due to uncertainty and

change, their effect is most evident during

project execution. The drift often leads to

newly formed requirements and causes mi-

salignment with the engineering process se-

lected for the project. As a result, the team

is either not able to execute the engineering

process properly, or the process is no longer

capable of addressing project needs. This

indicates that most failures can be attributed

to the engineering process selected.

Several engineering processes have been

established each having its own advantages

and disadvantages based on a number of

factors such as the size of the project, com-

plexity level, staff competence, etc. The

challenge for software project managers is

to select the engineering process that fits

the needs of the project and can be ex-

ecuted efficiently. However, the challenge is

complicated further by two competing priori-

ties: the need for certainty by following rigid

and formal engineering processes, and the

need to remain agile to deal with drift in re-

quirements and uncertainty.

Most processes are designed to address spe-

cific project needs and circumstances. Fur-

thermore, it is rare that a process can be

applied fully without modification to the

project (Pressman, 2005.) The project man-

ager must adjust the selected process to

better fit the needs of the project. As this

seems reasonable from the point of view of

increasing the effectiveness of the process, a

closer examination shows it to be more like

a step in the dark. The modified process has

not been tested before and thus it should be

considered as a new approach, not a tried-

and-true one. Project managers may be ob-

livious to the fact they are introducing new

risks in the executing phase that could in-

crease the chance of project failure.

There’s a need for a framework that enables

the project manager to harness the best of

known engineering processes in an agile, but

disciplined, manner. Agility is important to

deal with change and uncertainty, and dis-

cipline is important to establish plans, man-

age deviations, and meet responsibilities and

constraints. The framework must address

three key issues for the project manager.

First, it must provide a workable balance

between the need for certainty and the need

for agility in software project management.

Second, it must define a software engineer-

ing process that is effective regardless of the

characteristics of the project. And third, it

must address the needs of the key stake-

holders, namely the project manager, the

engineering team, the sponsors, and most

importantly, the customer.

The paper provides an overview of software

project management and related engineer-

ing processes, then, it explains the Discip-

lined Agility Framework and discusses its key

benefits.

2. SOFTWARE PROJECT MANAGEMENT

Project management, by definition, is a pro-

gressive endeavor where clarity of the tasks

and work products evolve over a defined

period of time. Projects often start with

broad specifications, and as time passes, the

specifications are detailed and become

clearer. The modern management of

projects includes three key phases: initiating

and planning, executing, and closing, where

each phase produces specific work products

and outcomes. Normally the executing phase

requires the most resources and time, fol-

lowed by the planning phase (Project Man-

agement Institute, 2004.)

Despite all the progress in project manage-

ment, projects continue to fail at staggering

rates. The classic study conducted by the

Standish Group in 1995 showed that success

rate in IT projects hovered around 16%.

Project management techniques have im-

proved dramatically over the last decade,

but the failure rate still remains at an alarm-

ing level. The Standish Group just released

the summary version of what they call the

“2009 CHAOS Report.” This report tracks

project failure rates across a broad range of

companies and industries, all involving soft-

ware projects, with approximately 50% be-

ing entirely developed from scratch, and the

remaining involving various combinations of

purchased/modified/in-house developed

components. From their press release:

“This year’s results show a marked decrease

in project success rates, with 32% of all

projects succeeding which are delivered on

time, on budget, with required features and

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 2

Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

functions” says Jim Johnson, chairman of

The Standish Group, “44% were challenged

which are late, over budget, and/or with less

than the required features and functions and

24% failed which are cancelled prior to com-

pletion or delivered and never used.” (The

Standish Group, 1995; The Standish Group,

2009.)

Project success and failure are related to

some of the key attributes of the project,

which in most cases are:

• Scope: specifies the objectives of the

project and what needs to be done.

• Time: specifies the amount of time

allotted to the project and its start-

ing and ending dates.

• Resources: specifies the human and

physical resources allocated for the

projects.

• Uncertainty: represents the unfore-

seen circumstances that can affect

factors such as time and cost. There

are many sources of uncertainty in-

cluding changing requirements, cir-

cumstances, and having to deal with

business and technical issues that

have not been addressed before

(Project Management Institute, 2004.)

Formal software project management ad-

dresses uncertainty and change factors dur-

ing planning by selecting the proper devel-

opment process for the executing phase.

