
2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 1
www.aitp-edsig.org

A Design Quality Learning Unit in Relational Data
Modeling Based on Thriving Systems Properties

Leslie J. Waguespack

lwaguespack@bentley.edu

Computer Information Systems Department

Bentley University

Waltham, Massachusetts 02452, USA

Abstract

This paper presents a learning unit that addresses quality design in relational data models. The focus
on modeling allows the learning to span analysis, design, and implementation enriching pedagogy
across the systems development life cycle. Thriving Systems Theory presents fifteen choice properties
that convey design quality in models integrating aspects of aesthetics, the more subjective
phenomena of satisfaction; a quality perspective more expansive than that usually found in software
engineering, the traditional “objective” notion of metrics. Recent IS curriculum guidelines relegate

software development to elective status confining design pedagogy into smaller and smaller pockets of
course syllabi. Where undergraduate IS students may once have practiced modeling in analysis,
design, and implementation across several courses using a variety of languages and tools, they

commonly now experience modeling in two or three courses in at most a couple of paradigms. And in
most of these courses their modeling focuses on acceptable syntax rather than achieving design
quality in information systems. Learning design quality may once have been an osmotic side effect of
development practice, but now it must be a conscious goal in pedagogy if it is to be taught at all. This

learning unit is intended as an adaptable framework to be tailored to the coursework and the overall
objectives of specific IS programs.

Keywords: design quality, design, relational data modeling, IS curricula, IS pedagogy

1. INTRODUCTION

Over the past decade computing curricula have
been repartitioned with the permeation of

computing across disciplines and society.
(Shackelford, Cross, Davies, Impagliazzo,

Kamali, LeBlanc, Lunt, McGettrick, Sloan & Topi,
2005) There are now 5 major guidelines that
subdivide curriculum in the computing discipline.
(Soldan, Hughes, Impagliazzo, McGettrick,
Nelson, Srimani & Theys, 2004, Cassel,

Clements, Davies, Guzdial, McCauley,
McGettrick, Sloan, Snyder, Tymann & Weide,
2008, Diaz-Herrara & Hilburn, 2004, Lunt,
Ekstrom, Gorka, Hislop, Kamali, Lawson,
LeBlanc, Miller & Reichgelt, 2008, Topi, Valacich,
Wright, Kaiser, Nunamaker, Sipior & de Vreede,

2010) The co-location of IS curricula in schools

of business further exacerbates the pressure on
pedagogy as accreditation bodies further
constrain the scope of coursework by
compressing systems development into smaller
and smaller pockets of course syllabi. (AACSB,

2010, EQUIS, 2010) Where undergraduate IS
students once may have practiced modeling in

analysis, design, and implementation across six
or more courses in a program using a variety of
languages and tools, they commonly now
experience modeling in four or fewer courses in
at most a couple of paradigms. (Waguespack,
2011a) And in most of these courses their

modeling decisions focus on acceptable syntax
rather than principles representing and
communicating concepts of quality in
information systems. Where learning design

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 2
www.aitp-edsig.org

quality may once have been an osmotic side
effect of development practice it must now be a

conscious goal in pedagogy if it is to be taught
at all.

At the same time industry and academia persist

in their lament over the paucity of focus on
quality in system design first sounded more than
four decades ago (Dijkstra, 1968) and echoing
consistently since as in (Denning, 2004, Brooks,
1995, 2010, Beck, Beedle, van Bennekum,
Cockburn, Cunningham, Fowler, Grenning,

Highsmith, Hunt, Jeffries, Kern, marick, Martin,
Mellor, Schwaber, Sutherland, & Thomas, 2010)

This paper presents a learning unit that teaches

quality design in relational data models. The
focus on modeling allows the learning to span
analysis, design, and implementation enriching
pedagogy across the systems development life
cycle. Thriving Systems Theory presents fifteen
choice properties that convey design quality in

models integrating aspects of aesthetics, the
more subjective phenomena of satisfaction; a
quality perspective more expansive than that
usually found in software engineering, the
traditional “objective” notion of metrics. This
learning unit is adaptable to the coursework and
objectives of specific IS programs. The paper

presents: a brief overview of design quality,
properties to assess design choices, the
relational ontology; and a discussion of how
each of the design choice properties express
quality through the use of relational data
modeling constructs. Finally, there is a
description of how the learning unit has been

integrated in data management syllabi with a
comment on its efficacy. A parallel treatment of
design quality pedagogy applied to the object-
oriented paradigm may be found in
(Waguespack 2011b).

