
Mauco and Ferrante Sun, Nov 8, 8:00 - 8:25, Crystal 4

Clausula: A Didactic Tool to
Teach First Order Logic

María Virginia Mauco
vmauco@exa.unicen.edu.ar

Enzo Ferrante

eferrante@alumnos.exa.unicen.edu.ar

Facultad Cs. Exactas
Universidad Nacional del Centro de la Pcia. de Buenos Aires

Abstract

Immediate feedback and interactivity are crucial in any learning process. Introductory logic
courses exercises are usually performed with paper and pencil approach. Students often have
difficulties in handling formalisms and getting familiar with them. For this reason, we
developed Clausula, a tool to support students’ learning process in some First Order Logic
contents.
This paper describes Clausula, an educational, visual, and interactive tool to experiment with
arbitrary sets of First Order Logic clauses in order to determine their (un)satisfiability. The tool
is easy and intuitive to use, and help students to improve their understanding of logic
concepts. Clausula is implemented in C++, and it has been released under a free software
license.

Keywords

Software tool, Clauses Satisfiability, Resolution Method, First Order Logic

1. INTRODUCTION

Basic courses on Logic are common in most
informatics curricula. In this kind of courses,
students have to do a lot of individual work
to solve exercises and to gain experience in
working with formalisms. In this context, the
use of didactic tools which support the
learning process, without taking so much
time to learn to use them, is really useful.

The Undergraduate Degree Program in
Systems Engineering in our career has an
introductory course in Propositional Logic
and First Order Logic (FOL) that is taught in
the first semester of the second year.
Learning these subjects requires students’
substantial individual work, because they
have to solve logic exercises in order to
obtain skills in handling formalism. At first,
we used lectures and pencil-paper problem
solving approach to teach course contents.
But as immediate feedback is essential for

effective learning, and interactivity and
visualization are keys to motivate and
improve understanding, we considered the
development of a software tool to support
students’ work. The tool should be very easy
and intuitive to use, as it will be devoted to
beginner students, and it should follow the
same logical notation and approach used in
lectures in order to help students get
familiar with logical formalisms.

We then developed Clausula, a didactic,
visual, and interactive tool that allows
teachers and students experiment with
arbitrary sets of FOL clauses in order to
determine their (un)satisfiability (Ben-Ari,
2001). To achieve this, classic and
fundamentals FOL methods were
implemented, as for example the resolution
method. In addition, Clausula gives the
possibility of computing the most general
unifier of two literals by using Robinson’s

Proc ISECON 2009, v26 (Washington DC): §4142 (refereed) c© 2009 EDSIG, page 1

Mauco and Ferrante Sun, Nov 8, 8:00 - 8:25, Crystal 4

Unification Algorithm, and it allows the
application of simplification strategies to the
initial set of clauses, such as tautology
clauses deletion, elimination of idempotent
literals, and simplification of clauses because
of the presence of pure literals (Ben-Ari,
2001; Burke, 1996; Cuena, 1985).
Concerning the determination of the
satisfiability of a set of clauses, the tool
distinguishes if the clauses are a Logic
Program, a set of Horn clauses or a set of
arbitrary clauses in order to apply the
corresponding strategy in each case (Burke,
1996).

The tool has been designed in the Object
Oriented Paradigm, and implemented using
C++, the STL library (STL, 1994) to manage
basic structures, and the Qt framework (Qt
Reference Documentation, 2009) for the
graphic interface. In addition, it has been
released under the license GNU GPL v2.0
(GNU, 1991), and thus it is possible to
download it for use, study or source code
modification from (Ferrante, 2009). This site
also includes a complete description of the
tool, the user manual, and the history of
versions.

Clausula has been developed by an
undergraduate third-year student of the
career, who is also working as assistant in
the course, with teachers’ support and
experience in introducing these subjects to
beginner students.

This paper is structured as follows. In
Section 2 Clausula general design is
described. Section 3 presents the grammar
for defining well-formed clauses. Section 4
describes the General Resolution Method
implemented in Clausula. The main
functionalities of the tool are shown in
Section 5. Section 6 describes the evaluation
of the use of Clausula in a logic course.
Finally, some conclusions and possible future
work are mentioned in Section 7.

2. CLAUSULA: GENERAL DESIGN

Clausula is an educational, didactic, and
interactive tool that can be used as an aid in
analyzing satisfiability in FOL clauses.

It has been designed in the Object Oriented
Paradigm, and it has been implemented in
C++. Clausula design is based on a set of
Abstract Data Types (ADTs) that represent

the different elements of FOL, establishing a
correspondence between these elements and
the classes which implement them.

