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Abstract 

This paper presents a learning unit that addresses quality design in relational data models. The focus 
on modeling allows the learning to span analysis, design, and implementation enriching pedagogy 
across the systems development life cycle. Thriving Systems Theory presents fifteen choice properties 
that convey design quality in models integrating aspects of aesthetics, the more subjective 
phenomena of satisfaction; a quality perspective more expansive than that usually found in software 
engineering, the traditional “objective” notion of metrics. Recent IS curriculum guidelines relegate 

software development to elective status confining design pedagogy into smaller and smaller pockets of 
course syllabi. Where undergraduate IS students may once have practiced modeling in analysis, 
design, and implementation across several courses using a variety of languages and tools, they 

commonly now experience modeling in two or three courses in at most a couple of paradigms. And in 
most of these courses their modeling focuses on acceptable syntax rather than achieving design 
quality in information systems. Learning design quality may once have been an osmotic side effect of 
development practice, but now it must be a conscious goal in pedagogy if it is to be taught at all. This 

learning unit is intended as an adaptable framework to be tailored to the coursework and the overall 
objectives of specific IS programs.  
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1. INTRODUCTION 

Over the past decade computing curricula have 
been repartitioned with the permeation of 

computing across disciplines and society. 
(Shackelford, Cross, Davies, Impagliazzo, 

Kamali, LeBlanc, Lunt, McGettrick, Sloan & Topi, 
2005) There are now 5 major guidelines that 
subdivide curriculum in the computing discipline. 
(Soldan, Hughes, Impagliazzo, McGettrick, 
Nelson, Srimani & Theys, 2004, Cassel, 

Clements, Davies, Guzdial, McCauley, 
McGettrick, Sloan, Snyder, Tymann & Weide, 
2008, Diaz-Herrara & Hilburn, 2004, Lunt, 
Ekstrom, Gorka, Hislop, Kamali, Lawson, 
LeBlanc, Miller & Reichgelt, 2008, Topi, Valacich, 
Wright, Kaiser, Nunamaker, Sipior & de Vreede, 

2010) The co-location of IS curricula in schools 

of business further exacerbates the pressure on 
pedagogy as accreditation bodies further 
constrain the scope of coursework by 
compressing systems development into smaller 
and smaller pockets of course syllabi. (AACSB, 

2010, EQUIS, 2010) Where undergraduate IS 
students once may have practiced modeling in 

analysis, design, and implementation across six 
or more courses in a program using a variety of 
languages and tools, they commonly now 
experience modeling in four or fewer courses in 
at most a couple of paradigms. (Waguespack, 
2011a) And in most of these courses their 

modeling decisions focus on acceptable syntax 
rather than principles representing and 
communicating concepts of quality in 
information systems. Where learning design 
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quality may once have been an osmotic side 
effect of development practice it must now be a 

conscious goal in pedagogy if it is to be taught 
at all.  

At the same time industry and academia persist 

in their lament over the paucity of focus on 
quality in system design first sounded more than 
four decades ago (Dijkstra, 1968) and echoing 
consistently since as in (Denning, 2004, Brooks, 
1995, 2010, Beck, Beedle, van Bennekum, 
Cockburn, Cunningham, Fowler, Grenning, 

Highsmith, Hunt, Jeffries, Kern, marick, Martin, 
Mellor, Schwaber, Sutherland, & Thomas, 2010)  

This paper presents a learning unit that teaches 

quality design in relational data models. The 
focus on modeling allows the learning to span 
analysis, design, and implementation enriching 
pedagogy across the systems development life 
cycle. Thriving Systems Theory presents fifteen 
choice properties that convey design quality in 

models integrating aspects of aesthetics, the 
more subjective phenomena of satisfaction; a 
quality perspective more expansive than that 
usually found in software engineering, the 
traditional “objective” notion of metrics. This 
learning unit is adaptable to the coursework and 
objectives of specific IS programs. The paper 

presents: a brief overview of design quality, 
properties to assess design choices, the 
relational ontology; and a discussion of how 
each of the design choice properties express 
quality through the use of relational data 
modeling constructs. Finally, there is a 
description of how the learning unit has been 

integrated in data management syllabi with a 
comment on its efficacy. A parallel treatment of 
design quality pedagogy applied to the object-
oriented paradigm may be found in 
(Waguespack 2011b).  