2. WHAT IS DESIGN QUALITY?

Quality is an illusive concept, shifting and
morphing on a supposed boundary between
science and art: objective, engineering
characteristics versus subjective, aesthetic
observer or stakeholder experience.

International standards of quality reflect the
challenge of defining quality by offering a variety
of perspectives (as gathered here by Hoyle,
2009):

 A degree of excellence (Oxford English

Dictionary)

 Freedom from deficiencies or defects

(Juran, 2009)
 Conformity to requirements (Crosby,

1979)
 Fitness for use (Juran, 2009)
 Fitness for purpose (Sales and Supply

of Goods Act, 1994)
 The degree to which the inherent

characteristics fulfill requirements (ISO
9000:2005)

 Sustained satisfaction (Deming, 1993)

(Waguespack, 2010c) asserts that the quality of
systems revolves around two primary concepts:

efficiency and effectiveness defined as follows
(New Oxford American Dictionary):

Efficiency [noun]- the ratio of the useful work

performed […] in a process to the total energy
[effort] expended

Effectiveness [noun]- successful in producing a
desired or intended result

These two concepts appear primarily
quantitative and therefore objective. In and of
themselves they may well be. Portraying
efficiency using a convenient interpretation of

“work” and “effort” is genuinely objective. “How
many” or “how much” or “how often” often
depicts efficiency. But, when we ask “Is it
enough?” apparent objectivity fades away.

Likewise, the supposed objectivity of

“effectiveness” relies upon the tenuous phrase,
“desired or intended result” defined as

Intention [noun]- have (a course of action) as
one’s purpose or objective; plan

Effectiveness (like efficiency) is a

correspondence between a system and its
stakeholders’ intentions. Assessing effectiveness

depends on comparing “what is” to “what is
intended.” While the former may be expressed
quantitatively the latter presents challenges:
clarity of conception, mode of representation,

scope of contextual orientation, and fidelity of
communication to name but a few. Indeed the
notion of effectiveness is complicated when we
contemplate identifying and quantifying the
stakeholder(s) intentions objectively.

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 3
www.aitp-edsig.org

The indefiniteness or imprecision that
characterizes stakeholder intention(s) is

generally not a concern if an observer is asked
to assess the beauty of something – an
assessment generally conceded to be subjective.
A detailed or even explicit intention

is not expected in assessing beauty – beauty is
most often perceived as an experience of
observation rather than a system analysis.

Most people commonly accept beauty as
subjective and exempt from specific justification
or explanation – “Beauty is in the eye of the

beholder.” and “You’ll know it [beauty] when
you see it.” This absence of or difficulty in

forming a quantitative justification of beauty is
often the basis for categorizing artifacts or
processes as products of art rather than of
engineering. And therein lies the presumption
that the aspects of design quality that we label
objective and those we label subjective are

somehow dichotomous. They in fact teeter
between objectivity and subjectivity depending
on the degree of granularity that observers
choose to employ in inspecting not only the
artifact but also their own disposition toward
satisfaction relative to it.