Concerning the design model, three distinct
layers can be distinguished:

- Main Structures Layer:

This layer contains all the ADTs that are the
basis for the algorithms implemented in the
upper layer. These ADTs provide an interface
to manipulate FOL elements, and implement
some basic methods to obtain potentially
useful information, for example the ADT set
of clauses can be asked if it is a set of Horn
clauses. The correspondence between each
FOL element and the classes and methods
that implement them makes this layer the
richest one concerning the design of
structures. It is important that each class
structure ensures an easy way to access the
data it stores, because all the algorithms
depend on them.

The modular way used to design the
structures promotes software reuse (for
example, structures may be used in other
programs as external libraries).

- Algorithms Layer:

This layer includes the algorithms that are
clients of the structures defined in the
previous layer. These algorithms process the
data represented by the ADTs in order to get
useful information for the users. This layer
has the methods of highest computational
cost, as some of the algorithms are
implementations of classic methods of FOL,
such as Robinson’s Unification Algorithm
(Cuena, 1985), and the General Resolution
Method (Ben-Ari, 2001).

- Graphic Layer:

This layer contains all the code for the
Graphical User Interface (GUI) which
provides easiness and agility in using the
program. For this layer’s implementation,
the Qt framework (Qt Reference
Documentation, 2009) was selected because
it simplifies the design of forms and the
portability of the application in different
Operative Systems. Version 0.45 of Clausula
is available for MS Windows as well as
GNU/Linux, in order to let students select
the platform to work with.

Proc ISECON 2009, v26 (Washington DC): §4142 (refereed) c© 2009 EDSIG, page 2

Mauco and Ferrante Sun, Nov 8, 8:00 - 8:25, Crystal 4

3. WELL-DEFINED CLAUSES

Clausula works with a subset of FOL
formulas: a set of clauses (Ben-Ari, 2001).
Therefore, it was necessary to define a way
to check that all the strings typed by users
of Clausula belonged to the language of FOL
well-defined clauses. Then, a context-free
grammar was defined in order to recognize
strings that are FOL well-defined clauses;
the BNF for the grammar is shown in Figure
1. This grammar was implemented using the
free tools Flex, for lexical analysis (Paxson,
1995), and Bison, for syntactic analysis
(Donnelly, 1995). In this way, we obtained a
module that detects if a string is a well-
defined clause or not.

It is important to remark that, in case of
error, Clausula reports the type of mistake
the user has done in order s/he could detect
and correct it easily. This is important from a
didactic point of view as the users are not
only warned about the error but they also
get some clues to correct it.

4. GENERAL RESOLUTION METHOD

The General Resolution Method is the main
part in Clausula. This procedure will try to
determine if a set of FOL clauses is
satisfiable or unsatisfiable. Satisfiability may
not be always determined because clauses
satisfiability in FOL is undecidible (Ben-Ari,
2001). Then, if the set of clauses is
unsatisfiable Clausula will always give an
answer; however, if it is satisfiable an
answer may or may not be given. For this
reason, what Clausula implements is a
procedure but not an algorithm, as we
cannot assure it will finish for any input set
of clauses (Lewis, 1998). Nevertheless,
Clausula will always give a response in case
the input set of clauses corresponds to a
Logic Program as it has been demonstrated
it is always satisfiable (Ben-Ari, 2001).

Resolution Method uses only one rule to
deduce new clauses: the resolution rule or
resolvent definition. This rule takes two
clauses C1 and C2 (which do not share
variables), and literals l1 ∈ C1 and l2 ∈ C2,
such that l1 and the complementary of l2 can
be unified by the most general unifier u, and
defines the resolvent of C1 and C2 as the
clause

 Res(C1, C2) = (C1u – {l1u}) ∪ (C2u –
{l2u})

Before the application of this rule to any pair
of clauses, variables must be renamed (so
that clauses do not share variables), and the
literals involved must be unified.

The basic idea behind the General Resolution
Procedure implemented is to work with two
lists of clauses Lc and Lt. Lc contains
potentially combinable clauses (a clause is
potentially combinable if it is not equivalent
to any other clause in the set of resolvents,
and it has a literal whose complementary
one may be found in another clause), and Lt
groups all the clauses used in the process
(the original ones plus the ones obtained
applying the resolution rule). Then, in each
iteration a clause C from Lc is combined with
all the possible ones in Lt (exploring breadth
all possible solutions). Once all the
combinations are made, C is deleted from Lc
(but it remains in Lt). To determine if two
clauses may be combined, it should be
verified if they have complementary literals.
The clause obtained from the combination
may be a potentially combinable clause (and
in this case it is added to both lists) or not
(it is only added to Lt). It is important to
remark that before adding a clause to any of
the lists, the strategies of deletion of
tautological clauses and simplification of
clauses by idempotent literals (Kelly, 1997)
are applied. Any time the empty clause is
obtained as resolvent, the procedure finishes
and Clausula informs the user the input set
of clauses is unsatisfiable. If the Lc list
becomes empty, the tool answers the input
set is satisfiable.