2. WHAT IS DESIGN QUALITY? 

Quality is an illusive concept, shifting and 
morphing on a supposed boundary between 
science and art: objective, engineering 
characteristics versus subjective, aesthetic 
observer or stakeholder experience. 

International standards of quality reflect the 
challenge of defining quality by offering a variety 
of perspectives (as gathered here by Hoyle, 
2009): 

  A degree of excellence (Oxford English 

Dictionary) 

  Freedom from deficiencies or defects 

(Juran, 2009) 
  Conformity to requirements (Crosby, 

1979) 
  Fitness for use (Juran, 2009) 
  Fitness for purpose (Sales and Supply 

of Goods Act, 1994) 
  The degree to which the inherent 

characteristics fulfill requirements (ISO 
9000:2005) 

  Sustained satisfaction (Deming, 1993) 

(Waguespack, 2010c) asserts that the quality of 
systems revolves around two primary concepts: 

efficiency and effectiveness defined as follows 
(New Oxford American Dictionary): 

Efficiency [noun]- the ratio of the useful work 

performed […] in a process to the total energy 
[effort] expended 

Effectiveness [noun]- successful in producing a 
desired or intended result 

These two concepts appear primarily 
quantitative and therefore objective. In and of 
themselves they may well be. Portraying 
efficiency using a convenient interpretation of 

“work” and “effort” is genuinely objective. “How 
many” or “how much” or “how often” often 
depicts efficiency. But, when we ask “Is it 
enough?” apparent objectivity fades away. 

Likewise, the supposed objectivity of 

“effectiveness” relies upon the tenuous phrase, 
“desired or intended result” defined as 

Intention [noun]- have (a course of action) as 
one’s purpose or objective; plan 

Effectiveness (like efficiency) is a 

correspondence between a system and its 
stakeholders’ intentions. Assessing effectiveness 

depends on comparing “what is” to “what is 
intended.” While the former may be expressed 
quantitatively the latter presents challenges: 
clarity of conception, mode of representation, 

scope of contextual orientation, and fidelity of 
communication to name but a few. Indeed the 
notion of effectiveness is complicated when we 
contemplate identifying and quantifying the 
stakeholder(s) intentions objectively. 
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The indefiniteness or imprecision that 
characterizes stakeholder intention(s) is 

generally not a concern if an observer is asked 
to assess the beauty of something – an 
assessment generally conceded to be subjective. 
A detailed or even explicit intention 

is not expected in assessing beauty – beauty is 
most often perceived as an experience of 
observation rather than a system analysis. 

Most people commonly accept beauty as 
subjective and exempt from specific justification 
or explanation – “Beauty is in the eye of the 

beholder.” and “You’ll know it [beauty] when 
you see it.” This absence of or difficulty in 

forming a quantitative justification of beauty is 
often the basis for categorizing artifacts or 
processes as products of art rather than of 
engineering. And therein lies the presumption 
that the aspects of design quality that we label 
objective and those we label subjective are 

somehow dichotomous. They in fact teeter 
between objectivity and subjectivity depending 
on the degree of granularity that observers 
choose to employ in inspecting not only the 
artifact but also their own disposition toward 
satisfaction relative to it. 