3. AN ARCHITECTURAL INTERPRETATION
OF QUALITY DESIGN

We will never be able to absolutely define design
quality because of the relativistic nature of
satisfaction in the observer experience. But, our

students must still face design choices. So, as IS
educators we must provide a framework for
them to develop and refine their individual
perceptions and understanding of systems
quality. The taxonomy of design choice
evaluation proposed in Waguespack (2008,
2010c), the 15 choice properties, is just such a

framework. (See Appendix A.) Choice properties
derive from Christopher Alexander’s writings on

design quality in physical architecture.
(Alexander, 2002)

Choice properties address the process of
building, the resulting structure, and the
behavior of systems as cultural artifacts. Every
design decision, choice, contributes to the
aggregate observer experience: either positively

or negatively. Each choice exhibits the 15
properties with varying strengths or influence
that impact the resulting observer satisfaction.

The confluence of property strength results from
the coincidence of the designer’s choice with the

collective intention of the stakeholders. The
combination of all choices with their respective
property strengths results in the overall,
perceived design quality. Many of the properties
are design characteristics long recognized in
software engineering (i.e. modularization,
encapsulation, cohesion, etc.). But several reach

beyond engineering to explain aesthetics, the art
(i.e. correctness, transparency, user friendliness,
elegance, etc.). An example of the effectiveness
of choice properties in explaining the design
quality of production systems is reported in
(Waguespack, Schiano & Yates, 2010b).

4. THE ONTOLOGY OF THE RELATIONAL
PARADIGM

Illustrating design decisions in the relational
paradigm can be a challenge. The idiosyncrasies
of data modeling syntax often obscure the

intention and/or the result of a design decision.
For that reason the learning unit presented here
uses a paradigm description independent of
programming language, the relational ontology,
found in (Waguespack, 2010a) and excerpted in
Appendix B. The graphical outline of the
ontology is Figure 1 below.

Figure 1 – Relational Ontology

The ontology captures the elements of the
relational paradigm eschewing the obfuscation

that usually occurs with programming language
syntax examples. At the same time an
experienced IS teacher can readily translate the
ontological elements into a relevant
programming or modeling dialect.

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 4
www.aitp-edsig.org

5. CRAFTING RELATIONAL MODELING
CHOICES THAT STRENGTHEN PROPERTIES

OF DESIGN QUALITY

This section, the heart of the learning unit,
enumerates the 15 choice properties as defined

in Waguespack (2010c) illustrating how
modeling choices in the relational ontology can
express design quality. In this space-limited
discussion one choice property often references
another reflecting the confluent nature of the
design quality properties as Alexander defines
them in physical architecture. (Alexander 2002)

Stepwise Refinement (as the name implies) is
an approach to elaboration that presumes a

problem should be addressed in stages. The
stages may represent degrees of detail or an
expanding problem scope. (Birrell and Ould
1988) In either case quality evidence of stepwise
refinement is demonstrated by the cogent and
complete representation of a design element at

whatever level of detail or scope is set at each
stage. To achieve this representation the
modeling paradigm must support abstraction
that allows generalization of the scope of
interest and then the elaboration of that scope
from one stage to the next.

In the relational paradigm the choice of
attributes along with their interdependencies
forms entities depicting facts. Each relation

depicts a cohesive, encapsulated and distinct
segment of knowledge. Each instance of that
knowledge depends on its distinguishable
identity: tuple by tuple. The scope of knowledge
included in any particular model is constructed
by the aggregation of these distinct segments
interwoven through their explicit relationships. A

whole model is built up stepwise as the “subset
of the universe” chosen for the model (its
intension) is systematically surveyed, cataloged
and defined in the collection of relations. Each
relation’s integrity is achieved through its

independent correctness separate and distinct

except for those relations with which is
maintains foreign key relationships. But the
correctness of the whole proceeds from the
stepwise assembly of the entire set of relations
that together describe the reach of a model’s
responsibilities.

