
Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1350

©2010 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org /proc.isecon.org

Beyond Introductory Programming:

Success Factors for Advanced Programming

Arthur Hoskey

arthur.hoskey@farmingdale.edu

Paula San Millan Maurino

paula.maurino@farmingdale.edu

Farmingdale State College
State University of New York

Farmingdale, NY 11735

Abstract

Numerous studies document high drop-out and failure rates for students in computer programming
classes. Studies show that even when some students pass programming classes, they still do not

know how to program. Many factors have been considered to explain this problem including gend-
er, age, prior programming experience, major, math background, personal attributes, and the pro-

gramming language itself. Research in this area has mainly been confined to introductory pro-
gramming courses. This study explores the problem at a higher level. It tracks students longitudi-
nally as they move from the first introductory programming class, to the second introductory class,
and finally, to completion of an advanced programming course. The research question answered
was: What are the factors contributing to the success or lack of success in advanced programming?
The success factors examined were the introductory programming language taken, number of pro-

gramming classes taken, track (concentration in the major), math and logic background, time
lapse between the introductory and advanced programming class, instructor, gender, and general
GPA. The factors that influenced student success were found to be the introductory programming
language, time lapse between the introductory and advanced class, general grade point average,
and track. Identification of these factors will help educators to make the best decisions on how to
improve computer curriculum and programs and help students become better programmers.

Keywords: programming, programming languages, programming success, programming failure,

success factors

1. INTRODUCTION

Farmingdale State College, a campus of the
State University of New York, is a four year

college specializing in applied science and
technology. The college has had in place a
Bachelor of Science Degree in Computer Pro-
gramming and Information Systems for the
past eight years. The degree is offered by the

Computer Systems Department in the School
of Business at the college and has five tracks
(concentrations within the major): networking,

database, systems, programming, and web
development. All students are required to take
two semesters of programming at an introduc-
tory level. They are currently offered a choice
of C++ or Visual Basic. In addition, they are

mailto:arthur.hoskey@farmingdale.edu
mailto:paula.maurino@farmingdale.edu

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1350

©2010 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /proc.isecon.org

all required to take an additional upper level
programming course in Java. All students
must achieve a ―C‖ or better in both introduc-
tory programming classes to enter the ad-

vanced Java class.

Professors teaching the advanced course have
found that some students entering the ad-
vanced class do not have the entry level pro-
gramming skills needed to succeed in the up-
per-level class. Many possible explanations
have been offered for this problem. It has

been suggested by some faculty members that
students wait too long to take the advanced
course and as a result, have forgotten what

they learned in the introductory classes. Oth-
ers state that it is difficult for students to
switch languages and recommend that all three

courses use the same language. Still others
state it is the introductory language that is at
fault. They feel that Visual Basic is not an ap-
propriate language for teaching programming
and should be dropped from the curriculum or
offered only as an elective. Some wonder if
the fact that students do not do well in the re-

quired math courses or put off taking them
could be related. Finally, others state that only
students in the programming track do well in
the course. Perhaps students in the other
tracks should not have to take the advanced

course.

This study was an exploration of this problem.

We wanted to identify the factors involved in
the apparent loss or lack of programming abili-
ty experienced by some students as well as the
factors leading to success for others. Once
these factors are identified, we will be able to
make the best decisions on how to improve the

program and help our students become better
programmers. As such, our research question
was: What are the factors contributing to the
success or lack of success in advanced pro-
gramming?

2. LITERATURE REVIEW

Failure/Drop Out Rates

As we searched the literature, we immediately
realized we were not alone. Numerous studies
document high drop out and failure rates for
programming students (Guzdial & Soloway,
2002; McKinney & Denton, 2004). In a world-
wide study, Bennedsen & Caspersen (2005)
found that 33% of students fail CS1.

Compounding the problem, some students
pass, but do not actually learn to program. In

a multi-national, multi-institutional study of
assessment of programming skills of first year
CS students, students averaged only 22.89 out
of a possible expected 110 points (McCracken,

Kolikant, Almstrum, Laxer, Diaz, Thomas, Guz-
dial, Utting, Hagan, & Wilusz, 2001). In a lat-
er study that built on the McCracken work, it
was found that many students lacked the
knowledge and skills that are a precursor to
problem solving. They cannot read or syste-
matically analyze a short piece of code (Lister,

Adams, Fitzgerald, Fone, Hamer, Lindholm, Mc
Cartney, Mostrom, Sanders, Seppala, Simon &
Thomas, 2004).