3. AN ARCHITECTURAL INTERPRETATION 
OF QUALITY DESIGN 

We will never be able to absolutely define design 
quality because of the relativistic nature of 
satisfaction in the observer experience. But, our 

students must still face design choices. So, as IS 
educators we must provide a framework for 
them to develop and refine their individual 
perceptions and understanding of systems 
quality. The taxonomy of design choice 
evaluation proposed in Waguespack (2008, 
2010c), the 15 choice properties, is just such a 

framework. (See Appendix A.) Choice properties 
derive from Christopher Alexander’s writings on 

design quality in physical architecture. 
(Alexander, 2002) 

Choice properties address the process of 
building, the resulting structure, and the 
behavior of systems as cultural artifacts. Every 
design decision, choice, contributes to the 
aggregate observer experience: either positively 

or negatively. Each choice exhibits the 15 
properties with varying strengths or influence 
that impact the resulting observer satisfaction. 

The confluence of property strength results from 
the coincidence of the designer’s choice with the 

collective intention of the stakeholders. The 
combination of all choices with their respective 
property strengths results in the overall, 
perceived design quality. Many of the properties 
are design characteristics long recognized in 
software engineering (i.e. modularization, 
encapsulation, cohesion, etc.). But several reach 

beyond engineering to explain aesthetics, the art 
(i.e. correctness, transparency, user friendliness, 
elegance, etc.). An example of the effectiveness 
of choice properties in explaining the design 
quality of production systems is reported in 
(Waguespack, Schiano & Yates, 2010b). 

4. THE ONTOLOGY OF THE RELATIONAL 
PARADIGM 

Illustrating design decisions in the relational 
paradigm can be a challenge. The idiosyncrasies 
of data modeling syntax often obscure the 

intention and/or the result of a design decision. 
For that reason the learning unit presented here 
uses a paradigm description independent of 
programming language, the relational ontology, 
found in (Waguespack, 2010a) and excerpted in 
Appendix B. The graphical outline of the 
ontology is Figure 1 below.  

 

Figure 1 – Relational Ontology  

The ontology captures the elements of the 
relational paradigm eschewing the obfuscation 

that usually occurs with programming language 
syntax examples. At the same time an 
experienced IS teacher can readily translate the 
ontological elements into a relevant 
programming or modeling dialect.  
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5. CRAFTING RELATIONAL MODELING 
CHOICES THAT STRENGTHEN PROPERTIES 

OF DESIGN QUALITY 

This section, the heart of the learning unit, 
enumerates the 15 choice properties as defined 

in Waguespack (2010c) illustrating how 
modeling choices in the relational ontology can 
express design quality. In this space-limited 
discussion one choice property often references 
another reflecting the confluent nature of the 
design quality properties as Alexander defines 
them in physical architecture. (Alexander 2002)  

Stepwise Refinement (as the name implies) is 
an approach to elaboration that presumes a 

problem should be addressed in stages. The 
stages may represent degrees of detail or an 
expanding problem scope. (Birrell and Ould 
1988) In either case quality evidence of stepwise 
refinement is demonstrated by the cogent and 
complete representation of a design element at 

whatever level of detail or scope is set at each 
stage. To achieve this representation the 
modeling paradigm must support abstraction 
that allows generalization of the scope of 
interest and then the elaboration of that scope 
from one stage to the next.  

In the relational paradigm the choice of 
attributes along with their interdependencies 
forms entities depicting facts. Each relation 

depicts a cohesive, encapsulated and distinct 
segment of knowledge. Each instance of that 
knowledge depends on its distinguishable 
identity: tuple by tuple. The scope of knowledge 
included in any particular model is constructed 
by the aggregation of these distinct segments 
interwoven through their explicit relationships. A 

whole model is built up stepwise as the “subset 
of the universe” chosen for the model (its 
intension) is systematically surveyed, cataloged 
and defined in the collection of relations. Each 
relation’s integrity is achieved through its 

independent correctness separate and distinct 

except for those relations with which is 
maintains foreign key relationships. But the 
correctness of the whole proceeds from the 
stepwise assembly of the entire set of relations 
that together describe the reach of a model’s 
responsibilities.  