Since most time and money is spent on ex-

ecuting, it is reasonable to conclude that

projects fail or succeed during the executing

phase of the project based on their ability to

deal with uncertainty and change (Schwalbe,

2006.) The most devastating problems to

software projects take place during execu-

tion (Brooks, 1975.) Tasks not done on time,

not done properly, or not done at all; re-

sources over-used; tasks taking too long;

are all examples of problems that take place

during the executing phase and cause the

project to fail. Project execution for soft-

ware projects comprises of five key phases:

analysis, design, construction, testing, and

deployment. Many processes have been es-

tablished to manage project execution and

are generally divided between two major

schools of thought, or methodologies: the

agile and traditional methods (Pressman,

2005.)

3. SOFTWARE ENGINEERING

PROCESSES

Four leading software engineering processes

can be identified to cover the spectrum of

agile and traditional methods:

• Waterfall: follows a systematic and

linear approach to software devel-

opment. It starts with planning and

then progresses through modeling,

construction, and deployment in se-

quence (Royce, 1970.)

• Scrum: organizes small working

teams and yields frequent software

increments according to a prioritized

list of requirements (Schwaber,

2004.)

• Extreme Programming (XP): uses an

object oriented approach in its soft-

ware development and focuses on

producing a working product early-

on (Beck, 1999).

• Unified Process (UP): draws on the

best features of agile and traditional

methods. It is use-case driven, ar-

chitecture-centric, and incremental

(Ambler, 2002).

Software engineering processes are usually

part of a project with specific objectives de-

termined by sponsors and customers. They

represent the executing phase of a software

project in which most of the work relevant to

the objectives of the project is actually done.

In other words, software engineering

processes are executed in a defined context,

and hardly ever in a vacuum. Any discus-

sion of engineering processes, must there-

fore, take into consideration the context.

Software projects have common context that

can be defined regardless of the size, com-

plexity, timeframe, and expertise. Success-

ful software projects have the following

common context (Pressman, 2005):

• Finish on time and within budget:

this is a basic requirement for all

types of projects.

• Customer satisfaction with features

and quality: this represents the ulti-

mate test for successful projects.

• Clarity in the design to enable future

development: a software product

that’s difficult to modify will risk be-

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 3

Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

ing outdated and inadequate for cus-

tomers’ changing needs.

Based on this common context, the following

are some disadvantages of the leading engi-

neering processes:

• Waterfall: susceptible to change and

uncertainty. It may lead to project

failure when taking in consideration

the fact that change is inevitable

(Royce, 1970.)

• Scrum: does not provide adequate

design documentation necessary for

future development. It may not work

well with projects that require high

level of innovation because its focus

is on bringing order to the develop-

ment process (Schwaber, 2004.)

• Extreme Programming (XP): does

not provide adequate design docu-

mentation necessary for future de-

velopment. Marred by chaos that

does not work with complex and

long running projects (Beck, 1999).

• Unified Process (UP): too much em-

phasis on design modeling in the

early stages of the project which

hinders the ability to produce a

working product early on (Ambler,

2002).

The following are some advantages of the

leading engineering processes:

• Waterfall: attempts to clarify re-

quirements and produce complete

design documents early on to reduce

uncertainty (Royce, 1970).

• Scrum: cuts through project com-

plexity and brings order from chaos

by enabling a team to organize it-

self, which allows a particularly pro-

ductive order to emerge (Schwaber,

2004).

• Extreme Programming: produces

working software very early in the

development process and allows

greater freedom for the development

team to innovate (Beck, 1999).

• Unified Process: provides a solid

planning model for the software

project in the early stage that com-

plies with formal project manage-

ment (Ambler, 2002).

4. DISCIPLINED AGILITY PROCESS

FRAMEWORK

Due to the evolutionary nature of software

projects and because of changing markets

and evolving technology, software project

feature sets amount to moving targets. The

project plans start at high levels and

progress towards detailed definitions; re-

quirements are initially vaguely defined and

are clarified over a period of time; at the

onset, only key stakeholders are involved,

but more and more participate as the project

evolves. Levels of uncertainty also change

over the life of the project. Decision-making

on a software project progresses from

coarse to fine. The project team cannot

make firm decisions about a phase in the

development process until it has completed

the one before it (McConnell, 1998).

