
Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org

Reasserting the Fundamentals of

Systems Analysis and Design through the
Rudiments of Artifacts

Musa Jafar

mjafar@mail.wtamu.edu

Jeffry Babb
jbabb@mail.wtamu.edu

Department of Computer Information and Decision Management

West Texas A&M University

Canyon, TX 79016

Abstract

In this paper we present an artifacts-based approach to teaching a senior level Object-Oriented

Analysis and Design course. Regardless of the systems development methodology and process
model, and in order to facilitate communication across the business modeling, analysis, design,

construction and deployment disciplines, we focus on (1) the ability to define the boundaries of the
system through context analysis, (2) the separation between business needs and technology
requirements (business requirements vs. software requirements specifications), (3) the clear
separation between analysis and design (business-domain models vs. analysis models vs. design
models), (4) the evolution of artifacts from domain artifacts, to analysis artifacts and to design

artifacts, and (5) the application of abstractions, formal methods and patterns to produce the
necessary design artifacts. Thus, we emphasize the transition from computation-independent
models, to platform-independent models, to platform-specific implementation models. We assert
that the qualities of the produced artifacts convey the essentials of a student’s understanding of
analysis and design. In this sense, as students engage the artifacts of design, they converse with
the problem and solution space in a manner that strengthens their command of the interface

between information systems and organizations. We assert that faculty teaching an Analysis and
Design course should focus on the quality of artifacts that serve as the “meeting point or interface”
between the problem space and the solution space rather than on the development methodology(s)
and process model(s) involved.

Keywords: Object Oriented, Analysis, Design, Use-case, object model, sequence diagram, artifacts

1. INTRODUCTION

Systems analysis and design persists as a core
concern for the Information Systems discipline
and programs designed to instruct students in
the fundamentals of Information Systems.
Systems analysis and design remains a core
concern as the processes and artifacts of

analysis and design reconcile between the

technical and organizational concerns for any
information system. While the composition and
depth of curricular content in analysis and
design have always been debatable, the
curriculum in analysis and design has always
been influenced by: (1) the structure of the
academic program; (2) the skill set of the

faculty teaching the course; (3) the experience

mailto:mjafar@mail.wtamu.edu
mailto:jbabb@mail.wtamu.edu

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org

of the faculty in software development; (4) the
set of tools used in the course; (5) the
paradigm used to teach the course (Object-
Oriented, structured, etc.); and (6) the

position of the course in the program
curriculum (Russell, Tastle, & Pollacia, 2003).

Generally, our concern with systems analysis
and design is in developing (1) an in-depth
understanding of the problem domain; and (2)
a multi-contextual (Analysis, Design,
Construction, Testing and deployment)

communication of descriptions regarding the
solution domain. These elements have been
well-articulated: “To program is to

understand: The development of an
information system is not just a matter of
writing a program that does the job. It is of the

utmost importance that development of this
program has revealed an in-depth
understanding of the application domain;
otherwise, the information system will probably
not fit into the organization. During the
development of such systems, it is important
that descriptions of the application domain are

communicated between system specialists and
the organization.” (Madsen et al., 1993, p.3)

In a course on systems analysis and design, it
is quite common that, in addition to systems
analysis and design topics, faculty also tend to

focus heavily on the development process
itself. As a design process model suggests

operations at a higher order of analysis, some
of these topics are difficult for students to
comprehend. Put another way, the concerns of
process are premature for students who must
first grasp the fundamentals of the artifacts of
analysis and design, and particularly, of

design. Furthermore, some related subjects,
such as user interface design and database
design, often require separate courses despite
their obvious connection to the concerns of
systems analysis and design. Similarly,
operating in a development environment,
preparing the deployment environment,

designing for scalability, designing for quality
assurance, and configuration management are
hard to teach in a classroom - they typically
require many years of experience and on-the-
job training. Accordingly, educators need to be
very selective of the content they teach and
the prerequisites needed as they need to

concentrate on the core topics of analysis and
design.

To teach students how to analyze, design,
build and maintain useful and usable

software system products (Brooks, 1995), IS
programs typically offer a system analysis and
design course that focuses on requirements
gathering, analysis, and high-level design as

an essential element of the undergraduate
curriculum. Also, if complemented by a
capstone “finishing” and synthesizing course, a
course in systems analysis and design can also
focus on low-level design, construction,
testing, deployment, and packaging. These two
courses cover the major aspects of the factory-

life phases of a software system product in
contrast to its lifetime-in-use. Throughout this
curricular process, students learn about the
tools, processes, artifacts, and quality-

assurance aspects of what is needed to build a
software system product (Brooks, 1995; Gupta

and Wachter, 1998).