Cohesion is a quality property reflecting a 
consistent responsibility distribution in a field of 
system components. (Zuse, 1997) Each relation 

serves a separate, cohesive role in the 

responsibility of representing domain knowledge. 
Relations reflect identity as they distinctly 

capture and represent concepts in the form of 
facts collected to represent cogent, clearly 
defined information. The tuples within relations 
similarly represent cogent, unambiguously 
defined instances of reality patterned after the 
attribute structure of their containing relation 
while by virtue of their entity integrity they 

remain distinct from any other tuple therein. The 
population of tuples in a relation reflects the ebb 
and flow of experience that the relation captures 
in the dynamics of the represented reality (the 
extension). The attribute structure of the 

relation as a template for each of its tuples 
ensures that the experience remains comparable 

and thus understandable regardless of the 
number of instances that experience produces. 
Functional dependency and its role in 
normalization assure that each relation 
represents an unambiguous and atomic division 
of knowledge in the modeling space. The result 

is a collection of distinct knowledge experiences 
bound together by a structure that both explains 
the significance of each instance and enables the 
analysis of that experience in terms of the whole 
reality that the relation captures.  

Encapsulation is a design quality isolating and 
insulating instances of domain knowledge. In the 

relational paradigm the individual relation 
assumes the responsibility for capturing and 

defining the “reality,” the “facts,” the modeler 
chooses to instill in a model. The modeler’s 
intension is represented in the structure of facts 
that each of its instances must be able to 
remember. Each instance of the relation 
remembers by way of the data attribute value 
set in each tuple. An important part of the 

reality captured in each tuple is its individuality 
and the uniqueness of the information that it 
remembers in its data attribute values, its entity 
integrity. The truthfulness of individual tuples 
can thus be independently established as an 
encapsulated division of “reality.” (Scott, 2006) 

This individuality is determined solely by the 

values encapsulated therein dependent on no 
other information or relationships as 
characterized by Second Normal Form.  

Extensibility is the property of design quality 
most important in pursuing systems with 
sustainability essential to cost of ownership 
economy. Extensibility juxtaposes the potential 
for new functionality with the effort required to 
achieve it. (van Vliet, 2008). Although each 
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relation (down to the individual tuple) represents 
an independent depiction of reality in a relational 

model, more complex information is realized and 
extended through the relationships that 
associate relations. Associations permit the 
depiction of more elaborate descriptions of a 
model’s responsibilities. Associations depict 
correspondence, interdependence or even 
ownership of concepts between and among  

relations. These associations are employed 
through the relational operators that combine or 

collect facts resident in multiple relations and 
render them correlated, organized and/or 

extracted as a consistent but distinct 
representation of knowledge contained in the 
model.  

Modularization along with cohesion expresses 
“divide and conquer” problem solving 
augmented by the flexibility of configuring and 
reconfiguring model elements. Modularization 

also supports scale permitting the composition of 
subsystems of varying scope that hold details in 
abeyance until they require focus. (Baldwin and 
Clark, 2000) Enlightened module partitioning 
exposes the solution structure envisioned by the 
modeler and publishes intentions for further 
extension by separation of concerns and 

isolation of accidents of implementation. 
(Brooks, 1987) By the nature of depicting model 
knowledge in a collection of individual relations 
that knowledge is subdivided and 
compartmentalized. The process of 
normalization assures that the intension 
depicted by individual relations and 

combinations of relations through their 
associations are not ambiguous, redundant or 
inconsistent. The compartmentalization of 
knowledge not only affords stakeholders a 
clearer view of relations individually, but also 
exposes the opportunities to safely recombine 

that knowledge through relational operations. 
This cohesion that distinguishes each relation’s 
role in the intension of the model also 

segregates the concerns that accomplish the 
model’s responsibilities and permits attention to 
be focused on relevant subsets within the overall 
model’s complexity.  