Cohesion is a quality property reflecting a
consistent responsibility distribution in a field of
system components. (Zuse, 1997) Each relation

serves a separate, cohesive role in the

responsibility of representing domain knowledge.
Relations reflect identity as they distinctly

capture and represent concepts in the form of
facts collected to represent cogent, clearly
defined information. The tuples within relations
similarly represent cogent, unambiguously
defined instances of reality patterned after the
attribute structure of their containing relation
while by virtue of their entity integrity they

remain distinct from any other tuple therein. The
population of tuples in a relation reflects the ebb
and flow of experience that the relation captures
in the dynamics of the represented reality (the
extension). The attribute structure of the

relation as a template for each of its tuples
ensures that the experience remains comparable

and thus understandable regardless of the
number of instances that experience produces.
Functional dependency and its role in
normalization assure that each relation
represents an unambiguous and atomic division
of knowledge in the modeling space. The result

is a collection of distinct knowledge experiences
bound together by a structure that both explains
the significance of each instance and enables the
analysis of that experience in terms of the whole
reality that the relation captures.

Encapsulation is a design quality isolating and
insulating instances of domain knowledge. In the

relational paradigm the individual relation
assumes the responsibility for capturing and

defining the “reality,” the “facts,” the modeler
chooses to instill in a model. The modeler’s
intension is represented in the structure of facts
that each of its instances must be able to
remember. Each instance of the relation
remembers by way of the data attribute value
set in each tuple. An important part of the

reality captured in each tuple is its individuality
and the uniqueness of the information that it
remembers in its data attribute values, its entity
integrity. The truthfulness of individual tuples
can thus be independently established as an
encapsulated division of “reality.” (Scott, 2006)

This individuality is determined solely by the

values encapsulated therein dependent on no
other information or relationships as
characterized by Second Normal Form.

Extensibility is the property of design quality
most important in pursuing systems with
sustainability essential to cost of ownership
economy. Extensibility juxtaposes the potential
for new functionality with the effort required to
achieve it. (van Vliet, 2008). Although each

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 5
www.aitp-edsig.org

relation (down to the individual tuple) represents
an independent depiction of reality in a relational

model, more complex information is realized and
extended through the relationships that
associate relations. Associations permit the
depiction of more elaborate descriptions of a
model’s responsibilities. Associations depict
correspondence, interdependence or even
ownership of concepts between and among

relations. These associations are employed
through the relational operators that combine or

collect facts resident in multiple relations and
render them correlated, organized and/or

extracted as a consistent but distinct
representation of knowledge contained in the
model.

Modularization along with cohesion expresses
“divide and conquer” problem solving
augmented by the flexibility of configuring and
reconfiguring model elements. Modularization

also supports scale permitting the composition of
subsystems of varying scope that hold details in
abeyance until they require focus. (Baldwin and
Clark, 2000) Enlightened module partitioning
exposes the solution structure envisioned by the
modeler and publishes intentions for further
extension by separation of concerns and

isolation of accidents of implementation.
(Brooks, 1987) By the nature of depicting model
knowledge in a collection of individual relations
that knowledge is subdivided and
compartmentalized. The process of
normalization assures that the intension
depicted by individual relations and

combinations of relations through their
associations are not ambiguous, redundant or
inconsistent. The compartmentalization of
knowledge not only affords stakeholders a
clearer view of relations individually, but also
exposes the opportunities to safely recombine

that knowledge through relational operations.
This cohesion that distinguishes each relation’s
role in the intension of the model also

segregates the concerns that accomplish the
model’s responsibilities and permits attention to
be focused on relevant subsets within the overall
model’s complexity.

Correctness in software engineering is often
narrowly defined as computing the desired

function. (Pollack, 1982) Thriving Systems
Theory frames this property upon two outcomes:
1) validation, the clarity and fidelity of the
represented understanding of system

characteristics, and 2) verification, the
completeness and effectiveness of model feature
testing both individually and in composition.

Validation depends on the fidelity of the
unfolding process; that through the stages of

stepwise refinement the “essence” of system
characteristics are brought forward maintaining
their integrity. (Brooks, 1987) Modularization
aids in cataloging and focusing on individual
essential characteristics. Correctness is the only
choice property that directly supports itself!