This paper illustrates how we address the
following questions in teaching the students
how to perform analysis and design: (1) where
do we start the analysis and design process?
(2) What are the activities that are performed?
(3) What are the artifacts that are produced?

(4) What are the dependencies between the
different artifacts? (5) How to evolve domain
artifacts to analysis artifacts to design artifacts
to development artifacts? (6) How to use UML
tools to support and automate the creation,

maintenance and transition of artifacts? This
artifacts-centered, UML-Tools based approach

focuses our students on the rudiments of
systems analysis and design by focusing on the
quality of artifacts and their evolution that
facilitate these activities. By the time, our
students start their profession, they should be
comfortable and versant in the rudiments of

the SAD course as they pertain to the essential
artifacts of design. Given a description of a
business problem from a subject matter
expert, our students should be able to identify
their business needs in the form of business
requirements and system requirements. They
should be able to produce the appropriate

system context, functional architecture, use-

cases and use-case diagrams. Given a use-
case, they should be able to produce the object
models, sequence diagrams and activity
diagrams and screen layouts. Given an object
model, they should be able to produce the
conceptual database schema. Given a

conceptual database schema, they should be
able to produce the logical database schema
(SQL DDL(s)) etc. This is a simpler, and
perhaps not-synthesized, level of

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org

understanding, but it is focused on the
outcome of mastering the basics.

Explicating our Exemplar

In our program, our first course in systems

analysis and design is a junior/senior level
course. For a textbook, we have used
“Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design” by
Larman (2005), and supplemented by other
course materials and Microsoft Word document
templates from IBM Rational. For analysis and

design software tools we use IBM Rational
Architect. As reference texts, we use
Requirements Management Using IBM Rational

Requisite Pro (Zielczynski, 2008), Visual
Modeling with IBM Rational Software Architect
(Quatrani & Palistrant, 2006), and UML and

IBM Rational Unified Process Reference and
Certification Guide (Shuja & Krebs, 2008). We
use IBM Rational Software Architect as a UML-
based CASE tool. IBM Rational Architect
provides support for creating, sharing and
managing of UML models during analysis and
design. It is used as a repository and a

management tool for the various artifacts
across the team members (model, documents,
etc.) (Quatrani & Palistrant, 2006). Figure 1
IBM Rational: User ViewFigure 1 is a
screenshot a user’s view of the tool’s frontend,

it allows analyst designers and developers to
collaborate and share the various analysis and

design artifacts (models and documentation)
into a repository with visual front-end. All IBM
Rational software and educational materials
are available free of charge for academic
programs participating in the IBM Rational
Academic Initiative Program.

Our course has object-oriented programming
and database design as pre-requisites. For
homework assignments, students are required
to produce the necessary analysis and design
artifacts using a combination of Word
documents (using IBM Rational document
templates) and UML models using IBM Rational

Software Architect. For the final project,
students work in teams to produce the
complete analysis and design artifacts (Word
documents, UML models, and prototype
demos).

In this paper, we share an artifacts-based
approach in the delivery of our Object-Oriented

Systems Analysis and Design course. By
“artifacts-based” approach, we mean that
regardless of the software engineering
methodology and process model (Agile,

Unified, SCRUM, Extreme Programming, etc.),
we focus on the artifacts, their dependencies
and transformation that lead to the
construction of the product. The Rational

Unified Process lists twenty-one analysis and
design artifacts (Crain, 2004), some of the
artifacts are redundant and they do overlap we
do not cover all of the artifacts in the course.
In this paper, we emphasize on the structure
of six primary artifacts (System Context,
Requirements, Use-Case Modeling, Object

Modeling, and State Diagrams) and activity
diagrams. We hold that such an emphasis
strengthens the perceptive skills students
require in order to understand the wider

process of systems development. A focus on
the qualities and mechanics of the analysis and

design artifacts serves to remind students
about the role these artifacts play as an
interface between the ‘inner’ environment, the
substance and organization of the artifact
itself, and an ‘outer’ environment, the
surroundings in which it operates.” (Simon,
1996)

2. THE ANALYSIS DISCIPLINE

To analyze a system is to build a set of
consistent and interrelated models on the basis
of which a software system can be designed.

During analysis, we define:

(1) The boundaries of the system represented
as a UML system context model.

(2) The users of the system represented as a
set of primary and secondary actors.

(3) The functional requirements of each
actor(s) group organized and described in a
Word document (explicitly listing capabilities
requirements – the “should” and “should-

nots”).