Introductory Programming

Most of the literature in this area was confined
to studying the problems encountered by stu-

dents in introductory classes. The students in
our research study have already completed
two semesters of computing. Yet, some of
these students appear to have the ―shallow
and superficial skills‖ described in a 2005 study
of novice programmers by Lewandowski, Gut-
schow, McCartney, Sanders, & Shinners-

Kennedy. In an international study of 500 stu-
dents and teachers, Lahtinen, Ala-Mutka, &
Jervinen (2005) found that the biggest prob-
lem of novice programmers is not the under-
standing of basic concepts, but rather learning

to apply them.

Math/Prior Programming Experience

Many studies seeking to predict achievement in
introductory programming courses have ex-
amined math background, previous program-
ming experience, and previous academic back-
ground. Previous experience with program-
ming and a math background seem to be posi-

tively related to success in introductory pro-
gramming (Byrne & Lyons, 2001; Bennedsen &
Casperson, 2005; Wilson & Shrock, 2001;
Rountree, Rountree, Robins & Hannah, 2004).
Once again, our students have completed two
semesters of programming already. They are

required to take calculus, but this is not a pre-

requisite for any of the programming classes.
Some students procrastinate and put it off.
Others need math remedial classes and cannot
take it until those courses have been com-
pleted.

Other Personal Attributes

Some studies have looked at factors such as

sex and age. These demographics do not
seem to affect success in programming al-

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1350

©2010 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /proc.isecon.org

though the numbers of females entering pro-
gramming is much lower (Bennedsen & Cas-
persen, 2005; Byrne & Lyons, 2001; Wilson &
Shrock, 2001). Other studies have attempted

to link programming success with a student’s
grades in previous coursework, self-efficacy,
―comfort level‖ , or motivation to get an ―A‖ in
the course (Wilson & Shrock, 2001; Bennedsen
& Caspersen, 2005; Rountree, Rountree, &
Robins, 2001; Wiedenbeck, 2005).

Programming Language

Other studies looked at the programming lan-
guage used in the classroom. Of these, some
analyzed the languages for their teaching effi-

cacy (Mannila, Peltomaki, & Salakoski, 2006;
Mannila & de Raadt, 2006; Chen, Monge, &
Simon, 2006; Dehinbo, 2006; Russell, Russell,

Pollacia & Tastle, 2009; McIver & Conway,
1996) and others looked at the reasons colleg-
es selected a particular language (Parker,
Chao, Ottaway & Chang, 2006; Bhatnager,
2009).

There was no consensus on the best language
to use. Lahtinen, Ala-Mutka, & Jervinen

(2005) found that the teaching language did
not seem to affect the learning situation.
Chen, Monge, & Simon (2006) concurred.
However, McIver & Conway (1996) found that

a substantial part of the difficulty encountered
in programming classes arises from the struc-
ture, syntax, and semantics of the particular

programming language used. Further, Manni-
la, Peltomaki & Salakoski (2006) found that
students did just as well learning a simple lan-
guage and then moving on to a more complex
one. They also found that the best languages
to use in teaching programming were the lan-

guages designed with teaching in mind. They
agreed with other researchers, however, that
language is selected for many reasons beyond
pedagogical benefit. In a study of employers
and educators by Bhatnagar (2009), the teach-
ing of more than one language was recom-
mended.

Major

Lastly, some studies looked at the student’s
major. Prasad & Li (2004) tried to determine if
there were differences between students ma-
joring in computing and those majoring in in-
formation systems enrolled in the same com-
puter programming course. They noted that

information systems students had a little more
difficulty with C++, but that the difference was
slight. A student’s major or intended major

was found to be insignificant in a study done
by Bennedsen & Caspersen (2005). Rountree,
Rountree & Robbins (2001) found no difference
in success rates for 472 students in an intro-

ductory programming class in Java for com-
puter science majors, information science ma-
jors, or non-computer majors.

