
Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1354

©2010 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org /proc.isecon.org

A Novel and Efficient Introduction to

Clustering using a
Classroom Laptop-based Computer Cluster

Irv Englander

ienglander@bentley.edu
Computer Information Systems Dept., Bentley University

Waltham, MA 02254, USA

Abstract

Fitting newly important topics into an already crowded IS/IT curriculum is an ongoing challenge. In
this paper we present an innovative and simple way to introduce and demonstrate computer
clustering concepts in less than a single class hour, at no cost, by constructing a high performance

cluster in the classroom using student laptop computers, classroom Ethernet facilities, and free,
downloadable software. Although we initially tested our approach in a Linux Operating System
class, the technique is applicable to any appropriate IT class in which students have been
previously exposed to the basics of computer hardware, operating system software, networking,
and system architecture.

Keywords: computer clustering, high performance computing, Beowulf, PelicanHPC, classroom

computing, supercomputing

1. INTRODUCTION

Undergraduate IT/IS curricula must offer a
wide range of knowledge to their students,
providing a broad understanding of business,
as well as in-depth knowledge of various as-
pects of information technology, all this in a
limited number of courses. As a result, the
requirements of an IS or IT curriculum inevita-

bly exceed the time available to present the

range of technology that is important to the
success of an IS or IT graduate in the business
world. It is obviously impossible to cover
every important topic in the curriculum, and
the creators of an IT/IS curriculum must pick
and choose among the myriad of topics to cov-

er some topics at various levels of depth and
to neglect others. When newly important top-
ics arise, it becomes necessary to find a way to
introduce them at an appropriate level, and to
eliminate or downsize the coverage of other
topics that may still be important.

Computer clustering is a topic of growing im-
portance, due to its role in web services, cloud

computing, massively-parallel supercomputing
applications, and other applications where large
amounts of data or large numbers of transac-
tions must be managed and manipulated rapid-
ly. Clustered systems offer easy scalability,
effective processing parallelization, and support

for applications that mandate high system
availability. For these reasons, clustered sys-
tems are often referred to as high performance

computing (HPC) systems. In essence, modern
clustering technology offers the ability to pro-
vide massive processing capability at minimal
cost. For example, the entire Google search

capability is based on a large- scale application
of clustering technology, built from low-cost
computers. Business applications for HPC sys-
tems include the Web and cloud services men-
tioned above, plus econometrics, data mining,
financial modeling, statistical analysis, simula-
tions, and many other applications. IT/IS stu-

mailto:ienglander@bentley.edu

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1354

©2010 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /proc.isecon.org

dents graduating into the business world today
could be expected to have the capability to
understand, use, develop, and configure clus-
ters and their appropriate application.

Because clustering has taken on such impor-
tance, we believe that space in the curriculum
needs to be found for at least a basic coverage
of clustering concepts. This paper describes a
successful attempt to explain and demonstrate
the features of clustered computing in the
most efficient way possible, with minimum

time required for the presentation and discus-
sion, and at little or no cost. To do so, we util-
ize available classroom and networking facili-

ties, student laptop computers, and free down-
loadable software to create a working parallel-
processing cluster in the classroom. The entire
clustering presentation takes less than a single

class hour. Once set up initially, the exercise
can be executed, with minimal advanced prep-
aration, in any appropriate IS/IT course, with a
properly equipped classroom as the only criti-
cal requirement. As an additional benefit, the
presentation utilizes and reinforces system in-

frastructure concepts previously learned.

There have been a small number of other do-
cumented attempts to integrate clustering con-
cepts into the curriculum. Most of these have
taken place within computer science or com-

puter engineering curricula. Typically, these
have been specialized courses that focus on
various aspects of clustering and parallel

processing (Hastings, 2003), (Montante, 2002)
or laboratory-focused courses that require sig-
nificant student laboratory efforts (Prins,
2004). A substantial general discussion of
clustering in the computer science curriculum
may be found in Apon et al., (2001). Kitchens

et al. (2004) have attempted to introduce clus-
tering in the IS/IT curriculum by using the de-
sign of a computer cluster as the core group
project in a system analysis and design course
sequence. These efforts all require a course
slot in the curriculum, and present computer

clustering at a depth not needed for the typical

IS/IT student. All of these previous attempts
also have required substantial faculty and stu-
dent preparation and require the significant
use of specialized laboratory facilities and the
like. All of the methods described in these pa-
pers required creation of special software disks
and installation on each of the node machines,

a procedure that we wished to avoid.