As uncertainty changes during the project,

the development approach should also

change. In many cases, what is needed is a

management approach that enables the

project to maintain a high level of agility to

deal with uncertainty, while gradually help-

ing to bring order and discipline to the engi-

neering process.

Major Project Phases

In formal project management, the project

goes through three major phases: planning,

executing, and closing (Schwalbe, 2006).

During the planning phase, the project is

initiated and planning documents are pro-

duced. At this stage, the plans also include a

set of requirements for the software that

should be considered as preliminary due to

uncertainty and the evolutionary nature of

software projects. As the project enters the

executing phase, the team gathers more

requirements and refines the project plans

accordingly. During this phase, the software

is actually constructed, documented, and

delivered. Finally, the project is closed with

a set of tasks including acceptance and

learning (Figure 1).

During the major phases, key aspects of the

project evolve. Stakeholder involvement

changes as more of them are identified and

their input and participation is sought. The

software requirement set evolves and be-

comes clearer and more defined as work

begins and stakeholders get involved. With

this normal evolution, uncertainty is usually

at its highest level at the beginning of the

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 4

Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

executing phase, and gradually diminishes

as more aspects of the project are clarified.

As a result, the software engineering needs

and focus also evolve accordingly.

Phases in Executing the Project

To effectively deal with the progressive na-

ture of executing a project, the executing

phase can be broken down into three key

sub-phases based on project needs: innova-

tion, organization, and definition (Figure 2).

This is in addition to the planning and clo-

sure phases that are standard in every

project. We now describe each phase.

The Planning Phase

Entry Criteria: approved Project Charter and

designation of a project champion and a

project manager; identified key stakeholders

and a team of domain experts.

Phase Focus and Needs: The project cham-

pion’s main role is to act as the liaison be-

tween the upper management and the

project team including the project manager,

so as to ensure that the project moves

smoothly from its planning phase to its ex-
ecution phase.

The project manager must define the

project’s vision, objectives, and business

case. Much of the planning, estimation, and

scheduling takes place while defining the

basic set of requirements (Figure 3).

Engineering Process: Unified Process (UP) is

suitable for this phase. It enables the man-

ager to focus on planning activities neces-

sary for sound project management. The

inception phase of UP combines key efforts

of the formal project planning tasks and

software engineering kick-off. It is known to

produce a solid set of planning documents

that are necessary for formal project man-

agement (Figure 3) (Ambler, 2002).

Exit Criteria: a set of project planning docu-

ments including project charter, business

case, integrated master schedule, risk regis-

ter, use-case models, and initial require-

ments.

The Innovation Phase

Entry Criteria: high level of uncertainty; only

key stakeholders are involved; basic set of

requirements.

Phase Focus and Needs: During the early

stage of executing a project, the needs and

focus of the engineering process centers on

producing a working software based on a

basic set of requirements while resolving

issues relating to the business domain and

new technologies. Giving the team a higher

level of autonomy and freedom will empower

it to find innovative solutions that address

much of the unknown aspects of develop-

ment early-on. The project manager must

select an approach that focuses on construc-

tion (Figure 3).

Engineering Process: Extreme Programming

(XP) is most suitable for this phase because

it fosters innovation and fast-paced pro-

gramming. It enables both customer and

developer to deal with most uncertainties up

front in a dynamic way. XP is known to be

capable of producing working software early-

on (Figure 3) (Beck, 1999).

Exit Criteria: a working product that encom-

passes resolution of most issues relating to

the business domain and new technology.

The Organization Phase

Entry Criteria: a working product and ex-

panded set of requirements; most stake-

holders identified.

Phase Focus and Needs: bringing order to

the chaos affected by the innovation phase.

The working software must be refined to

address specific needs that may be unco-

vered by working with additional stakehold-

ers. As the project progresses, uncertainty

decreases and the development effort must

be organized to ensure all necessary aspects

of the software are properly addressed. To

achieve this, the project manager must se-

lect an approach that balances construction,

with analysis and testing, and design docu-

mentation (Figure 3).

Engineering Process: Scrum cuts through

project complexity and chaos by enabling a

team to organize itself around a defined

work routine, which allows a particularly

productive order to emerge. It organizes the

development process around a prioritized list

according to the customer’s requirements. It

also serves as a safety net against the ca-

lendar by enabling both customer and de-

veloper to declare the project done any time

if needed (Figure 3) (Schwaber, 2004).