(4) The business logic of the elementary
business processes of the system represented
as UML diagrams (use-case, system sequence,
collaboration diagrams, and activity diagrams)

and a Word document containing descriptions
of use-case scenarios.

(5) The information models of the system
represented as UML domain object models.

(6) The functional architecture of the system
represented as UML functional subcomponents.

(7) The software requirements specifications of
the system (non-functional or other
requirements depending upon what it is

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org

named) which also includes performance,
reliability, security, and other concerns.

Essentially, the analysis team produces robust
and consistent professional documents and rich

graphical models using a word processor and a
modeling tool such as IBM Rational Architect.
Accordingly, the analysis team produces
artifacts related to documenting an expressive
platform independent model on the basis of
which the system can be designed.

Where to Start?

Software development is the art of moving
forward. To overcome the “analysis paralysis”

dilemma, the challenge facing the designer is:
to orbit sufficiently in problem-domain
modeling to generate enough momentum to
begin analysis; to orbit sufficiently in analysis

to gather enough momentum to move to
design; etc. One of the biggest challenges is to
teach students where to start. The artifacts of
design create the milestones for an analysis
and design project and signal to the designers
that we have gathered enough quality artifacts
to move forward, partially or completely, to the

next phase.

We start by defining the system context. By
doing so, we define the boundaries of the
system. We define the primary actors (both

humans and other applications) and the
secondary actors of the system. The system
context is typically conveyed in a Word

document that details the characteristics of
each actor group accompanied by UML
architectural models that highlights the
primary and secondary actors of the system
and their patterns of interaction with the
system through system-level sequence

diagrams. We use the actors list defined in the
system context to define and produce the
functional requirements document and the
functional architecture model, see Figure 1. We
use the functional requirements to detail the
use-case scenarios and produce the use-cases

document, use-case models and system

sequence diagrams models. For human-actors
we produce detailed sequence diagrams user
interfaces and storyboards, for application-
actors we produce contract (API)
specifications. We then use the use-case
scenarios to build bottom-up domain object
models. We use the domain object models to

produce the state transition diagrams of the
noteworthy objects. We use the analysis
models and software requirements
specifications to produce the design models.

We use the use-cases, system requirements
and domain models to produce system
architecture and the detailed design.

The System Context

The system context artifact starts as a UML
model. It documents the primary and
secondary actors of the system and their
characteristics. It allows us to define the
boundaries of the systems. The system context
is the primary input to the functional
requirements of the system. It helps us define

(1) primary business actors (both human and
other systems) that require services from the
system, (2) the primary system administrator

actors responsible for administering and
maintaining the system, and (3) the secondary
actors (which are other systems) that are in

the workflow of the elementary business
processes of the primary actor(s).

The analysis domain is not without its
difficulties, as analysis is where we reconcile
between the technical and organizational
concerns in the identification of actors. When
defining primary actors, we sometimes have

the tendency to ignore the serviceably of the
system (primary system actors); we do,
however, emphasize that there is always an
application administrator actor, a system

administrator actor, and in some cases a
service layer monitor actor (another system
that may have to monitor the health of the

application). Primary application actors are
responsible for the monitoring, operations
support, administration, backup, recovery,
maintenance and serviceability of the
application. They have their own “System-
Level” functional requirements to perform their

operations. Using a Student Information
System as an example, the system context in
Figure 2 shows Student(s), Faculty, the Library
System, Application Admin, and System Admin
as primary actors, and the Finance System, the
Financial Aid System and the Library System
as secondary actors. We are highlighting the

Library System as both a primary and a
secondary actor to make the point that an
actor can be both primary and secondary.
Within the UML tool front-end, as illustrated in
Figure 1, we can capture the characteristics of
each actor group and provide text description
within the document editor or attach a

document detailing the characteristic of the
actor group as a URL.

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org

The Requirements

A requirement is a service that the system
needs to provide or a capability to which the
system needs to conform to. Although

completely different, requirements are usually
divided into (1) the functional or business
requirements that capture the business
functions of the system and (2) the system
requirements (Software requirements
specifications) that provide the scaffolding and
the infrastructure support of the business

functions of the system. Depending on the
software engineering methodology used, the
system requirements are also called the

nonfunctional, other, or supplementary
requirements. UML allows for the modeling of
functional requirements through use-case

diagrams, system sequence diagrams, and
activity diagrams. UML however, does not
provide a framework for modeling system
requirements. The requirements document is a
well-written Word document that includes both
the functional and system requirements of the
proposed system. It clearly captures the

functional and the non-functional requirements
of the system. Figure 3 illustrates a sample
table-of-contents for a requirements document
that our students use as a template. We
provided the figure to emphasize the

importance of uniformity of content, and as a
road map of what to expect from analysis and

design in terms of content and deliverables.
Students have always struggled with how a
document should look like, what to include in
the project documentation, the table-of-
content provides them with a road map of
what to expect in terms of artifacts and

content and their level of detail.