Modern low-cost clustering methods have
found another application in the University set-

ting: the ability to build inexpensive small-scale
“supercomputing” facilities for research, using
spare, perhaps obsolete, computers that are
available in the laboratory. These clusters offer

researchers processing power that would not
ordinarily be available in typical University facil-
ities. Much of the work in this area is based on
free, public domain software. The result of one
of these efforts, PelicanHPC, (Creel, 2010a)
provided the basis for our classroom clustering
effort.

As a result of these various efforts, there is a
substantial assemblage of readily available
technology tools and know-how for building

and operating clusters that is applicable to our
requirements. We saw an opportunity to im-
plement a cluster in a classroom setting that
would explain and demonstrate clustering

quickly and inexpensively.

2. A BRIEF OVERVIEW OF CLUSTER
COMPUTING

A cluster consists of a number of loosely-
coupled, interconnected computers. In many
respects, the configuration of a cluster appears
similar to that of a network, however, the

cluster differs in that all of the computers in the
cluster are committed essentially to share the
workload for the same task. Each individual

computer serves as a node in the cluster. A
node may represent a complete system, with
individual disk storage, plus, perhaps, a display
monitor, a keyboard, and other peripherals, or

it may simply contain one or more CPUs,
primary memory, and a means to support the
interconnection, with a network card or other
interconnection device. The interconnection
itself may also provide a storage device; such a
cluster is known as a “shared disk” cluster. A

cluster with no shared storage is called a
“shared-nothing” cluster. (Englander, 2010)

Clusters tend to be classified by their primary
usage. There are clusters intended for large-
scale transaction processing, with an emphasis

on rapid access and easy scalability, clusters
designed to provide “fail-safe” and high-
availability processing, and clusters that pro-

vide massive amounts of distributed, parallel
processing power for large-scale applications
amenable to this capability (often referred to as
“supercomputing”). This categorization is
somewhat artificial, since the technology is
similar in most cases, differing mostly in confi-

guration and choice of software.

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1354

©2010 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /proc.isecon.org

Although early clusters were built from specia-
lized components, with dedicated specially-
designed interconnection circuits, most modern
clusters are designed around cheap (some pre-

fer the word “commodity” or “commercial”)
off-the-shelf (COTS) computers, with a dedi-
cated, isolated Ethernet providing the inter-
connection. This design is often referred to as
a Beowulf cluster. It has the advantages of low
cost, simple creation, and easy upgrade. The
cluster may be built from available personal

computers, or may use specialized circuit
boards known as blades. Most supercomputers
today are built using some variation on this
design. Depending on the type of application

that the cluster is designed for, each node in
the cluster may operate semi-independently;

more commonly the nodes may be set up to
operate in a master-slave configuration, with a
master node delegating work to the slave
nodes and organizing and reporting the results.
The master node also provides the primary
user interface and connection to the outside
world.

Clustering software applications can be written
in a number of programming and scripting lan-
guages, including Fortran, C, Python, and oth-
ers. The required functions that allow the
nodes to communicate are usually provided by
the Message Passing Interface (MPI) applica-

tion programming interface, a de facto, lan-

guage-independent set of standards for com-
municating between cluster nodes. MPI func-
tions initialize and determine the parameters of
the cluster, send and receive requests and data
between nodes, manage the data communica-
tion between nodes, and many other tasks.
MPI libraries are readily available for nearly

every hardware platform. Information and ref-
erences about MPI may be found at --“Message
Passing Interface”, (2010) and in many of the
books referenced above.

A good, though slightly dated, review of the
hardware, software, and networking compo-

nents used in Beowulf clustering is found in

Sterling, et al.(1999).