Correctness in software engineering is often 
narrowly defined as computing the desired 

function. (Pollack, 1982) Thriving Systems 
Theory frames this property upon two outcomes: 
1) validation, the clarity and fidelity of the 
represented understanding of system 

characteristics, and 2) verification, the 
completeness and effectiveness of model feature 
testing both individually and in composition.  

Validation depends on the fidelity of the 
unfolding process; that through the stages of 

stepwise refinement the “essence” of system 
characteristics are brought forward maintaining 
their integrity. (Brooks, 1987) Modularization 
aids in cataloging and focusing on individual 
essential characteristics. Correctness is the only 
choice property that directly supports itself! 

Correctness must be a priority at each stage as 
shortcomings grow more and more expensive to 
rehabilitate as models evolve.  

Verification depends on the effective testability 
of each choice to certify it as “consistent with 
stakeholder understanding.” Modularization 
enables the verification of individual choices or 
relations. Then relying on the correctness of 
individual relations verification can turn to the 

certification of relationships resulting from 
composition of function.  

Entity integrity, referential integrity and 
normalization directly support a relational 
model’s fidelity to the modeler’s intension. Entity 
integrity assures that the uniqueness of each 

depiction of reality (extension) is enforced by 
the structure of the relation, intension, (the 
attribute set, their respective data attribute 

domains and the respective functional 
dependencies). The specification of that subset 
of attributes that will always contain a unique 
(combination of) value(s) defines the 
discriminating characteristics of that knowledge 
(the primary key) – the conformance to which is 
easily tested and thus protected. Referential 

integrity assures not only that data attribute 
values conform to the intension of their 
relation’s data attribute domain but, further to 
the modeled intension of associations between 
tuples including the ownership relationship 

between relations. Normalization extends the 

assurance of fidelity (model to the modeler’s 
intension) by assuring that the interrelationship 
among data attribute values not only supports 
entity integrity and referential integrity, but also 
inhibits the accidental loss of model knowledge 
(anomalies) through the action of relational 
operators.  

Transparency is evident structure, revealing 
how things fit and work together. (Kaisler, 2005) 

The relational paradigm facilitates transparency 
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in two obvious respects. Inspecting the relevant 
data attribute values is sufficient to assess every 

aspect of integrity whether entity integrity or 
referential integrity. These same continuously 
accessible values form the basis of all 
relationships among data attribute values or 
among relations. The consistency of each and 
every data attribute value can be certified. At 
any time before or after any and every relational 

database operation we can verify concurrence 
with the time independent definition of intension 
given  

by the data attribute set and their respective 

data attribute domains along with the 
designation of candidate and foreign keys. There 
are no implied or hidden definitions of 
association or dependence. Every aspect of tuple 
or relation fidelity is discerned through self-

evident information. The result of any relational 
operator is determined solely by the data 
attribute values of the relations involved.  

Composition of Function - As a fundamental 
tool for managing complexity humans regularly 
attempt to decompose problems, issues or tasks 
into parts that either in themselves are 
sufficiently simple to permit direct solution or 
can through recursion be subdivided 

successively until they become sufficiently 
simple. This is a defining aspect of 
modularization.  

Composition of function as a property of design 
quality is realized in model features that 
facilitate the extension or retargeting of the 
model in the future. It is the capacity to combine 
simple features to build more complicated ones 
(Meyer, 1988).  

Each relation in a relational model represents a 
fundamental aspect of intension in the modeler’s 

depiction of reality. Association and the use of 
relational operators effect that fundamental 

intension deriving an answer to any query we 
may invent based on that fundamental 
knowledge. The result of every relational 
operation is itself a relation. The modeler’s 
ingenuity and discipline in forming queries 

carefully that yield results, relations, that are 
themselves consistent with the integrity 
constraints of the model creates the potential of 
an endless cascade of query result as input to 
another query and so on. This is the direct result 
of the mathematical formalism upon which the 

relation model is based – the predominating 

strength of the relational paradigm. The form in 
which these queries may be posed to a relational 

system is constrained only by the choice of 
mathematical representations (e.g. tuple 
calculus or domain calculus) or transformations 
(e.g. relational algebra or relational calculus) to 
the underlying relational definition.  