The Functional Requirements

The functional requirements are the business
capabilities that the system should provide.
They are written in a request for proposal
(RFP) format by, or at least with the assistance
of, subject matter experts. These requirements

are written in clear and unambiguous short
paragraphs (as capabilities expressed in terms
such as “should” and “should-not”), with one-
or two-paragraph descriptions to provide a
high-level understanding of the capability or
the restriction.

For each primary actor, we create categorized

lists of business functions that reflect the
business needs of the actor group. The
following is a sample of functional

requirements listings:

1) Student Requirements

1 A student should be able to add a

course section to their Schedule.

During the registration period,

using the internet, a student

should be able to add a course

section to their schedule from

the list of open sections as long

as it does not exceed the maximum

allowed limit for that student.

2 A student should be able to

delete a course section from

their schedule. During the drop

period, using the internet, a

student should be able to drop a

course section from their

schedule as long as they maintain

the minimum residency limits.

2) Catalogue dept. Requirements

1 Catalogue dept. should be able to

change prerequisites of an

existing course. …………

2 Catalogue dept. should be able to

assign a course to a degree plan.

3) Etc.

In summary, the functional requirements
provide a list of capabilities and restrictions. It
is an input to the use-case documents where

business logic is detailed.

The System Requirements

The system requirements are capabilities the
system needs to conform to. According to
Zielczynski (2008), they are all the
requirements that cannot be expressed in use-
cases. They drive the design and specify the

system properties. They are categorized into

aspects covering security, performance,
reliability, usability, testing, technology,
external interfaces, operations support, legal
concerns, etc.

Although two software systems may have very

different functional requirements (Billing vs.
HR), it is often the case that they have very
similar system requirements. System
requirements are usually based on common
corporate and industry best practices and
standards (IEEE Computer Society, 1998).

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org

According to their level of interest in the
system, various stakeholders write the system
requirements. For example, security engineers
write security requirements that comply with

corporate and industry standards.
Maintenance, operations support and system
administrators write serviceability
requirements. Database administrators write
the data requirements. User-centered design
(human factors) groups write the usability
requirements to comply with the look and feel

standards of the organization.

The system requirements document is an input
to the use-case details document, system

architecture document, deployment
architecture, and test cases.

The following is a sample of system

requirements listings:
1) The System should respond to a

user request for a service within

3-5 seconds 90% of the time and

no longer than 10 seconds at any

time.

2) A user account should become in-

active if it has not been used

for a configurable (default 45)

consecutive days.

3) A user should not be able to have

more than one concurrent active

session.

4) The date, time and the IP address

of the machine from which a user

logged in should be stored into

the system.

5) No Open Source code should be

used as part of the System

6) All System Windows should have a

title that reflects the task at

hand, should display the user

name and should display the

current local date and time.

7) All System windows should have

context help.

8) All necessary data should be

carried over across multiple

active screens

9) Stale records that are more than

a configurable (default one year)

old should be purged out of the

system.

10) The System should support single

sign-on products.

11) Security should be X507

Compliant.

12) Client and Server Ports should be

configurable.

The Use-Case Model

Use-case modeling is comprised of use-case
UML diagrams and use-case details that are
textual documents. Use-case diagrams are
representations of each actor, their underlying

use-cases, and the dependencies between use-
cases (extends and includes). The business
logic of functional requirements is detailed in
the use-case details document(s). Each

functional requirement is traced to one or more
concrete use-cases and each concrete use-case
is traced back to one or more functional

requirements. A concrete use-case details an
elementary business process. It is a coherent
set of functions, which embodies the business
logic needed for the system to provide while
moving the system from one consistent state
to another consistent state in response to an
actor’s request for service. During analysis,

abstract use-cases are extracted from the
concrete use-cases. Abstract use-cases contain
reusable business logic components that are
common to more than one use-case. When a
use-case is too big, it is also abstracted into a
simpler set of use-cases to simplify the

business logic through abstraction. For
example, “check-prerequisites,” “get-
probation-status,” and “validate-registration-
card” are abstract use-cases of the “register-

for-class” concrete use-case, Error! Reference
source not found..

During analysis, use-case details are also

captured as activity diagrams (see Figure 9).