General coverage of clusters may be found in
Bookman (2003), Sterling et al. (1999), and
Vrenios (2002).

3. ASSUMPTIONS AND REQUIREMENTS

Our plan was to create a high performance
parallel-processing cluster in the classroom,
using the laptop computers that students bring

to class, the wired network available in the

classroom, and free clustering software; and to
explain and demonstrate the features of the
cluster during operation. Time during a single
class period was allocated for this purpose. To

achieve our goal, we made a number of
assumptions:

(1) Computer clustering is a derivative top-
ic, as opposed to a fundamental one. A
good, basic understanding of system
architecture, computer hardware, oper-
ating system software, and networking

is sufficient to allow a rapid grasp of
the principles of clustering. Indeed,
the integration and reinforcement of

these concepts is a secondary goal of
this project. If students have this
background, we believed that it should
be possible to teach the basics of clus-

tering, complete with a demonstration
of the basic features using only part of
the time available in a single class pe-
riod. Understanding clusters at this
level is appropriate and sufficient for
IS/IT students; a deeper understanding

of clusters would be more time con-
suming and is a specialization that is
more within the province of a computer
science curriculum.

(2) It is highly desirable that the class-

room computer cluster should require
no advance preparation or installation
of software on the part of students

prior to the class or during class. Es-
tablishing this as a requirement elimi-
nates the problem of students showing
up unprepared to participate in the ex-
ercise. It also eliminates the need to
prepare installation disks in advance for

use during class. Furthermore, we pre-
ferred that the classroom demonstra-
tion should have no permanent impact
on the student computers: there should
be no reconfiguration of any computers
or their operating systems, and no

modification of program or data files.

When the cluster is shut down, all evi-
dence of the cluster's existence should
disappear without a trace.

To meet these requirements, we
elected to utilize “push” technology to
create the cluster and “live” technology
to support its existence on the student

laptops. “Push” technology boots the
nodes and installs the software remote-
ly from a master node, using the net-

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1354

©2010 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org /proc.isecon.org

work. “Live” technology is volatile;
each node computer operates com-
pletely from its primary memory (or
“RAMdisk”) and the network, without

access to local disk storage. There-
fore, the permanent state of a node
machine is unaffected by any opera-
tions that take place while the node is
active.

(3) We assumed that tools exist that meet
the above requirements and that allow

the rapid creation of a cluster using
standard computer components and
networking facilities with minimum (or

no) expense. The concept of Beowulf
clustering is well established, and it
was safe to assume that a variety of
tools to support such clusters were

available and in the public domain. In
addition, we sought tools that would
include pre-built parallel applications to
demonstrate various features of the
cluster, as well as a benchmark pro-
gram to measure the performance of

the cluster as we varied the number of
nodes in the cluster.

(4) We selected parallel-processing appli-
cations for our classroom cluster be-
cause they are the easiest to demon-

strate. As we previously noted, the
underlying technology is similar for
most clustering applications.

The classroom cluster was presented as a topic
within an undergraduate IT elective course
entitled “Operating Systems Concepts with
Linux.” This class considers many different
aspects of using the Linux operating system,
including command-line operation, scripting,
system configuration, tools, and system

administration. The students in this class had
all previously completed a prerequisite class in
computer system infrastructure that included
the basic concepts of system architecture,
computer hardware, operating systems, and

networking.

4. FACILITIES, SOFTWARE, AND

ORGANIZATION FOR THE CLASSROOM
CLUSTER

Like many (perhaps most) colleges and univer-
sities today, Bentley University provides a
standard laptop computer to every full-time
undergraduate student. The 2009-2010 laptop
computer was an HP model 6930p, supplied

with an Intel T9600 processor, 4 GB of primary

memory, built-in Gigabit wired Ethernet and
802.11draft-n Wi-Fi networking, and many oth-
er features. The supplied software included
Windows Vista and a variety of application

software. The use of a standard computer
model simplified somewhat (but less than one
might imagine) the requirements for the clus-
ter. The students in the IT Linux elective modi-
fy their computers at the beginning of the
course to support dual-booting, so that Linux is
already available on their machines, most re-

cently, with Fedora 11. This might have simpli-
fied creation of a cluster in this course, but at
the sacrifice of generality. We made a decision
not to utilize this capability, but instead to

create a common system that would act identi-
cally on every node of the cluster, regardless of

the native operating system present on a
node's computer. The student laptops are con-
figured by the University to allow only a single
network connection, either wired or Wi-Fi, but
not both simultaneously. This feature proved
to be useful in our setup, as it allowed us to
configure the cluster with minimal concern for

security.