5. CLAUSULA MAIN FEATURES

As Clausula has been designed with the
purpose of having a didactic tool, it is
important to highlight the functionalities it
includes as regards FOL teaching. During
FOL learning process, there are a number of
different reasons that make students
analyze satisfiability in a set of clauses:

- to learn the concept of satisfiability in
order to check exercises;

- to determine if a conclusion follows from a
set of hypothesis (logical consequence
notion, (Ben-Ari, 2001));

Proc ISECON 2009, v26 (Washington DC): §4142 (refereed) c© 2009 EDSIG, page 3

Mauco and Ferrante Sun, Nov 8, 8:00 - 8:25, Crystal 4

- to obtain automatically a correct answer
substitution from a specification written in
FOL (Ben-Ari, 2001).

In all these cases Clausula offers didactic
support to verify exercises, giving confidence
to students about the correctness of their
results.

The UML activity diagram in Figure 2 shows
(in a general way) data flow in the tool, and
allows one to understand how the modules
implementing each functionality of the tool
are related and interact.

Below, a more detailed description of each
functionality is provided.

Resolution in a Set of Clauses

As it has been mentioned previously, the
main idea behind Clausula is to provide an
easy implementation of the Resolution
Method in FOL. As regards computability
theory, the problem of determining if a set
of FOL clauses is or is not satisfiable is
undecidible (Ben-Ari, 2001). This means
there is no algorithm to decide if any
arbitrary set of clauses is satisfiable or not.
However, there are set of clauses that have
some singularities that may be used to
define some heuristics or refinement
methods which help to reduce processing
times.

Clausula has implemented two of such
refinements in order to try to overcome
some of the limitations inherent to the
Resolution Method: detection of Horn
Clauses and detection of a Logic Program. In
case these refinements cannot be applied,
the General Resolution Method is be used.

- Horn Clauses

A Horn clause is a clause with at most one
positive literal. When Clausula detects the
input set of clauses corresponds to a set of
Horn clauses, it applies Unit Resolution, a
complete strategy when working with Horn
clauses (Burke, 1996). This refinement
forces one of the clauses to be used in the
calculation of a resolvent to be a unit clause,
that is a literal. In this way, the number of
possible combinations of clauses to calculate
is reduced considerably.

- Logic Program

A Horn clause may be of any of three types:
rule (one positive literal and the rest
negative ones), fact (unit clauses with one

positive literal), or goal (no positive literal,
all are negative ones). A set of rules and
facts defines a Logic Program. It has been
demonstrated that every Logic Program is
satisfiable (Ben-Ari, 2001). Then, when
detecting the input set of clauses is a Logic
Program, Clausula informs the user the input
set of clauses is satisfiable without
calculating any resolvent.

- General Case

In case the input set of clauses is not a set
of Horn clauses or a Logic Program, Clausula
applies the General Resolution Method. This
gives robustness to the tool in the sense it
tries to determine the satisfiability of any
arbitrary set of clauses.

It is important to remark that the tool
always tells the user which was the strategy
followed to get a result. In this way, users
will know the theoretical concept applied to
solve the problem, and thus they may
compare it with their own results. In
addition, Clausula shows the resolvents that
were calculated by the resolution process
applied, thus giving students more elements
to understand the problem and its solution.
Figure 3 shows an example set of clauses
with all the computations performed by the
tool to conclude the set is unsatisfiable. In
addition to the desired set of clauses, the
user must indicate which symbols must be
considered as constants. In this case, we
can see that, before performing the
resolution process, the tool has simplified
the original set of clauses using pure literal
elimination strategy.

Unification

Before applying the FOL resolution rule, the
pair of clauses involved must be unified.
Clausula implements a reduced version of
Robinson’s Unification Algorithm as it works
with two literals (instead of n literals as
Robinson’s Algorithm does) (Cuena, 1985).