Many sources provide templates for use-case
documents. We use the templates from IBM
Rational as a skeleton and we modify them as
needed (Zielczynski, 2008). The following is a

common use-case template:

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org

1. <Use-case Name>
2. Brief Description
3. Satisfied Requirements List
1. <Requirement Name a& Number>
2. <Another Requirement Name & Num.>

4. Actors List
1. <Actor Group Name>
2. <Another Actor Group Name>

5. Preconditions
1. <Precondition>
2. <Another precondition>

6. Use-case Flow
1. Basic Main Flow
2. Alternative Flows
3. Optional Flows
4. Exception Flows

7. Post Conditions
1. <Post Condition>
2. <Another Post Condition>

8. Included Use-cases
1. <Use-case Name and Number>
2. <Another Use-case Name and Num.>

9. Extending Use-cases
1. <Use-case Name and Number>
2. <Another Use-case Name and Num.>

10. Special Requirements
1. <Special Requirement>
2. <Another Special Requirement>

11. Special System Requirements
1. <Special System Requirement>
2. <Another System Requirement>

12. Assumptions, Open Issues and
Comments

The Domain Object Model

The domain object model is the set of domain
objects, the attributes of each object with their
constraints and data types, and the set of
associations between objects. Associations
have cardinality and are regular, aggregation,

containment, inheritance or taxonomic. The
domain object model is a UML artifact that is
comprised of a set of diagrams and the
underlying descriptions and semantic content
of the object model artifacts. In summary, it is
a visual representation of the domain objects

of the system, their attributes, constraints and

associations with other classes. Each use-case
scenario exposes certain objects, object
attributes and relationships. For example, from
a login use-case, we learn that a user (student,
faculty, staff, etc.) has a user id and a
password. From the “add class” use-case

scenario, we learn that students have study
plans and majors, and courses have
prerequisites. By analyzing the use-cases, the
object model is built from the ground up. In
Figure 5 is an example of a mini object model.

The State Diagrams

For each domain object, a state diagram
captures the noteworthy, finite, and discrete
states of an object. Not every object

necessarily has noteworthy states. State
transitions of the same object are usually
confused with the inheritance hierarchy of an
object. For example, a student status as
freshman, sophomore, junior, or senior
represents the possible state transitions of the
undergraduate student object rather than as

subclasses of student. Figure 6 is an example
of a state transition diagram of the object
student

3. THE DESIGN DISCIPLINE

 Design is an intermediate phase in the process
of moving the system from the problem space

(Analysis) to the solution space (Final Product).
To design a system is to develop a set of
artifacts – and subsequently an overall system
model – from which a software system can be
built. Given the set of all the Analysis artifacts,
time constraints, technology constraints, and
financial constraints, the system design is a

proposal for feasible solution that satisfies
these constraints. During design, inputs,
processing, data storage, output and
communication software artifacts are

materialized into a set of layered architectures
that are comprised of user-layers, processing
layers, data layers, communication layers,

security layers, etc. In this sense, designing is
about making commitments on the distribution
of business logic and the processing of
business logic across the layers.

From Analysis to Design

Transitioning from analysis into design,

students have learned how to create analysis
models and document (1) the system context
with its primary and secondary actors, (2) the
functional architecture of the system and the
dependencies between its functional

components, (3) the requirements of the
system both functional and system

requirements, (4) use-cases and use-cases
analysis and (5) the domain object model, (5)
the user interface in terms of story boards and
contract specifications.

During design, students learn how to realize a
solution for the analyzed problem at hand.
They build platform-independent models

during high-level design and platform specific
models during low-level design. During design,

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org

students learn to realize uses cases through
use-layer components, processing layer
components and data layer components. Using
the web as a computing model, students

realize that they need to (1) deign web pages
based on the story of the use-cases, (2) design
database tables based on the design object
model and connect the user layers with the
data layers using a dynamic content processor
like PHP, Java Server Pages, Python, etc.

Into Design

During design, students learn:

 To refine and redefine objects, create

abstractions, add methods to objects, refine
the data types and add constraints to
attributes based on Class Responsibilities and
Collaboration (CRC) design pattern as shown

in Figure 11.
 How to use the Model-View-Controller and

Class-Responsibilities-And-Collaboration
patterns to define the view components or
boundary classes if any (Screen designs and
layouts), controller components or
processing classes (class responsibilities and

collaborations) and Model components or
entity classes (tables and views of the
underlying data layer is a relational database
system). For the Transcript object for

example, students learn to produce the
boundary (GUI), processing and entity
(database) realizations as shown in Figure

12.
 How to use design patterns to create other

design objects such as control classes,
listener classes, messaging classes,
information expert classes, etc.