3. METHODOLOGY

Farmingdale State College’s school records
were used to create a database containing in-
formation about all two hundred students who

took Java Programming from 2005 through the
fall 2009 semester. After the statistical analy-
sis for the years 2005-2009 was complete, we

added the results for the spring 2010 seme-
ster. The spring 2010 Java class included 25
additional grades. The final database con-

tained two hundred and twenty-five grades for
Java. These final grades constituted our
measure of success in the class. The statistical
analysis was performed on the database of two
hundred and twenty-five students unless indi-
cated otherwise.

The database held information on each student

in the following areas:

 The programming language taken in the
introductory classes

 Whether or not a logic class was taken be-

fore the introductory programming class
 The number of programming classes taken
 Grades in the programming classes

 Overall GPA
 Time elapsed between the introductory

programming classes and the Java class
 The particular professors teaching the pro-

gramming classes
 Major or track (concentration within the

Computer Systems Department)
 The type and sequence of math courses

taken

Statistical analysis was performed on the data
to determine relationships, if any, between the
variables and student success in the advanced

Java course. As mentioned previously, success

in the Java course was measured by the stu-
dent’s final grade. In particular, we wanted to
determine the following

 Did addition of a logic course to the curri-
culum increase success in programming?

 Did the particular faculty member teaching
the introductory course affect student suc-

cess in the advanced Java course?

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1350

©2010 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org /proc.isecon.org

 Was there a difference in male and female
success rates in the Java class?

 Were students who took more than the
minimum number of programming courses

more successful in the advanced Java
course?

 Did taking the required calculus course be-
fore Java increase success?

 Did the amount of time lapsed between
taking the advanced Java course and com-
pletion of the introductory courses affect

success in the Java class?
 Did students who took Visual Basic in the

introductory courses do better or worse in
the advanced Java class than students who

took C++?
 Did students with a higher general GPA

achieve greater success in the Java class?
 Did students in the programming track

perform better in Java than students in the
systems, web development and networking
tracks?

4. RESULTS

Overview

A summary of our results appears in table 1
below.

Table 1

Summary of Study Results

Independent Variable Difference
In
Java
Grades?

Time Lapse Since Programming 2 Yes

Introductory Programming Lan-
guage

Yes

Track (Concentration) Yes

General GPA Yes

Logic Course No

Major No

Faculty No

Gender No

Number of Programming Courses
Taken

 Taken

No

Math Courses Taken No

The independent variables that produced a dif-
ference in the Java grades were: time lapsed
since Programming 2, the introductory lan-
guage taken, the track (concentration within

the Computer Systems Department) taken,
and general GPA (grade point average). The
variables that did not produce a difference in
the Java grades were: taking a logic course
first, major, the particular faculty member that
taught the introductory class, gender, number
of programming classes taken, and math

courses taken.

Time Lapse since Programming 2

Students who took Java the semester following

the last introductory programming course had
a higher mean average in the Java class than
students who waited two or three semesters to

take the course. The longer the time lapse,
the more the more the mean average declined.
See figure 1.

Figure 1: Time lapse between Programming 2
and Java and mean averages in Java

Along these same lines, the longer students
put off taking Java after completion of Pro-
gramming 2, the more likely they were to get
below a 2.0 (―D‖ or ―F‖) in the Java class. Of
the students who took Java the following
semester after Programming 2, 10% earned a

―D‖ or ―F‖ (under a 2.0 out of a possible 4.0).
Twenty percent of students who waited two to
three semesters to take Java after Program-
ming 2, received a grade of ―D‖ or ―F‖. Twen-
ty-two percent of students who waited over

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1350

©2010 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org /proc.isecon.org

three semesters received a grade of ―D‖ or ―F‖.
See figure 2.

Figure 2: The number of ―D‖ and ―F‖ grades
increase when students postpone taking Java.

The statistical validity of these findings was
tested using a one-tailed Mann Whitney U Test.

There was a significant statistical difference
when next semester and within 2-3 semesters

were compared. See table 2.