Identity is at the root of recognition and is 
another property of design quality not usually 
defined in software engineering. In the physical 
world identity is literal based upon direct 

sensorimotor experience: by sight or touch and 
in some cases by sound or smell – a human 

experience of the “real” world. In the relational 
paradigm this human experience is applied 
directly by collecting those attributes that 
completely describe how any particular instance 
is unique – the combination of attributes that 

comprise the primary key. (Khoshafian and 
Copeland, 1986) The primary key serves to 
anchor the knowledge that surrounds it – those 
additional attributes that further describe the 
tuple which it uniquely determines –those 
attribute values that are functionally dependent 
upon the primary key. No tuple is permitted to 

exist in the relational universe (extension) 
unless it has a primary key – entity integrity. 
Ownership as it is manifest through foreign key 
associations is also anchored on the primary key 
of the owner tuple.  

Scale’s affect on design quality is reflected in 
common idioms: “You can’t see the forest for 
the trees!” and “Let’s get a view from 10,000 
feet.” They reflect the importance of context in 

recognition and decision-making. Scale captures 
the modeling imperative that all choices must be 
kept in perspective because it is not sufficient to 
consider a choice only in the microcosm of itself, 
as it must also participate in the connectedness 
of the whole. By achieving scale, a system 

designer provides differing granularities of 
comprehensibility to suit the requirements of a 
variety of observers (Waguespack, 2010).  

In many cases the only familiarity that is needed 
in a relational model is the intension – the 
collection of relation definitions with their 
attribute sets defining their respective attribute 
domains and the associations among the 
relations. The knowledge structure and semantic 

relationships that may be mined through 
relational operators sufficiently defines any 
derivation of information representations that 
queries may be formulated to elicit. In terms of 
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scale any relational model (intension or 
extension) may be expanded to incorporate 

additional knowledge. The modeler achieves this 
by grafting new knowledge onto existing relation 
structure through the addition and/or alignment 
of data attribute domains and associations.  

User Friendliness is another property of design 
quality more often considered aesthetic. It is a 
combination of: ease of learning; high speed of 
user task performance; low user error rate; 
subjective user satisfaction; and, user retention 

over time (Shneiderman, 1992). Its impact may 
be easiest to consider in its  

absence. A modeling choice that is “unfriendly” 

to stakeholders is confusing, hard to 
comprehend, unwieldy, and perhaps worst of all, 
of indeterminate correctness. That which defies 
understanding cannot be determined to be 
correct. Satisfaction is cumulative. The 
sensitivity to the stakeholders’ conceptions of 

the essence of the system to be modeled is key 
to the stakeholders’ sense of comfort, 
familiarity, and expectation.  

There is elegance in the succinctness and 
simplicity that arises from properly isolating 
domain knowledge in the respective relations. 

The use of user/client/customer familiar naming 
of relations and attributes and the choice of the 
commonly used, domain based attribute values 

lends a comfort level to the representation of 
problem domain experience. The relational 
model also enables the derivation of contained 
knowledge at levels of granularity much higher 
than the individual tuple or relation. This is 
because relational operations on relations 
produce relations as their result. Information 

derived from a relational database can be 
presented as if it were simply retrieved from a 
single physical relation. This illusion is easily 
achieved in relational programming languages 
that support the definition and storage of 

queries that may then be referenced themselves 

as relations without the users’ notice (i.e. in 
ANSI SQL the “create view” syntax). The facility 
of such extensions to apply relational operations 
so discretely creates virtually unlimited 
opportunities and permits what might otherwise 
be a complex and daunting algorithm of 
derivation to be completely ignored by the 
users.  

Patterns describe versatile templates to solve 

particular problems in many different situations 

(Gamma et al., 1995). Patterns is the property 
of design quality that channels change 

(unfolding). A pattern foreshadows where and 
how change will need to be accounted for. 
Patterns of the form popularized in (Coplein, 
1995) document commonly encountered design 
questions offering carefully considered advice 
and cautions.  