 How to utilize knowledge learned in their

database class to implement design and
implement a relational database with the
required integrity constrains.

In summary, during design, use-cases are
realized into detailed sequence diagrams where
commitments are made as to the distribution

of processing. For example, given a login use-

case, should the processing to validate a user
be performed in the user layer, the processing
layer, or in the data layer through stored
procedures? Each one of these designs has its
own advantages and disadvantages. During
design, a commitment as to how to implement
the business logic is clearly outlined.

Using a student login to the system use-case
scenario, students learn to identify the design
objects of the use-case Figure 7. A design

commitment needs to be made as to who is
responsible for validating the credentials.
Students learn to produce detailed sequence
diagrams to realize the design of use-cases. In

Figure 8, the “Login-Screen” object controls all
the authentication operations and the creation
of other objects.

However, another sequence diagram could
have distributed the logic among the various
objects. Accordingly, design is a commitment
to a processing logic scenario that is low

coupled and highly cohesive.

From Analysis and Design to Design and

Development

It is prudent to identify what has been left out
of our discussion, as these left-out parts are a
also a vital component of our systems analysis
and design curricular sequence, but are

included in our capstone course. To wit, there
are other important design issues for which a
rudimentary and artifacts-centered approach is
also appropriate. A few of these issues that we
feel are important are: (1) testing; (2)
designing for performance; (3) designing for

scalability; (4) designing for security; and (5)
designing for robustness. As such, each of
these are deferred to our capstone course,

which itself is a synthesizing course meant to
bring the principle pillars of our curriculum
together.

To some degree, we can think of these as
intermediary concerns, and are, appropriately,
left to a course focused on culminating the
rudiments and undertaking a deeper study of
software processes: our senior capstone
course. Once students have grounded
themselves in systems analysis and design,

modern object-oriented programming,
advanced web programming, and database
management, we feel that these additional
concerns of design can then be addressed in

the richer context of a business problem in
need of an information technology solution.

Once past the rudiments, even a capstone
course is merely a beginning; students will
only learn about designing for performance,
scalability, and robustness in the context of
practice in the profession. While we feel it is
prudent to discuss these issues, the
“laboratory” environment of the capstone

project course makes it difficult, but not
impossible, to demonstrate these important
design issues. That is to say, while our

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org

capstone course seeks to involve students in
projects with real clients and attempts to
provide as meaningful of an experience as
would be possible, most capstone courses,

including ours, are far from the pressures,
constraints, and strictures of reality. Typically,
these projects are either a pilot/prototype
project, or some other non-essential product
that is typically NOT on the critical path.
However, we have enjoyed notable exceptions
to this. For instance, we have experience with

on-campus clients who have either gone on to
utilize the outcomes of our capstone course in
their daily operations, or have been very
impressed with the outcomes of the capstone

course and have incorporated our students’
work in some fashion.

4. DISCUSSION AND CONCLUSION

In this paper we presented a road-map for an
outcomes-focused, artifacts-based, hands-on,
and disciplined approach to an analysis and
design course. Our objective is to present a
disciplined approach to understanding and
producing the necessary analysis and design

artifacts (documents and models) which
consistently lead to a successful system
regardless and irrespective of the systems
development paradigm, model, and

methodology used to build the system. With
this approach, students gain hands-on
technical skills that are deliverables-centric.

Our premise is that the adherents of a
predictive model, such as the Capability
Maturity Model, or the adherents of an
adaptive model, such as Extreme
Programming, should both be equally
comfortable with commonly accepted artifacts.

We also acknowledge that bridging the gap
between process modeling and object-oriented
systems modeling remains a challenge; we
contend that students will bridge this gap with
experience. However, without a solid
grounding in the qualities and characteristics of
the artifacts themselves, the “craft” of systems

design will be elusive. We think of the artisan
who must learn the tools of their craft before
they worry about the holistic and philosophical
concerns of their craft. In this sense, we feel
that we are preparing our students to use their
knowledge of the characteristics and qualities
of design artifacts to then develop their

experience.

We foresee that our students will approach
their initial years in the profession as an
opportunity to learn how their designing of

artifacts and their interdependencies helps
them to understand the systems they build and
the context of the organizational problems
these systems address. More importantly, by

knowing their tools, our students can then
focus on what is, and is not, possible as they
navigate the complexity of systems
specification. As they mature in their
profession, our students must develop a sense
of how the juxtaposition of the materials of
design (the artifacts), the constraints of the

design process, and the organizational
constraints of the system’s intended
operational environment, transform their
understanding of the analysis and design

process. This is so also in a cumulative and
iterative tradition: experience is accrued as the

design process is continually engaged. We err
on the side of the artifacts-based approach as
we believe our students are better equipped to
learn about the art and craft of systems
designing if they are first aware of the indelible
truth inherent in the characteristics and
qualities of the artifacts of design.