Table 2

Mean Averages of Java students Grouped by
Time Lapse of Next Semester vs. Within 2 or 3
Semesters

 Next Semester Within 2-3
Semesters

Mean 3.19 2.79

N 61 75

U = 1884

Significance= p<.05

There was a highly significant difference when

next semester and over 3 semesters was com-
pared. See table 3.

Table 3

Mean Averages of Java Students Grouped by
Time Lapse of Next Semester vs. Over 3
Semesters

 Next Semester Over 3 Seme-
sters

Mean 3.19 2.58

N 61 45

U = 969.5

Significance= p<.01

The next semester mean was also compared to
the average means for all students who waited
over one semester and that result was found
very significant. See table 4.

Table 4

Mean Averages of Java Students Grouped by
Time Lapse of Next Semester vs. Over 1
Semester

 Next Semester Over 1 Seme-
ster

Mean 3.19 2.71

N 61 120

U = 2853.5

Significance= p<.01

When means for a time lapse of one, two or
three semesters were compared to over three
semesters that was also found statistically sig-
nificant. See table 5.

Table 5

Mean Averages of Java Students Grouped by
Time Lapse of 1, 2, or 3 Semesters vs. Over 3
Semesters

1, 2 or 3

Semesters

Over 3 Seme-

sters

Mean 2.97 2.58

N 136 45

U = 2441.5

Significance= p<.05

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1350

©2010 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org /proc.isecon.org

The only comparison where a statistical signi-
ficance was not found was when two to three
semesters was compared to three semesters.

Introductory Programming Language

It was found that students who took C++ for
introductory programming classes were more
successful than students who took Visual Basic
for introductory programming classes using a
one-tailed Mann-Whitney U test.

C++ students in the 2005-2009 group attained
an average grade of 2.80 on a 4.0 scale in Ja-

va. Visual Basic students in the 2005-2009
group attained a 2.13 grade in Java.

Table 6

Mean Averages of Java Students Grouped by

Introductory Programming Language Taken
from 2005-2009

 C++ VB

Mean 2.80 2.13

N 76 28

U = 818

Significance= p<.05

When this data was added to the spring 2010
semester, there was little difference. The C++

average was then 2.78 and the Visual Basic
average 2.0. See table 7.

Table 7

Mean Averages of Java Students Grouped by

Introductory Programming Language Taken
from 2005-2010

 C++ VB

Mean 2.78 2.20

N 90 33

U = 1189

Significance= p<.05

Track/Major

The Computer Systems Department has five
tracks (concentrations) in a particular area.
Each student selects one track and completes
four courses in that area in addition to taking
the other required courses in the curriculum.
The two introductory programming courses

and the advanced Java course are part of the
core required curriculum, not a particular
track. The five tracks are programming, web
development, networking, systems and data-

base. The database track was added last
semester and as a result, was not considered
in this research study.

It was found that students in the programming
track were most successful in the Java course,
followed by networking, web development, un-

decided, and systems. See figure 3 below
which shows average means on a 4.0 scale for
the four tracks and students who were unde-
cided.

Figure 3: Success in the Java course by track

This difference was found to be highly signifi-
cant using both a two-tailed Mann-Whitney U
Test and a one tailed Mann-Whitney U Test.
See tables 8 and 9 below.

Table 8

Comparison of Programming Track vs. Not
Programming Track – Java Means

 Programming
Track

Not Program-
ming Track

Mean 3.4 2.53

N 45 180

U = 2579

Significance = p<.01

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1350

©2010 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org /proc.isecon.org

Table 9

Comparison of Programming Track and Other
Tracks - Java Means

 Prog. Net. Sys. Web

Dev.
Undecided

Mean 3.4 2.73 2.19 2.62 2.38

N 45 56 29 50 32

U

Significance

927.5 298.5 701 445.5

p<.01 p<.01 p<.05 p<.01

The average mean of the systems track stu-

dents was then compared to the average mean
of all other tracks combined using a one-tailed

Mann Whitney U Test. The findings were found
significant at p<.01. See table 10.