The most predominant pattern found in 
relational models is the regularity of structure 
that is embodied in the tuples that populates 

relations. This regularity assures that the same 
“questions” may be posed to each and every 

instance in a relation to elicit a consistently 
meaningful result. The tuples may be readily 
compared one to another and ordered that their 
factual content may be exhibited in a useful 
exposure of multiplicity. At the next level of 

structure we find the foreign key relationship 
where an association between relations is 
constructed by choosing attributes in the two 
relations that proceed from the same attribute 
domain. The pattern is further emphasized by 
the property of referential integrity. This pattern 
of connecting facts between and among relations 

permits the stepwise assemblage of higher and 
higher levels of derived information. The 
association enables the traversal of a network of 
concepts and facts that are both defined by and 

operationally enabled by the foreign key 
construct. The use of these patterns by the 

relational model designer provides the 
opportunity to lay out domain knowledge in a 
predictable and usable mapping.  

Programmability in software engineering is 
often considered a feature rather than a 
property of design quality – the capability within 
hardware and software to change; to accept a 
new set of instructions that alter its behavior 
(Birrell and Ould, 1988). It is closely allied with 

extensibility and addresses the need for models 
to welcome the future. What largely separates 
information systems from other human-made 

mechanisms is the degree of adaptability that 
they offer to deal gracefully with change. Unlike 
most appliances that support a very narrow 
range of use (albeit with great reliability), 

contemporary information systems are expected 
to provide not only amplification of effort as in 
computation, but also amplification of 
opportunity in terms of different approaches to 
business or organizational questions. 
Contemporary information systems are expected 
to demonstrate that they can reliably 
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accommodate change. As with extensibility, 
successful accommodation of change relies on 

an understanding of the fundamental options 
governing the structure and behavior within a 
particular domain.  

What sets programmability apart from 
extensibility is a facility that permits altering the 
systems behavior without having to reconstruct 
choices – this versatility is not accidental but 
architectural.  

Returning again to the use of relational 
operations to compose higher and higher levels 

of information we see individual relations as 
building blocks that may be arranged  

(assembled through relational operations) to 
yield any reasonable arrangement or derivation 

of information that the underlying relations may 
possess. This is possible because of the 
individual identity that each relation fosters in its 
tuples and because of the predictable reliability 
that proceeds from the consistency and safety of 
relational operations that is guaranteed in a set 

of normalized relations. The extent of 
information mining that may be attempted is 
limited almost solely by the programmers’ 
imagination.  

Reliability is a property of design quality more 
often associated with implementation than 
design. It is the assurance that a product will 
perform its intended function for the required 
duration within a given environment (Pham, 
2000).  

There is an overarching simplicity that results 
from the fact that all of the properties of 

integrity are based upon data attribute values 
that may be readily inspected before or after 
any relational operation. Intension is expressed 
in modeled expressions of integrity constraints 
that are domain specific. The synchronization 

between the intension and extension of the 

model is easily tested because of this simple 
transparency. Reliability is assured if valid 
relational operations are applied consistent with 
model integrity constraints and thus will always 
yield consistent (“truthful”) information.  

Reliability in design reflects an austerity that 
confines design elements to the essentials of the 
stakeholder’s intentions. When design or 
implementation decisions involve additional 

constructs due to technology or compatibility, 
these accidents of implementation must be 

clearly delineated so as not to imply that they 
are essence rather than accident. This clear 
distinction will protect future system evolution 
from mistaking accidental “baggage” as 
stakeholder intentions.  

Elegance is perhaps the epitome of subjective 
quality assessment that clearly sets choice 
properties of design quality apart from 
traditional software engineering metrics. 