Schön and Bennett (1996) put it well when
they described a “reflective conversation with
materials” that designers conduct as they
reflect on practice. In this case, “practice” is
the consistent use of design artifacts, which is

only possible when design artifacts (the
materials of designing) are well-understood.

We see this in other areas which invite
mastery: those learning the piano practice
and exercise in the structures of chords, notes
and scales; those learning to dance exercise in
the mechanics of movement; and those
learning a team sport exercise in the patterns

of play. Accordingly, in our course we have
chosen to focus on the artifacts of design in
our curriculum. Once armed with the “scales”
and building-blocks of design artifacts, we
believe that our students can design within the
framework of a development model in the
same manner that a musician trained in the

virtues of sight-reading can work within the

context of many styles of music. In this sense,
familiarity with the artifacts of design – the
rudiments – students will have comfort with a
“grammar” of design which will serve as a
repertoire to draw from in future practice.

Most fundamental to our approach is that the

characteristics and qualities of the artifacts of
design provide the best interface between the
system and those that will use the system. In
the artifacts, we have a “lingua franca” which
allows the realm of Information Technology to

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org

understand and accommodate the realm of the
organization. This interfacing is at the heart of
the Information Systems discipline and is most
representative of the skills and knowledge

most suited to our students’ development.

4. REFERENCES

Alter, S. (2006). Pitfalls in Analyzing Systems
in Organizations. Journal of Information
Systems Education, 17(3), 295-302.

Brooks, F. P. (1995). The Mythical Man-Month.

Addison-Wesley.

Cockburn, A. (2001). Writing Effective Use

Cases. Addison-Wesley.

Crain, Anthony (2004). The simple artifacts of
Analysis and Design, The Rational Edge
(june-8-2004)
http://www.ibm.com/developerworks/ratio

nal/library/4871.html?ca=dnp-326

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design Patterns, Elements of
Reusable Object-Oriented Software.
Addison Wesley.

Gupta, J. and Wachter, R. (1998). A Capstone
Course in the Information Systems

Curriculum. International Journal of
Information Management, 18(6), 427-441.

IEEE Computer Society. (1998). IEEE
Recommended Practice for Software
Requirements Specifications. IEEE
Computer Society. New York, NY: IEEE

Computer Society.

Jacobson, I., Christerson, M., & Overgaard, G.
(1992). Object-Oriented Software
Engineering, A Use Case Driven Approach.
Addison Wesley.

Larman, C. (2005). Applying UML and Patterns.
Prentice Hall.

Madsen, O. L., Moller-Pedersen, B., & Nygaard,
K. (1993). Object-Oriented Programming in

the BETA Programming Language.
Retrieved 6 12, 2010, from

www.daimi.au.dk/~beta/Books/betabook.p
df:

Object Management Group. (2010, May 03).
OMG Unified Modeling Language (OMG

UML) Infrastructure, Version 2.3. Retrieved
June 05, 2010, from
http://www.omg.org/spec/UML/2.3/

Quatrani, T., & Palistrant, J. (2006). Visual
Modeling with IBm Rational Software
Architect. Upper Saddle River, New Jersey:
IBM Press, Pearson Ed.

Rumbaugh, J., Jacobson, I., & Booch, G.
(2005). The Unified Modeling Language

Reference Manual. Addison Wesley.

Russell, J., Tastle, W., & Pollacia, L. (2003).
The State of Systems Analysis and Design.
ISECON. San Diego.

Schon, D.A. & Bennett, J. (1996). Reflective
Conversation with Materials. Bringing
Design to Software, Winograd, T. (Ed.).
New York: ACM Press.

Shuja, A. K., & Krebs, J. (2008). IBM Rational
Unified Process Reference and Certification
Guide. IBM Press, Pearson Ed.

Simon, H.A. (1996). The Sciences of the
Artificial, 3rd Edition. Cambridge: MIT

Press.

Steinberg, D. H., & Palmer, D. W. (2004).
Extreme Software Development. Pearson
Prentice Hall.

Wand, Y. and Webber, R. (1993) On the

ontological expressiveness of information
systems analysis and design grammars.
Information Systems Journal, 3(4), 1993,
217–237.