Table 10

Comparison of Systems vs. Other Tracks – Ja-
va Means

 Systems All Other Tracks

Mean 2.19 2.78

N 29 196

U = 3622.5

Significance = p<.01

Occasionally, students from outside the de-
partment take the Java class as an elective.
Some of the other majors that have taken this
course are nursing, bioscience, applied ma-
thematics, and computer engineering. Also, it

is taken infrequently by non-matriculated stu-
dents who do not have a major. There was no
significant difference found between the Com-
puter Systems majors and non-majors.

General GPA

The student’s general GPA average in the

semester before the student took the Java

course was compared to the grade the student
earned in the Java class. A highly significant
correlation was found between the student’s
general GPA and the Java grade using the
Pearson product moment correlation coefficient
(n=225, df=223, r = .52, p<.0005).

Logic Course

In an effort to improve performance in its pro-
gramming classes, the department changed its

requirements a few years ago to include a
mandatory programming logic course. This
logic course must be taken before the first
programming class. No significant statistical

difference was found between students who
did or did not take the logic class before enter-
ing the first programming class.

Faculty

To determine if the particular faculty member
teaching the introductory courses affected stu-
dent success in the advanced Java course, we

broke down the Java classes into groups based
on the particular instructor that taught the in-
troductory level class. No significant statistical

difference was found in the final Java grades
based on the faculty member who taught the
introductory programming courses.

Gender

Females constituted only 11.60% of the stu-
dents in the Java classes. Their mean average
in the Java class was 2.66 out of a possible
4.0. Males in the Java courses (88.39%) had a
mean average score of 2.7 out of a possible
4.0. Thus, no significant difference was found

based on gender.

Number of Programming Courses Taken

The college offers a number of additional pro-

gramming courses that are not required and
can be taken as electives. Also, students may
take C++ in the introductory courses and Vis-
ual Basic as an elective or vice versa. No sig-

nificant statistical difference was found in the
final Java grades for students who took more
programming courses than required.

Math Courses Taken

Students are required to take two mathematics
courses, Calculus and Methods in Operation

Research. These math courses are not prere-
quisites for the Java course. It was found
that there was no significant statistical differ-
ence between students who took Calculus be-

fore the advanced Java course and students
who took calculus after the Java Course.

5. DISCUSSION

Based on the literature review, we expected to
find that students who completed the newly
required logic class, took Calculus before Java,
and completed more programming classes
than required would be more successful in ad-
vanced Java than students who did not. These

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1350

©2010 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org /proc.isecon.org

factors, however, were all found to be statisti-
cally insignificant for our students.

It is surmised that the logic course may help
prepare the students for programming, but not

actually increase their programming ability.
Anecdotally, instructors in the early introducto-
ry classes have stated that it is easier to teach
programming to students after completion of
the logic class. The instructors found that
moving the material covered in the logic
course out of the introductory programming

course allowed them to devote more time to
programming and gave them more time to
cover all the required material. Thus, the

course still appears to have value and will most
likely be maintained in the curriculum.

It appears that the additional programming

courses taken by some students did not help
them succeed in the advanced Java course.
Possibly these additional courses only serve to
reinforce and reiterate material already cov-
ered. Another explanation might be that stu-
dents may have difficulty transferring the skills
from one language to another. A more accu-

rate and comprehensive exploration of this is-
sue will be undertaken in stage two of this re-
search study. Stage two will use a qualitative
approach with in-depth student interviews.

As stated previously, students who completed
the required calculus course did not achieve
better results in Java. We were somewhat

surprised at this finding and recommend fur-
ther research in this area.

As it appeared in the literature, our study
found no significant difference between the
performance of men and women. We have too
few women entering the field. Those women

that do enter, however, are as successful as
men.

The fact that some of our students take the
introductory programming classes as freshmen
or juniors and then do not take the advanced
Java class until close to graduation has been

mentioned by some faculty as a problem area.

This study validates this concern. Program-
ming concepts and theory can be easily forgot-
ten if not reinforced and applied immediately.
The department may also have contributed to
this problem by not offering the course every
semester in the day and evening sessions.
This success factor is relatively easy to imple-

ment. Students need to be advised to take the
Java course immediately after completing Pro-
gramming 2 and the department has to offer

the course every semester, day and evening,
with as many sessions as needed.