In addition of the use of this algorithm as
part of resolution process, Clausula allows
students make use of it in an option of the
menu especially devoted to unification.
When this option is selected, given two
literals the tool will find the most general
unifier (mgu) and it will show the result; in
case the literals are not unifiable, Clausula
will inform this to users. In this way,
students could check their exercises to find
out if their results are correct. Figure 4

Proc ISECON 2009, v26 (Washington DC): §4142 (refereed) c© 2009 EDSIG, page 4

Mauco and Ferrante Sun, Nov 8, 8:00 - 8:25, Crystal 4

shows the result when two unifiable literals
are input.

Simplification Methods

One effective way of reducing the number of
combinations of clauses to perform and thus
improving the procedure performance is the
application of simplification methods before
and after resolution process.

Clausula allow users to choose which
method or set of methods to be applied to
the input set of clauses. Following, we briefly
describe each method implemented by the
tool.

- Equivalent Clauses

Clausula will compare each clause in the set
to all the rest trying to find an equivalent
one. If two clauses are found equivalent,
one of them is deleted from the set. Figure
5 shows the application of this method to
input set of clauses shown in Clauses of
Figure 3.

- Idempotent Literals

This simplification method uses idempotence
property (Cuena, 1985) to simplify literals
inside a clause. The algorithm is simple: for
each clause in the set to simplify, each literal
is compared to all the rest to verify if it is
equivalent or not to any literal in the clause;
if it is equivalent, it is deleted from the
clause.

- Tautological Clauses

The simplification by tautological clauses is
very simple, and it consists in asking each
clause if it is a tautology or it is not; in case
the clause is a tautology, it is deleted from
the set, as it will not contribute to deduce
the empty clause. The method associated to
each clause to determine if it is a tautology
or not, takes each literal in the clause and
compares it to the rest trying to find its
complementary literal (if the complementary
is found, the clause is considered a
tautology). Figure 6 displays the new set of
clauses after eliminating tautological clause
¬C(u) ∨ C(u) from the input set of clauses
that appear in Clauses of Figure 3.

- Pure Literals
A literal l in a clause C is defined as pure for
the set of clauses S (C ⊆ S) if and only if the
complementary literal of l cannot be found in
any clause of S different from C (Arenas,
1996).

Considering this definition, the simplification
method will delete clauses containing one or
more pure literal, as these clauses will never
contribute determining the unsatisfiability of
the set. Figure 7 shows the new set of
clauses after deleting ¬A(x, y) ∨ ¬B(y) ∨
D(x, f(x)) from the input set of clauses that
appear in Clauses of Figure 3 as it contains
pure literal D(x, f(x)).

6. EVALUATION

Clausula has been successfully class-tested
during the first semester of this year. It has
been used in lectures, to introduce FOL
resolution method, and for homework
assignments. Students report positive
experiences with its use (we have
approximately 150 students per year). They
found Clausula easy to install and very
intuitive to use, and so they were quite
enthusiastic in working with the tool on
practical exercises. Students also
appreciated the assistance provided by
Clausula to correct mistakes when
calculating the most general unifier or when
trying to find out if a set of clauses is
satisfiable or not. As Clausula checks the
input set of clauses by using the context-
free grammar defined in Section 3, students
could correct mistakes when defining FOL
clauses. As another advantage, they
mentioned the possibility of using
simplification methods as desired in order to
contrast the results obtained using paper
and pencil. One limitation remarked by
many students was the fact that Clausula
does not work with arbitrary FOL formulas, it
only accepts clauses. Then, they suggested
including a module to convert any FOL
formula to a set of FOL clauses.

7. CONCLUSIONS AND FUTURE WORK

Clausula is a didactic, interactive and easy to
use educational tool integrated in an
undergraduate course in FOL. It was
developed by an undergraduate third-year
student, who is also an assistant in the
course, considering contents and teaching
methodology followed in the course.
Clausula has been and will be used as
support software in the course. The
experience of its introduction in the logic
course was completely positive, as according
to students and teachers opinions the tool is
easy and intuitive to use, and allow students
to apply the learnt concepts and to verify

Proc ISECON 2009, v26 (Washington DC): §4142 (refereed) c© 2009 EDSIG, page 5

Mauco and Ferrante Sun, Nov 8, 8:00 - 8:25, Crystal 4

their results, thus participating more actively
in the learning process. In this way, FOL
concepts remain in the center with the tool
collaborating as an assistant. Besides, we
want to highlight that the development of
educational tools by students in order to be
used by other students, is an additional
motivation when students have to choose
the projects to implement in the different
courses of the career.