Correctness must be a priority at each stage as
shortcomings grow more and more expensive to
rehabilitate as models evolve.

Verification depends on the effective testability
of each choice to certify it as “consistent with
stakeholder understanding.” Modularization
enables the verification of individual choices or
relations. Then relying on the correctness of
individual relations verification can turn to the

certification of relationships resulting from
composition of function.

Entity integrity, referential integrity and
normalization directly support a relational
model’s fidelity to the modeler’s intension. Entity
integrity assures that the uniqueness of each

depiction of reality (extension) is enforced by
the structure of the relation, intension, (the
attribute set, their respective data attribute

domains and the respective functional
dependencies). The specification of that subset
of attributes that will always contain a unique
(combination of) value(s) defines the
discriminating characteristics of that knowledge
(the primary key) – the conformance to which is
easily tested and thus protected. Referential

integrity assures not only that data attribute
values conform to the intension of their
relation’s data attribute domain but, further to
the modeled intension of associations between
tuples including the ownership relationship

between relations. Normalization extends the

assurance of fidelity (model to the modeler’s
intension) by assuring that the interrelationship
among data attribute values not only supports
entity integrity and referential integrity, but also
inhibits the accidental loss of model knowledge
(anomalies) through the action of relational
operators.

Transparency is evident structure, revealing
how things fit and work together. (Kaisler, 2005)

The relational paradigm facilitates transparency

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 6
www.aitp-edsig.org

in two obvious respects. Inspecting the relevant
data attribute values is sufficient to assess every

aspect of integrity whether entity integrity or
referential integrity. These same continuously
accessible values form the basis of all
relationships among data attribute values or
among relations. The consistency of each and
every data attribute value can be certified. At
any time before or after any and every relational

database operation we can verify concurrence
with the time independent definition of intension
given

by the data attribute set and their respective

data attribute domains along with the
designation of candidate and foreign keys. There
are no implied or hidden definitions of
association or dependence. Every aspect of tuple
or relation fidelity is discerned through self-

evident information. The result of any relational
operator is determined solely by the data
attribute values of the relations involved.

Composition of Function - As a fundamental
tool for managing complexity humans regularly
attempt to decompose problems, issues or tasks
into parts that either in themselves are
sufficiently simple to permit direct solution or
can through recursion be subdivided

successively until they become sufficiently
simple. This is a defining aspect of
modularization.

Composition of function as a property of design
quality is realized in model features that
facilitate the extension or retargeting of the
model in the future. It is the capacity to combine
simple features to build more complicated ones
(Meyer, 1988).

Each relation in a relational model represents a
fundamental aspect of intension in the modeler’s

depiction of reality. Association and the use of
relational operators effect that fundamental

intension deriving an answer to any query we
may invent based on that fundamental
knowledge. The result of every relational
operation is itself a relation. The modeler’s
ingenuity and discipline in forming queries

carefully that yield results, relations, that are
themselves consistent with the integrity
constraints of the model creates the potential of
an endless cascade of query result as input to
another query and so on. This is the direct result
of the mathematical formalism upon which the

relation model is based – the predominating

strength of the relational paradigm. The form in
which these queries may be posed to a relational

system is constrained only by the choice of
mathematical representations (e.g. tuple
calculus or domain calculus) or transformations
(e.g. relational algebra or relational calculus) to
the underlying relational definition.

Identity is at the root of recognition and is
another property of design quality not usually
defined in software engineering. In the physical
world identity is literal based upon direct

sensorimotor experience: by sight or touch and
in some cases by sound or smell – a human

experience of the “real” world. In the relational
paradigm this human experience is applied
directly by collecting those attributes that
completely describe how any particular instance
is unique – the combination of attributes that

comprise the primary key. (Khoshafian and
Copeland, 1986) The primary key serves to
anchor the knowledge that surrounds it – those
additional attributes that further describe the
tuple which it uniquely determines –those
attribute values that are functionally dependent
upon the primary key. No tuple is permitted to

exist in the relational universe (extension)
unless it has a primary key – entity integrity.
Ownership as it is manifest through foreign key
associations is also anchored on the primary key
of the owner tuple.