On the other hand, it may not be the delay
itself that causes the later problems in the ad-

vanced programming classes. It may be that
some students feel insecure with programming
itself and thus delay taking the advanced
course because of these feelings of insecurity.
We plan further investigation in this area using
follow-up student interviews.

The results of the study seem to indicate C++

may provide a better foundation for upper level
programming in Java. There could, however,
be any number of factors to explain this. C++

is closer in syntax to Java and may make the
transition to that language easier. On the oth-
er hand, it may simply be that the better pro-

grammers tend to take C++ instead of VB.
This is another area that will be well served by
more research of a qualitative nature and stu-
dent interviews.

It does not seem surprising that students in
the programming track would do better in Java
than students in the other tracks. Systems

students had the worst Java grades. Systems
students may have already made the decision
to avoid or dislike programming. This brings
up the issue of whether or not all information

systems students need advanced program-
ming. Are we forcing them to take a course
they do not like and do not do well in? Will

programming ever be a part of their careers?
This topic requires further study outside the
realm of this project.

Finally, students that have a better general
grade point average do better in Java. Good
study skills and habits help a student succeed

in any subject. Motivational and psychological
factors are important in all academic fields.
Students who strive for good grades will want
good grades in all their classes. Helping our
students to learn and attain good study habits,
organizational skills, testing practices, etc.

should help students do well in Java as well as

their other courses.

6. CONCLUSIONS

Based on the results of this study, students
should be strongly encouraged to take Java
immediately after completing Programming 2.
Programming concepts and theory can be easi-
ly forgotten if not reinforced and applied im-

mediately. The department should also do

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1350

©2010 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org /proc.isecon.org

their part and offer Java in both the spring and
fall semesters for day and evening sessions.

The department should consider mandating
C++ as a required introductory language and

offer Visual Basic as an elective. As mentioned
previously, C++ is similar to Java and may
make the transition to Java easier. It will also
make it easier for the instructor if all students
have the same background and entry level skill
sets.

This study did not consider whether all infor-

mation systems students need to take ad-
vanced programming. It does suggest that
this matter should be researched and dis-

cussed. How many programming classes are
needed for students who do not intend to be-
come programmers?

This study was limited to only one college and
this college may be different than other colleg-
es. The results, therefore, may not be genera-
lizable. Further research at other schools or a
consortium of other schools would help to alle-
viate this limitation.

This study was also limited by its use of final

grades as assessment measures. A student’s
final grade is composed of numerous factors
including class participation, objective tests,
homework, etc. In this study, we were looking

at only one part of this grade — success in
programming. It was hard to weed out that
one factor from the overall picture. In the fu-

ture, we plan to give assessment tests in the
programming classes to use as comparison
measures.

In addition, we would like to enhance the re-
search study by looking at some of the person-
al and psychological factors that may affect a

student’s success in the Java class. For this
later study, we would like to conduct a survey
and perform in-depth interviews with Java stu-
dents.

7. REFERENCES

Bennedsen, J. & Caspersen, M. E. (2005). An
Investigation of Potential Success Factors

for an Introductory Model-Driven Pro-
gramming Course. Proceedings of the First
International Workshop on Computing Edu-
cation, Seattle, WA, 155-163.

Bhatnagar, N. (2009). A Study of the Inclu-
sion of Programming Languages in an Un-
dergraduate Information Systems Curricu-

lum. Information Systems Education Jour-
nal, 7 (84).

Byrne, P. & Lyons, G. (2001). The Effect of
Student Attributes on Success in Pro-

gramming. Proceedings of ITiCSE 2001,
Canterbury, Kent, ACM Press.

Chen, T., Monge, A. & Simon, B. (2006). Re-
lationship of Early Programming Language
to Novice Generated Design. ACM SIGCSE
Bulletin, 38(1), 495–499.

Dehinbo, J. (2006). Determining Suitable Pro-

gramming Language for the Bachelor of
Technology (IT) Curriculum. Proceedings

of the Information Systems Education Con-
ference 2006, Dallas, 23.

Guzdial, M. & Soloway, E. (2002). Teaching
the Nintendo Generation to Program.

Communications of the ACM, 45(4), 17-
21.