Bentley University provides per-seat wired
Ethernet in every classroom, as well as Wi-Fi
services throughout the campus. The Ethernet
switch in each classroom allows a classroom
network to be isolated from the remainder of

the campus network; this capability is con-

trolled by software at the instructor's podium
console. Since Wi-Fi classroom isolation is im-
possible to achieve, we chose to use wired
Ethernet as the cluster interconnection medium
and Wi-Fi as a network connection from the
instructor's master node computer to the out-
side world. Isolation of the cluster interconnec-

tion network allowed us to eliminate firewalling
and packet analysis, for faster operation.

Our research verified that there is indeed a
wide range of clustering software available for
free download from the Web. The software we
selected for use, PelicanHPC (Creel, 2010a),

offered several advantages over other possible

choices. The features that made PelicanHPC
our preferred choice included:

(1) The PelicanHPC software is based on
push technology. The entire cluster is
created from a single master node.
Once the master node is booted, the
remaining nodes are created by booting

them from the network and installing
the required software from the master
node. The software even includes a

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1354

©2010 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org /proc.isecon.org

DHCP server for assigning network
addresses to each node to set up
network communication.

(2) PelicanHPC runs live from memory,

utilizing Linux as its base. It offers an
optional GUI or can be controlled from
a command line prompt. Once a node
is booted from the network, it will also
run a live Linux operating system,
along with the MPI application and
other support functions.

(3) The PelicanHPC software includes a va-
riety of pre-built distributed parallel-
processing applications; these applica-

tions were written in GNU Octave. The
provided software also includes an Oc-
tave interactive interpreter to run
these applications. Octave is a high-

level programming language designed
for the creation and execution of high-
performance parallel programs.

(4) Commands are included to add and
remove nodes from the cluster dynam-
ically. This simplifies our ability to
demonstrate the effects of adding
nodes to the cluster.

(5) The Pelican HPC package includes the
Linpack HPL benchmark software to

measure the performance of our class-
room cluster. The Linpack HPL bench-
mark “measures the floating point rate
of execution for solving a linear system
of equations.” (Petitet et al., 2008). It

is one of seven benchmarks used to-
gether to evaluate the performance of
the world's most powerful supercom-
puters (-- “HighPerformance..”).

(6) PelicanHPC is easy to set up and easy
to use. There is reasonable documen-
tation (4), and the provided scripts are

easily extended and modified to offer
different or additional capabilities.

PelicanHPC is downloaded from its Web site as
an .iso file, which can be burned directly to a
CD-ROM or copied to a USB flash drive. Once
transferred to a local device, the software can
be booted live directly on the computer that

serves as the master, or frontend, node in the
cluster. User interaction with the cluster also
takes place at the master node.

PelicanHPC was built as a research tool for
running applications that are amenable to
parallelization. The use of parallel processing

as a classroom demonstration tool suits our
needs well, since it is easier to demonstrate the
increased processing capacity offered by the
classroom cluster as we add nodes than it

would be to demonstrate the scalability of a
web server or cloud server, for example. The
parallel processes and benchmark supplied with
PelicanHPC eliminated the need to develop our
own applications, although the support to build
our own applications is available in the
package, should we wish to do so in the future.

The cluster organization that we implemented
is shown in Figure 1. Each computer in the
cluster is connected to the classroom network

switch through a wired network port at a class-
room seat. The classroom switch is isolated
from the campus network, using software at
the podium for this purpose. The master node

is connected to the classroom projection dis-
play and may be connected to the campus
network, if desired. The PelicanHPC software is
loaded onto each node PC.