Zielczynski, P. (2008). Requirements
Management Using IBM Rational

RequisitePro. Upper Saddle River, New

Jersey: IBM Press, Pearson Ed.

http://www.ibm.com/developerworks/rational/library/4871.html?ca=dnp-326
http://www.ibm.com/developerworks/rational/library/4871.html?ca=dnp-326

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org

APPENDIX

Figure 1 IBM Rational: User View

Attaching actor specifications

document as a url-links.

Description of the Student actor using

the document editor

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org

Figure 2 A System Context Diagram

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 13

www.aitp-edsig.org

Figure 3 The Table of Contents for A Requirements Document

1. INTRODUCTION AND PURPOSE .. 1
2. DEFINITIONS, ACRONYMS AND ABBREVIATIONS ... 1
3. DEPENDENCIES AND REFERENCES .. 1
4. DOCUMENT OVERVIEW AND TARGETED AUDIENCE .. 1
5. CUSTOMERS AND OWNERS ... 1
6. REVISION HISTORY EVOLUTION .. 1
7. PRODUCT OVERVIEW ... 2

7.1 PRODUCT PERSPECTIVE.. 2
7.2 SUMMARY OF CAPABILITIES [LATER] .. 2

8. THE CURRENT FUNCTIONAL ARCHITECTURE .. 2
8.1 THE CURRENT FUNCTIONAL ARCHITECTURE DIAGRAM .. 2
8.2 <FUNCTIONAL COMPONENT NAME AND DESCRIPTION> ... 2

9. STAKEHOLDERS AND STAKEHOLDER GROUPS PROFILES .. 3
9.1 <STAKEHOLDER GROUP NAME> .. 3
9.2 <STAKEHOLDER GROUP NAME> .. 3

10. USERS AND USER ROLES’ PROFILES .. 4
10.1 <USER-ROLE NAME [PRIMARY | SECONDARY] ACTOR> .. 4
10.2 <USER-ROLE NAME [PRIMARY | SECONDARY] ACTOR> .. 4

11. THE SYSTEM CONTEXT .. 5
12. FUNCTIONAL REQUIREMENTS .. 6

12.1 <PRIMARY ACTOR GROUP ONE> ... 6
12.1.1 Requirement .. 6
12.1.2 Requirement .. 6

12.2 <PRIMARY ACTOR GROUP TWO>... 6
12.2.1 Requirement .. 6
12.2.2 Requirement .. 6

12.3 <COMMON REQUIREMENTS> ... 7
12.3.1 Requirement .. 7
12.3.2 Requirement .. 7

13. SYSTEM REQUIREMENTS ... 8
13.1 USABILITY ... 8
13.2 RELIABILITY .. 8

13.2.1 <Reliability Requirement One> .. 8
13.3 PERFORMANCE ... 8

13.3.1 <Performance Requirement One> .. 9
13.4 SUPPORTABILITY .. 9

13.4.1 <Supportability Requirement One> .. 9
13.5 DESIGN CONSTRAINTS ... 9

13.5.1 <Design Constraint One>... 9
13.6 ONLINE USER DOCUMENTATION AND HELP SYSTEM REQUIREMENTS ... 9
13.7 PURCHASED COMPONENTS... 9
13.8 INTERFACES ... 9
13.9 USER INTERFACES .. 9
13.10 HARDWARE INTERFACES ... 9
13.11 SOFTWARE INTERFACES ... 9
13.12 COMMUNICATIONS INTERFACES .. 9
13.13 LICENSING REQUIREMENTS .. 10
13.14 LEGAL, COPYRIGHT AND OTHER NOTICES ... 10
13.15 APPLICABLE STANDARDS ... 10

14. SUMMARY AND CONCLUSIONS .. 11
15. OPEN ISSUES ... 12
16. APPENDIX LIST .. 13
17. REFERENCES LIST .. 14
18. INDEX .. 15

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 14

www.aitp-edsig.org

Figure 4 A Use-case Analysis UML Diagram

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 15

www.aitp-edsig.org

Figure 5 A Simple Domain Object Model

Figure 6 State Transitions of an Undergraduate Student

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 16

www.aitp-edsig.org

Figure 7 A design Object Model of Login Use-case

Figure 8 Login Sequence Diagram One

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 17

www.aitp-edsig.org

Figure 9 A Skeleton Activity Diagram for Add Course

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 18

www.aitp-edsig.org

Figure 10 Functional Architecture

Figure 11 Platform Independent Model

Information Systems Educators Conference 2011 ISECON Proceedings
Wilmington North Carolina, USA v28 n1671

__
©2011 EDSIG (Education Special Interest Group of the AITP) Page 19

www.aitp-edsig.org

Figure 12 User, processing and Storage Realizations of the Transcript Object