Lahtinen, E., Ala-Mutka, K. & Jarvinen, H.
(2005). A Study of the Difficulties of No-
vice Programmers. ACM SIGCSE Bulletin,
37(3), 14-18.

Lewandowski, G., Gutschow, A. McCartney, R.

Sanders, K. & Shinners-Kennedy, D.
(2005). What Novice Programmers Don’t
Know. Proceedings of the First Internation-

al Workshop on Computing Education Re-
search, Seattle, WA, 1–12.

 Lister, R., Adams, E.S., Fitzgerald, S., Fone,
W., Hamer, J., Lindholm, M., Mc Cartney,

R., Mostrom, J.E., Sanders, K., Seppala,
O., Simon, B. & Thomas, L. (2004). A
Multi-National Study of Reading and Trac-
ing Skills in Novice Programmers. ACM
SIGCSE Bulletin, 36(4), 119-150.

Mannila, L. & de Raadt, M. (2006). An Objec-

tive Comparison of Languages for Teaching
Introductory Programming. Proceedings of
the 6th Baltic Sea Conference on Compu-
ting Education Research, Uppsala, Sweden.

276, 32-37.

Mannila, L., Peltomaki, M. & Salakoski, T.
(2006). What about a Simple Language?

Analyzing the Difficulties in Learning to
Program. Computer Science Education,
16(3), 211-228.

McCracken, M., Kolikant, Y., Almstrum, V.,
Laxer, G., Diaz, D., Thomas, L., Guzdial,
M., Utting, I., Hagan, D. & Wilusz, T.
(2001). A Multi-National, Multi-Institutional

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1350

©2010 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org /proc.isecon.org

Study of Assessment of Programming Skills
of First-Year CS Students. Annual Joint
Conference Integrating Technology into
Computer Science Education. Working

Group Reports from ITiCSE on Innovation
and Technology in Computer Science Edu-
cation, Canterbury, UK, 125-180.

McIver, L. & Conway, D. (1996). Seven Dead-
ly Sins of Introductory Programming Lan-
guage Design. Proceedings of the 1996 In-
ternational Conference on Software Engi-

neering: Education and Practice (SE-EP
’96), Dunedin, New Zealand, IEEE Com-
puter Society, 309-316.

McKinney, D. & Denton, L.F. (2004). Hou-
ston, We have a Problem: There’s a Leak
in the CS1 Affective Oxygen Tank. Pro-

ceedings of the 35th SIGCSE Technical
Symposium on Computer Science Educa-
tion, Norfolk, VA, ACM Press, 236-239.

Parker, K., Chao, J., Ottaway, T., & Chang, J.
(2006). A Formal Language Selection
Process for Introductory Programming
Courses. Journal of Information Technolo-

gy Education, 5, 133-151.

Prasad, C. & Li, X. (2004). Teaching Introduc-
tory Programming to Information Systems
and Computing Majors: Is there a Differ-

ence? Proceedings of the Sixth Conference
on Australasian Computing Education. Du-
nedin, New Zealand, 57, 261-267.

Rountree, N., Rountree, J. & Robins, A.
(2001). Identifying the Danger Zones:
Predictors of Success and Failure in a CS1
Course. Inroads SIGCSE Bulletin, 34, 121-
124.

Rountree, N., Rountree, J. Robins, A. & Han-

nah, R. (2004). Interacting Factors that
Predict Success and Failure in a CS1
Course. ACM SIGCSE Bulletin, 36(4), 101-
104.

Russell, J., Russell, B., Pollacia, L. & Tastle, W.

(2009). A Study of the Programming Lan-
guages used in Information Systems and in

Computer Science Curricula. The Proceed-
ings of the Information Systems Education
Conference 2009, Washington DC , 26.

Wiedenbeck, S. (2005). Factors Affecting the
Success of Non-Majors in Learning to Pro-
gram. Proceedings of the First Interna-
tional Workshop on Computing Education

Research, Seattle, WA, 13-24.

Wilson, B. & Shrock, S. (2001) Contributing to
Success in an Introductory Computer
Science Course: A Study of Twelve Fac-
tors. ACM SIGCSE Bulletin, 33(1),184-188.

	OLE_LINK1
	OLE_LINK2