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 5

Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

Exit Criteria: working software that is well

tested with specific features based on the

prioritized list of requirements; testing re-

sults; and initial design documentation.

The Definition Phase

Entry Criteria: a working product that can be

declared done; all stakeholders have been

identified; complete set of requirements.

Phase Focus and Needs: produce complete

set of design documentation and work out

last minute issues. The final version of the

software must be delivered according to the

transition plan. Uncertainty at this stage is

brought down to a minimum and the soft-

ware project can be fully defined in no un-

certain terms. The project manager must

select an approach characterized by high

discipline and formal documentation (Figure

3).

Engineering Process: Waterfall is capable of

producing solid design documentation ne-

cessary for future development. It brings a

higher level of discipline at the end of the

development process to ensure orderly deli-

very and transition to the customer. It may

also continue after the project declared done

in the form of updates, upgrades, and design

documentation (Figure 3) (Royce, 1970).

Exit Criteria: finished software product; and

complete design documentation.

The Closing Phase

Explaining issues relating to this phase is

outside the scope of this framework. It is

mentioned here to assert its importance as

part of the project management process.

Additional research may uncover effective

approaches that can be integrated into the

framework.

Linkage between phases

Within the context of the framework, transi-

tioning from one executing phase to another

is a process of mapping work products from

a phase as assets for the subsequent one.

Additional research and work is needed to

establish the technical details of such map-

pings. However, it is useful to shed some

light on the linkage between the phases and

the issues that must be taken into consider-

ation.

Division between phases provides a conve-

nient means to show stages of approvals,

reviews, documentation, and other miles-

tones of the project. Following the end of

one phase, the plan for the next phase can

be developed in earnestness and in detail.

It is a convenient way to think of the project

as progressing from one phase to the next.

At the same time, some blurring of activities

can occur across phase boundaries. Some

of the activities, though spanning over dif-

ferent phases, may nevertheless be interde-

pendent. More importantly, not all activities

in a project are strictly sequential in nature,

and feedback and rework of activities are

normal and healthy, as additional details are

uncovered. For example, although the

project plan is an outcome of the planning

phase, the plan may change in subsequent

phases as new information becomes availa-

ble.

Another linkage between the phases has to

do with the degree of impact on decisions

made and errors committed. It is a well-

known principle often quoted in software

engineering that the effect of a decision on

the project’s final outcome is high at the

planning and innovation phases, and less if

made in the later phases. Similarly the cost

impact of errors made is very high during

the early stages, and reduces over subse-

quent phases.

Another area of relative difference is the ef-

fect or cost of changes across the phases.

With each succeeding phase that the project

has entered, the cost of changes increases.

All of these observations are supported by

case projects, but are difficult to prove

across all software projects in an objective

way.

Project management practices may differ

from one phase to another because different

activities are performed in the different

phases. Similarly, different project manage-

ment skills may be brought to play to effec-

tively succeed in accomplishing the tasks

required in the different phases. Of course,

some of the same project management ac-

tivities may occur in all the phases, such as

stakeholder involvement, change manage-

ment, negotiation, and measurement of re-

sources utilized and progress made.

The main outputs of the planning phase are

documents, and these may be seen by own-

ers as not adding sufficient value or not

worth the investment made to produce

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 6

Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

them. This may result in not adequately

performing the planning tasks. Certainly,

owners can and should be educated to the

reality that if early work is not done well,

then project outcomes will almost certainly

be undesirable, and one can cite plenty of

examples of software projects that have

failed when early phase work was not car-

ried out or not done properly.

Time Distribution between Phases

Uncertainty in the outcome of a software

project occurs due to various factors such as

project complexity, definitiveness of re-

quirements, stakeholders’ involvement, and

uniqueness of the project with respect to its

business and technical environments. How-

ever, regardless of its level, uncertainty does

not remain the same throughout the project

life span. It changes from high at the begin-

ning of the project, to moderate in the mid-

dle, to low towards the end, as more factors

are mitigated or uncovered (Schwalbe,

2006). Projects with higher levels of uncer-

tainty require more innovation and organiza-

tion, so less time is dedicated to definition.

On the other hand, projects with lower level

of uncertainty require less innovation and

organization, so more time can be dedicated

to definition (Figure 4).