Scale’s affect on design quality is reflected in
common idioms: “You can’t see the forest for
the trees!” and “Let’s get a view from 10,000
feet.” They reflect the importance of context in

recognition and decision-making. Scale captures
the modeling imperative that all choices must be
kept in perspective because it is not sufficient to
consider a choice only in the microcosm of itself,
as it must also participate in the connectedness
of the whole. By achieving scale, a system

designer provides differing granularities of
comprehensibility to suit the requirements of a
variety of observers (Waguespack, 2010).

In many cases the only familiarity that is needed
in a relational model is the intension – the
collection of relation definitions with their
attribute sets defining their respective attribute
domains and the associations among the
relations. The knowledge structure and semantic

relationships that may be mined through
relational operators sufficiently defines any
derivation of information representations that
queries may be formulated to elicit. In terms of

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 7
www.aitp-edsig.org

scale any relational model (intension or
extension) may be expanded to incorporate

additional knowledge. The modeler achieves this
by grafting new knowledge onto existing relation
structure through the addition and/or alignment
of data attribute domains and associations.

User Friendliness is another property of design
quality more often considered aesthetic. It is a
combination of: ease of learning; high speed of
user task performance; low user error rate;
subjective user satisfaction; and, user retention

over time (Shneiderman, 1992). Its impact may
be easiest to consider in its

absence. A modeling choice that is “unfriendly”

to stakeholders is confusing, hard to
comprehend, unwieldy, and perhaps worst of all,
of indeterminate correctness. That which defies
understanding cannot be determined to be
correct. Satisfaction is cumulative. The
sensitivity to the stakeholders’ conceptions of

the essence of the system to be modeled is key
to the stakeholders’ sense of comfort,
familiarity, and expectation.

There is elegance in the succinctness and
simplicity that arises from properly isolating
domain knowledge in the respective relations.

The use of user/client/customer familiar naming
of relations and attributes and the choice of the
commonly used, domain based attribute values

lends a comfort level to the representation of
problem domain experience. The relational
model also enables the derivation of contained
knowledge at levels of granularity much higher
than the individual tuple or relation. This is
because relational operations on relations
produce relations as their result. Information

derived from a relational database can be
presented as if it were simply retrieved from a
single physical relation. This illusion is easily
achieved in relational programming languages
that support the definition and storage of

queries that may then be referenced themselves

as relations without the users’ notice (i.e. in
ANSI SQL the “create view” syntax). The facility
of such extensions to apply relational operations
so discretely creates virtually unlimited
opportunities and permits what might otherwise
be a complex and daunting algorithm of
derivation to be completely ignored by the
users.

Patterns describe versatile templates to solve

particular problems in many different situations

(Gamma et al., 1995). Patterns is the property
of design quality that channels change

(unfolding). A pattern foreshadows where and
how change will need to be accounted for.
Patterns of the form popularized in (Coplein,
1995) document commonly encountered design
questions offering carefully considered advice
and cautions.

The most predominant pattern found in
relational models is the regularity of structure
that is embodied in the tuples that populates

relations. This regularity assures that the same
“questions” may be posed to each and every

instance in a relation to elicit a consistently
meaningful result. The tuples may be readily
compared one to another and ordered that their
factual content may be exhibited in a useful
exposure of multiplicity. At the next level of

structure we find the foreign key relationship
where an association between relations is
constructed by choosing attributes in the two
relations that proceed from the same attribute
domain. The pattern is further emphasized by
the property of referential integrity. This pattern
of connecting facts between and among relations

permits the stepwise assemblage of higher and
higher levels of derived information. The
association enables the traversal of a network of
concepts and facts that are both defined by and

operationally enabled by the foreign key
construct. The use of these patterns by the

relational model designer provides the
opportunity to lay out domain knowledge in a
predictable and usable mapping.