Figure 1
Classroom Cluster Layout

Each node in the cluster consists of a live Linux
operating system, PelicanHPC control software,
the MPI software, various applications, the HPL
benchmark software, and a GNU Octave inter-
active interpreter, all running directly in memo-
ry. When booted, every node is initially confi-

gured identically. The software is loaded onto
the master node from the live CD; slave nodes
are loaded from the master node using the
network.

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1354

©2010 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org /proc.isecon.org

Figure 2 shows a simplified view of the Peli-
canHPC software configuration. Each node
boots into a basic Linux operating system. The
operating system supports the node hardware,

including I/O and networking services, offers
command line and graphical user interfaces,
and provides the usual services to the software
layers above it. DHCP and a network boot
loader are also included.

The Pelican software layer consists of Linux
command shell scripts that allow a user to set

up a cluster, customize the configuration, add
and remove nodes, and operate the cluster.
The Message Passing Interface manages the

movement of data and program information
between the master node and the slave nodes.
Finally, the application layer provides a number
of parallel econometrics applications, the Lin-

pack HPL measurement suite, and the GNU
Octave program interpreter.

5. CLASSROOM PRESENTATION PLAN

Our classroom presentation plan included in-
troductory discussion of the principles of clus-
tering, followed by the setting up and activa-

tion of the cluster and demonstration of its
various features and capabilities. The class-
room plan which we ultimately implemented
and demonstrated successfully is described

next; however our initial attempt to offer the
demonstration of the cluster as described was
unsuccessful, due to a number of glitches that
had to be resolved. These are described in the
following section. (The attempts to solve these
problems during the presentation actually led
to a useful classroom discussion about the

cause of the problems that occurred, and dee-
pened student understanding of the cluster
technology.) The second attempt, performed in
class a week later, was successful.

The introductory discussion of clustering prin-
ciples begins with a brief overview of the clus-
ter concept, its benefits, its various applica-
tions, and its basic organization. Review of the
infrastructure technologies that form the basis
for modern clusters follows. This includes short
reviews of basic TCP/IP/Ethernet networking,

computer hardware architecture, operating sys-
tems, and system architecture; this discussion
is focused particularly on the relationships be-

tween these technologies and the cluster's im-
plementation, integration, and use of these
technologies. An introduction to distributed
parallel processing, parallel programming, and

basic algorithms is next. Although brief and
relatively shallow, this introduction at least
places the concepts and possibilities of parallel
processing into the students' consciousness,
and allows us to move directly to the creation
and demonstration of the classroom cluster.

To begin the cluster creation procedure, we
instruct the students to connect their laptop
computers to the wired Ethernet, but not to
turn their computers on. The instructor boots
her/his computer using the PelicanHPC Live CD.

The instructor's computer will serve as master
node; its display is connected to the classroom
projection monitor. Its Wi-Fi may be connected

to the wireless campus network for remote
access or use of network services, if desired,
although we did not use this capability. The
complete, step-by-step instructions for making
the Pelican CD operational as a cluster are
available on the Website (Creel, 2010b).

Once the master node is operational, we confi-
gure the cluster, following the steps in the tu-
torial instructions. When this step is com-
pleted, we have a working cluster, with only a
single node. This step creates the directories
and files that will be needed later for the

benchmark commands. As we later discovered
(see the next section), it is also necessary to

do some additional setup for the HPL bench-
mark.

Once this is done, we first demonstrate a built-
in PelicanHPC kernel regression analysis appli-
cation example and the Linpack HPL bench-
mark. The regression application offers a
graphical output that is best displayed using

the optional GUI, however, the classroom pro-
jection system in the classroom we used did

Figure 2
PelicanHPC Software

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1354

©2010 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org /proc.isecon.org

not support the high resolution provided by the
master node computer, so we actually ran the
application twice, once with the GUI display,
holding up the computer for the students to

see the result, and once with an artificial text-
based output that results from use of a com-
mand-line display that worked with the projec-
tor. In both cases, the results also include the
time required to complete the application ex-
ecution. These runs provide ground-level val-
ues that would allow the students to compare

the single-machine results with those generat-
ed by the cluster.