Additional research is needed to determine

whether a defined relationship exists be-

tween the level of uncertainty and the per-

centage of time dedicated to each phase. For

example, it will be nice to have a formula or

at least some heuristic way to estimate the

overall level of uncertainty for a software

project based on the following key factors:

• Stakeholders involvement

• Definitiveness of requirements

• Project complexity

• Technology newness

• Team competence

Another formula or heuristic would be useful

to determine the percentage of time that

should be allocated to each of the executing

phases: innovation, organization, and defini-

tion.

5. BENEFITS OF THE DISCIPLINED

AGILITY PROCESS FRAMEWORK

The benefits of the framework from the

project management perspective are as fol-

lows:

• Clarity of the engineering process

and its ability to deal with change.

The framework emphasizes tackling

issues with high level of uncertainty

early on. Delivering the product in

stages reduces the technical risk of

unsuccessful integration or inade-

quate testing. The use of Extreme

Programming and Scrum reduces

the risk associated with changing re-

quirements.

• Control project calendar with the

ability to distribute time between

phases based on the overall uncer-

tainty level of the project. Time can

also be redistributed to executing

phases based on progress. The end

of each phase presents tangible

signs of progress and opportunities

to revise plans. It reduces the risk of

slipping behind schedule.

• Control cost with the ability to drop

less important requirements and

shorten the definition phase. If the

project runs the risk of budget over-

run, the prioritized requirements list

allows the manager to postpone less

important requirements. The man-

ager can also control the amount of

time spent on the design documen-

tation during the definition phase

without jeopardizing the final deli-

very of the project.

• Discipline with sharp milestones at

the end of each phase and formal

work products at the beginning and

end of the project. The framework

defines key milestones with entry

and exit criteria for each phase that

focus on the software product.

The benefits of the framework from the

software engineering perspective are as fol-

lows:

• Structured approach with defined

entry/exit criteria and time frame for

each phase. The team knows what is

expected and the process to follow.

The progressive approach towards a

higher level of discipline allows the

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 7

Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

team to adjust gradually as the

project moves forward.

• Flexibility to deal with changing re-

quirements and priorities during the

first two phases of the project be-

cause final design decisions will be

made at a later phase. The team

does not have to worry about major

changes to requirements on ongoing

basis because they know it will be

considered periodically at the end of

each phase.

• Freedom to innovate early in the

project when it is most needed by

focusing immediately on construction

and working directly with code.

Problems and shortcomings surface

early and the team can focus on

finding novel ways to resolve them.

The benefits of the framework from the

sponsors’ and customers’ perspective are as

follows:

• Immediate results that propel better

buy in. The framework is designed to

deliver the most relevant functionali-

ty first. Users don't have to wait for

a particular functionality until the full

product is ready.

• Satisfaction with features and quali-

ty. The prioritized requirements list

assist in providing the customers

with the features they want. The

staged delivery ensures shorter

feedback cycle and improves quality.

• Clarity in the design to enable future

development. Software products that

lack design documents are difficult

to modify in the future and risk be-

ing outdated and inadequate for cus-

tomers’ changing needs.

6. SUMMARY AND CONCLUSION

In order for software projects to succeed, it

is critical to apply the appropriate planning

methods such as developing an integrated

master schedule that identifies and logically

links all project milestones and critical tasks,

assigning budget and resources to tasks,

and monitoring progress throughout the life

of the project. In addition, a risk register

should be created to capture and minimize

risks associated with the project. However,

there’s a need for a software engineering

framework that enables the project manager

to harness the best of known engineering

processes in an agile, but disciplined, man-

ner. Agility is important to deal with change

and uncertainty, and discipline is important

to establish plans, manage deviations, and

meet responsibilities and constraints. The

Disciplined Agility Framework addresses

three key issues for the project manager.

First, it provides a workable balance be-

tween the need for certainty and the need

for agility in software project management.

Second, it defines a software engineering

process that is effective regardless of the

characteristics of the project. And third, it

addresses many of the needs of the key

stakeholders, namely the project manager,

the engineering team, the sponsors, and

most importantly, the customer, as they

work through the project’s life cycle.