“Pleasing grace and style in appearance or 
manner,” that’s how the dictionary expresses 

the meaning of “elegance.” (Oxford English 
Dictionary)  

“A designer knows he has achieved perfection 
not when there is nothing left to add, but when 
there is nothing left to take away.” (Raymond, 
1996)  

Models composed of choices that are consistent, 
clear, concise, coherent, cogent, and 
transparently correct exude elegance and 

nurture cooperation, constructive criticism and 
stakeholder community confidence. These are 
models that confess to their own shortcomings 
because their clarity obscures nothing, even 

omissions. These are models that satisfy 
stakeholders. They appear “intuitively obvious.”  

Elegance is achieved largely through the 
relational model when relations are modeled 
with a minimum of extraneous or redundant 

information. Indeed eliminating redundancy is 
common mantra of relational modeling. The 
laying out of basic facts divided into distinct 
encapsulated containers of knowledge and the 
subsequent composition of higher levels of 
derived information effects a sense of economy 
of form and abundant opportunity for exploring 

and extracting the knowledge that a database so 
fashioned accommodates.  

Elegance largely proceeds from the efficient and 
effective representation of essential system 
characteristics along with those features 
emerging out of design decisions, accidents of 
implementation, that are laid out with equal 
clarity for separate consideration. This is the 
field effect of the beneficial, integrated, mutual 

support of strong choices described in Thriving 
Systems Theory. (Waguespack, 2010c)  
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6. INTEGRATING THE DESIGN QUALITY 
LEARNING UNIT IN A RELATIONAL 

MODELING SYLLABUS 

The design quality discussion provides a quality 
vocabulary for one-on-one consultations 

between teacher and student as each develops 
their relational models. In this one-on-one 
context each student’s specific design decisions 
may be discussed and evaluated in relationship 
to the design quality properties, an opportunity 
for individualized, reinforced learning and/or 
suggested improvements.  

The deeper subtleties of design quality present a 
challenge for some students particularly in a 

compressed format. The “light doesn’t go on” 
right away for all students. However, the 
integration of the ontology and design quality 
property based vocabulary establishes a 
touchstone that returning students report helps 
them “to name” the “quality elements” they  

rediscover in succeeding coursework and 
professional practice.  

In your own curricular situation the distribution 
of learning unit elements may span more than 
one course (some addressed in database 

programming, requirements engineering, or 
database design, etc.), be rearranged to suit 
your modeling tools, or be adjusted to your 
course sequencing with context-appropriate 
examples. Regardless, the learning unit 
components are flexible and robust enough to 
suit various specific program needs.  
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Appendix A – Choice Properties (Waguespack 2010c) 

 
Choice  

Property 
Modeling 
Action 

Practical Action Definition 

1 
Stepwise 

Refinement 
elaborate develop or present (a theory, policy or system) in detail 

2 Cohesion factor express as a product of factors 

3 Encapsulation encapsulate 
enclose the essential features of something succinctly by a 

protective coating or membrane 

4 Extensibility extend 
render something capable of expansion in scope, effect or 

meaning 

5 Modularization modularize 
employing or involving a module or modules as the basis of 

design or construction 

6 Correctness align put (things) into correct or appropriate relative positions 

7 Transparency expose reveal the presence of (a quality or feeling) 

8 
Composition of 

Function 
assemble 

fit together the separate component parts of (a machine or 
other object) 

9 Identity identify establish or indicate who or what (someone or something) is 

10 Scale focus 
(of a person or their eyes) adapt to the prevailing level of light 

[abstraction] and become able to see clearly 

11 User Friendliness accommodate fit in with the wishes or needs of 

12 Patterns pattern give a regular or intelligible form to 

13 Programmability generalize make or become more widely or generally applicable 

14 Reliability normalize 
make something more normal, which typically means 

conforming to some regularity or rule 

15 Elegance coordinate 
bring the different elements of (a complex activity or 

organization) into a relationship that is efficient or harmonious 
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Appendix B - Relational Green Card (Waguespack 2010a) 
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