Additionally to the fact that Clausula is a
didactic tool, and all the functionalities it
provides to analyze FOL clauses satisfiability,
the tool has an important advantage for
teaching: it is free software (Stallman,
2002). When free software is used in
teaching/learning processes students have
the possibility of using and sharing, without
restrictions, all the resources it offers. But
more importantly, students can analyze
concrete implementations of algorithms and
thus, besides using them as support in their
learning processes, they can participate in
the development of their own tools. For
example, one of the students who took the
course and experimented with Clausula is
finishing the implementation of a new
functionality to add to the tool: a translator
from arbitrary FOL formulas to formulas in
clausal form (also known as Skolem normal
form) (Burke and Foxley, 1997). In this way,
Clausula will extend its functionality to work
with arbitrary sets of FOL formula.

Clausula interface was initially developed for
Spanish speakers by using the Qt
framework. One of the additional advantages
of having used this library is that Clausula
interface could be easily translated to
English using a set of tools provided by Qt.

We continue evaluating, improving, and
extending Clausula as an integrated
educational tool, on the basis of our teaching
experience and students’ suggestions.
Concerning the tool implementation, we will
work on reducing the computational cost of
some functions involved in the resolution
process. Regarding the addition of new
functionalities, we plan to extend the tool to
work with the notion of logical consequence.
Another extension could be the inclusion of a
module to allow users to guide themselves
the resolution process, i.e. selecting which
pair of clauses will be taken to calculate next
resolvent. Moreover, it would be really
useful that the tool could show the

resolution tree graphically. We also plan to
study in depth Human-Computer Interaction
factors (HCI, 2009) that influence students’
learning process success in order to adjust
Clausula interface.

REFERENCES

Arenas, A. (1996) Lógica Formal para
Informáticos (Formal Logic for
Informatics), Editorial Diaz de Santos.

Ben-Ari, M. (2001) Mathematical Logic for
Computer Science, Prentice Hall, Series
in Computer Science.

Burke, E. and E. Foxley (1996) Logic and its
Applications, Prentice Hall, Series in
Computer Science.

Cuena, J. (1985) Lógica Informática
(Informatic Logic), Alianza Editorial.

Donnelly, C. and R. Stallman (1995)
Bison - Version 1.25: The YACC-
compatible Parser Generator
http://dinosaur.compilertools.net/bison/i
ndex.html (Accessed May 2009).

Ferrante, Enzo (2009) Clausula: Resolución
en Lógica de Primer Orden.
http://clausula.sourceforge.net/

GNU General Public License, version 2
(1991) http://www.gnu.org/licenses/gpl-
2.0.html (Accessed August 2009).

HCI Bibliography: Human - Computer
Interaction Resources (2009)
http://hcibib.org/ (Accessed October
2009).

Kelly, J. (1997) The Essence of Logic,
Prentice Hall.

Lewis, H. and C. Papadimitriou (1998)
Elements of the Theory of Computation,
Prentice Hall, Second Edition.

Paxson, V. (1995) Flex - Version 2.5:
A Fast Scanner Generator.
http://dinosaur.compilertools.net/flex/fle
x.ps. (Accessed May 2009).

Qt Reference Documentation (Open Source
Edition) http://doc.trolltech.com/4.5/
(Accessed May 2009).

STL: Standard Template Library
Programmer’s Guide (1994)
http://www.sgi.com/tech/stl/ (Accessed
May 2009).

 Stallman, R. (2002) Free Software Free
Society: selected essays of Richard M.
Stallman.
http://www.gnu.org/philosophy/fsfs/rms
-essays.pdf (Accessed May 2009).

Proc ISECON 2009, v26 (Washington DC): §4142 (refereed) c© 2009 EDSIG, page 6

Mauco and Ferrante Sun, Nov 8, 8:00 - 8:25, Crystal 4

Appendix

Figure 1 – Context-free grammar for FOL Clauses Language

Figure 2 – Clausula Activity Diagram

Proc ISECON 2009, v26 (Washington DC): §4142 (refereed) c© 2009 EDSIG, page 7

Mauco and Ferrante Sun, Nov 8, 8:00 - 8:25, Crystal 4

Figure 3 – General Resolution Method Application

Figure 4 – Most General Unifier Computation

Figure 5 – Simplification by Equivalent Clauses

Proc ISECON 2009, v26 (Washington DC): §4142 (refereed) c© 2009 EDSIG, page 8

Mauco and Ferrante Sun, Nov 8, 8:00 - 8:25, Crystal 4

Figure 6 – Simplification by Tautological Clauses

Figure 7 – Simplification by Pure Literals Strategy

Proc ISECON 2009, v26 (Washington DC): §4142 (refereed) c© 2009 EDSIG, page 9