In this paper we first provided an overview

of Software Project Management and Soft-

ware Engineering Processes and highlighted

the difficulties that often lead to project fail-

ure. We then showed why known engineer-

ing processes are less than effective in ad-

dressing software project needs. Much of

the existing literature on software engineer-

ing processes stress the need for approaches

that combine advantages from traditional

and agile methods, but do not offer a prac-

tical way to do so. In this paper we proposed

a framework that enables the project man-

ager to harness the best of known engineer-

ing processes in an agile, but disciplined,

manner. The concept is based on the evolu-

tionary nature of software projects. Plans,

requirements, stakeholders’ involvement,

and uncertainty change over their life span.

The framework divides the project into five

phases: planning, innovation, organization,

definition, and closure. We examined each

phase in detail. Finally, we presented a dis-

cussion of the benefits of the framework

from the project management perspective,

the software engineering perspective, and

the sponsors/customers perspective.

7. ACKNOWLEDGMENT

The Disciplined Agility Framework is the

work of Adam Noureddine. The authors

gratefully acknowledge the feedback and

suggestions from the referees.

8. REFERENCES

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 8

Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

Ambler, S., and L. Constantine (2002) The

Unified Process Inception Phase, CMP

Books.

Beck, K. (1999) Extreme Programming Ex-

plained: Embrace Change. Addison-

Wesley.

Brooks, F. (1975) The Mythical Man-Month,

Addison-Wesley.

Henderson, Peter (2006) “Why Large IT

Projects Fail,” Retrieved from:

http://de.scientificcommons.org/432695

31

McConnell, Steve (1998) Software Project

Survival Guide, Microsoft Press.

Pressman, R. (2005) Software Engineering,

A Practitioner’s Approach, McGraw Hill.

Project Management Institute, Inc. (2004) A

Guide to the Project Management Body

of Knowledge (PMBOK® Guide).

Royce, W. W. (1970) “Managing the Devel-

opment of Large Software Systems:

Concepts and Techniques,” Proc. WES-

CON.

Schwaber, Ken (2004) Agile Project Man-

agement with Scrum, Microsoft Press.

Schwalbe, Kathy (2006) Information Tech-

nology Project Management, Fourth Edi-

tion, Thomson Course Technology.

The Standish Group (1995) “The CHAOS Re-

port” Retrieved from:

www.standishgroup.com

The Standish Group (2009) "CHAOS Sum-

mary" Retrieved from:

www1.standishgroup.com/newsroom/ch

aos_2009.php

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 9

Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

APPENDIX

Figure 1: Project management phases

Figure 2: Sub-phases based on project needs during execution

Project

Management

Tasks

Refine

Plans

Gather more

Requirements
Deliver

Product

Initiate

Project

Project Life Span

Planning Phase Executing Phase

Project

Closure

Closing Phase

High Moderate Low

Innovation Organization Definition

Uncertainty

Progress

Requirements

Set
Basic Prioritized Elaborated

 Project

Needs

Stakeholders

Involved
Key Most All

Executing Phase

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 10

Noureddine, Damodaran, and Younes Sat, Nov 7, 9:00 - 9:25, Crystal 6

Figure 3: Balancing analysis, design, construction, testing and documentation during

the executing phase

 Figure 4: Time distribution between phases based on the uncertainty level

Innovation

XP Scrum Waterfall

Working Set Specific Features Completed Set
Software

Product

Development

Process

Serves as a safety

net and enables both

customer and

developer to declare

the project done if

needed.

Necessary for future

development and

may continue after

the project declared

done in the form of

updates and design

documentation.

Enables both

customer and

developer to deal with

most uncertainties up

front with the ability to

produce a working

software early-on.

Development

Focus

Construction

Analysis/Testing

Design -

Documentation

Design -

Documentation

Design -

Documentation

Analysis

Construction

Construction

Analysis

UP

Provides excellent

clarity during the

initiation phase.

Planning

Project Plan

Organization Definition

Planning

Phase

Executing Sub-Phases

Innovation

XP

Organization

Scrum

Definition

Waterfall

Innovation

XP

Organization

Scrum

Definition

Waterfall

Definition

Waterfall

Organization

Scrum

Innovation

XP

Initiation

Unified Process

Initiation

Unified Process

Initiation

Unified Process

Low

Uncertainty

Moderate

Uncertainty

High

Uncertainty

Phase Time Distritbution

(Overall uncertainty level defines time distribution for the execution phases)

Proc ISECON 2009, v26 (Washington DC): §3164 (refereed) c© 2009 EDSIG, page 11