Next, students are instructed to turn their

computers on, one or two students at a time,
and, if necessary, to reset their BIOS startup to
boot from the network as first option. Two
commands at the Linux prompt in the master

node, pelican_setup and pelican_restarthpc,
are used to control the cluster. These com-
mands are used to boot each machine and to
add or remove nodes in the cluster. Each time
we add machines to the cluster we run the re-
gression analysis and the HPL benchmark

again and compare the results to the previous
run. Details of the steps necessary to boot the
slave nodes and to run the applications and
benchmark are also provided in the PelicanHPC
tutorial.

6. INITIAL TESTING AND CLASSROOM
PROBLEMS AND SOLUTIONS

We initially tested our plan in the author's of-
fice, using the author's available netbook as
the master node, two borrowed student laptop
computers as the slave nodes, and a borrowed
network switch to provide Ethernet intercon-
nectivity. There were a number of minor is-
sues that had to be resolved, but the entire

cluster configuration and demonstration was
complete and ready to run in the classroom in
less than an hour of setup time and testing.

The major problem that occurred during initial
testing involved configuration of the Linpack

HPL software. As downloaded from the Web, a
script called Make.Pelican prepares the Linpack
software for execution on the cluster. The

Make.Pelican file is located in the
/home/user/hpl-2.0 directory. At the time that
this paper is being written, this file contains
several lines of script code that point to incor-
rect locations in the directory. The correct do-
cumentation for this script is located at

http://pelicanhpc.788819.n4.nabble.com/file/n
1839478/. We used a standard Linux editor to

correct the errors in the file to match the do-
cumentation. This consisted of fixing lines that
are labeled Mpdir, CC, and LINKER. Each of
these lines contains a pointer to a file that is

located differently from that in the script code.

We also struggled a bit to determine the
sequence of commands required to run HPL.
Once we corrected the Make.Pelican file, and
changed our prompt to the ~/hpl-2.0 directory,
the following sequence of commands did the
job (all case sensitive, by the way):

 sh SetupForPelican
 cd ./bin/Pelican
 mpirun --hostfile /home/user/tmp

/bhosts/ -np 3 xhpl (all on one line; no space)

Documentation for the mpirun command also
proved to be useful; the documentation is
found in in the man command: man mpirun.
The value in the -np command option

determines the number of processors to use for
the program being run. We discovered that a
minimum of 3 is required for the HPL
benchmark. If the number exceeds the
number of nodes in the cluster, mpirun creates
multiple processes on the nodes available. This
makes it possible to run the benchmark on a

single-node cluster, before any slave nodes are
activated.

After we made all of the required changes and
figured out the correct commands, everything
in the cluster demonstration worked as
expected in our office environment.

7. CLASSROOM RESULTS

Building the cluster in the actual classroom re-
vealed two problems, one major, one minor,
that did not occur during our initial testing.
Most importantly, our first attempt to run the
cluster demonstration in the classroom was
unsuccessful, due to a problem with the class-
room network switch setup. Although the con-

nection between the classroom network and
the campus network was in fact disabled, the

network switch itself was configured to reject
DHCP packets even when the switch was iso-
lated from the campus network. Therefore, the
master node DHCP server was unable to issue
IP addresses to the student nodes, making the

network, and therefore the cluster, inoperable.
Within a few days, a university network admin-
istrator reconfigured the classroom switch, and
our second attempt to create the cluster, a
week later, was successful.

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1354

©2010 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org /proc.isecon.org

Once we were able to create the cluster
successfully in the classroom, we became
aware of a second, less critical, problem: the
instructor's low power netbook, which served

as the master node, had insufficient processing
capability to boot all of the student laptops
quickly enough; as a result, we were limited to
six nodes in the cluster. Attempts to boot
more nodes resulted in network timeouts. We
could have increased the number of nodes
somewhat by adjusting the network timeout

parameters, but there was no compelling
reason to do so: the demonstration was
sufficiently impressive, even with only six
nodes. In the future we plan to use a more

powerful laptop computer for the master node.

Given a six-node cluster, both the regression
analysis example and the HPL benchmark

worked as expected. The measured time
dropped by a factor of more than 2 when the
first student node was added, (this was true
because the netbook had significantly less
processing power than the student laptop),
and continued to drop proportionally as we

added nodes to the cluster. The change of
speed with which the graphic output from the
regression analysis forms was particularly
impressive to students.

8. CONCLUSIONS

We were extremely pleased with the results of
this effort. The classroom cluster proved to be
a useful exercise for introducing cluster con-

cepts to the students. We were able to explain
and demonstrate clustering technology using
classroom facilities and software that were
readily available at no cost, with a minimum of
preparation time, classroom time, or effort.
The method we used was sufficiently interest-

ing to keep student attention at a high level
during the exercise. Later testing indicated
that we succeeded in achieving the under-
standing of clustering that we wanted the stu-
dents to have. The use of push technology

made it easy to implement and operate in the
classroom and live technology assured that we

did not have to rely on advanced preparation
on the part of the students to implement the
cluster, nor have concern for any lasting effect
on the students' computers. Although the ex-
ercise was initially confined to the elective Li-
nux operating system course, it is being ex-
tended this fall into the basic undergraduate

and graduate computer infrastructure courses.
For students with more interest in the subject,
we will make copies of the live CD available to

students for further experimentation. There
are also plans to make the technology available
for use in the networking lab that is associated
with our elective advanced networking course.

9. REFERENCES

Apon, A., Buyya, R., Jin, H., & Mache, J.
(2001). Cluster Computing in the
Classroom: Topics, Guidelines, and
Experiences. 1st IEEE/ACM International
Symposium on Cluster Computing and
the Grid (CCGrid 2001), Brisbane,

Australia, May 15-18, 2001. At
www.buyya.com/papers/cc-edu.pdf

Bookman, Charles. (2003). Linux Clustering:
Building and Maintaining Linux Clusters.
New Riders, Indianapolis

Creel, M. (2010a). PelicanHPC Software. At
http://pelicanhpc.org.

Creel, M. (2010b). PelicanHPC Tutorial. At

http://pelicanhpc.org/Tutorial/PelicanTuto
rial.html .

Englander, I. S. (2010), The Architecture of
Computer Hardware, Systems Software,
& Networking: An Information Technology
Approach, 4th Edition. J Wiley, Secaucus,
NJ.

Hastings, D. A. (2003). Experience Teaching

Hands-on Parallel Computing at a Small
College. J. of Computing Sciences in
Colleges, 18(3), 62-67.

---, High Performance Cluster Computing
website. At http://icl.cs.utk.edu/hpcc/.

Kitchens, F. L., Sharma,S. K., & Harris, T.
(2004). Intgrating IS Curriculm
Knowledge through a Cluster Computing

Project- a Successful Experiment. J. of
Information Technology Education, 3.
264-278.

---. “Message Passing Interface”. (2010, June,
15) At http://wikipedia.org/wiki/

Message_Passing_Interface.

Montante, R., (2002). Beowulf and Linux: an
Integrated Project Course. J. of

Computing Sciences in Colleges, 17(6),
10-18.

Petitet, A., Whaley, R. C., Dongarra, J. &
Cleary, A. (2008). HPL - A Portable
Implementation of the High-Performance
Linpack Benchmark for Distributed-

Information Systems Educators Conference 2010 ISECON Proceedings
Nashville Tennessee, USA v27 n1354

©2010 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org /proc.isecon.org

Memory Computers. At http://www.
netlib.org /benchmark/hpl/.

Prins, P. (2004). Teaching Parallel Computing
using Beowulf Clusters: a Laboratory

Approach. J. of Computing Sciences in
Colleges, 20(2), 55-61.

Sterling, T., Salmon,J., Becker, D. J., &
Savarese, D. F. (1999). How to Build a
Beowulf: A Guide to the Implementation

and Application of PC Clusters. MIT Press,
Cambridge, MA.

Vrenios, A. (2002). Linux Cluster Architecture.
Sams, Indianapolis.

	btAsinTitle