Programmability in software engineering is
often considered a feature rather than a
property of design quality – the capability within
hardware and software to change; to accept a
new set of instructions that alter its behavior
(Birrell and Ould, 1988). It is closely allied with

extensibility and addresses the need for models
to welcome the future. What largely separates
information systems from other human-made

mechanisms is the degree of adaptability that
they offer to deal gracefully with change. Unlike
most appliances that support a very narrow
range of use (albeit with great reliability),

contemporary information systems are expected
to provide not only amplification of effort as in
computation, but also amplification of
opportunity in terms of different approaches to
business or organizational questions.
Contemporary information systems are expected
to demonstrate that they can reliably

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 8
www.aitp-edsig.org

accommodate change. As with extensibility,
successful accommodation of change relies on

an understanding of the fundamental options
governing the structure and behavior within a
particular domain.

What sets programmability apart from
extensibility is a facility that permits altering the
systems behavior without having to reconstruct
choices – this versatility is not accidental but
architectural.

Returning again to the use of relational
operations to compose higher and higher levels

of information we see individual relations as
building blocks that may be arranged

(assembled through relational operations) to
yield any reasonable arrangement or derivation

of information that the underlying relations may
possess. This is possible because of the
individual identity that each relation fosters in its
tuples and because of the predictable reliability
that proceeds from the consistency and safety of
relational operations that is guaranteed in a set

of normalized relations. The extent of
information mining that may be attempted is
limited almost solely by the programmers’
imagination.

Reliability is a property of design quality more
often associated with implementation than
design. It is the assurance that a product will
perform its intended function for the required
duration within a given environment (Pham,
2000).

There is an overarching simplicity that results
from the fact that all of the properties of

integrity are based upon data attribute values
that may be readily inspected before or after
any relational operation. Intension is expressed
in modeled expressions of integrity constraints
that are domain specific. The synchronization

between the intension and extension of the

model is easily tested because of this simple
transparency. Reliability is assured if valid
relational operations are applied consistent with
model integrity constraints and thus will always
yield consistent (“truthful”) information.

Reliability in design reflects an austerity that
confines design elements to the essentials of the
stakeholder’s intentions. When design or
implementation decisions involve additional

constructs due to technology or compatibility,
these accidents of implementation must be

clearly delineated so as not to imply that they
are essence rather than accident. This clear
distinction will protect future system evolution
from mistaking accidental “baggage” as
stakeholder intentions.

Elegance is perhaps the epitome of subjective
quality assessment that clearly sets choice
properties of design quality apart from
traditional software engineering metrics.

“Pleasing grace and style in appearance or
manner,” that’s how the dictionary expresses

the meaning of “elegance.” (Oxford English
Dictionary)

“A designer knows he has achieved perfection
not when there is nothing left to add, but when
there is nothing left to take away.” (Raymond,
1996)

Models composed of choices that are consistent,
clear, concise, coherent, cogent, and
transparently correct exude elegance and

nurture cooperation, constructive criticism and
stakeholder community confidence. These are
models that confess to their own shortcomings
because their clarity obscures nothing, even

omissions. These are models that satisfy
stakeholders. They appear “intuitively obvious.”

Elegance is achieved largely through the
relational model when relations are modeled
with a minimum of extraneous or redundant

information. Indeed eliminating redundancy is
common mantra of relational modeling. The
laying out of basic facts divided into distinct
encapsulated containers of knowledge and the
subsequent composition of higher levels of
derived information effects a sense of economy
of form and abundant opportunity for exploring

and extracting the knowledge that a database so
fashioned accommodates.

Elegance largely proceeds from the efficient and
effective representation of essential system
characteristics along with those features
emerging out of design decisions, accidents of
implementation, that are laid out with equal
clarity for separate consideration. This is the
field effect of the beneficial, integrated, mutual

support of strong choices described in Thriving
Systems Theory. (Waguespack, 2010c)

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 9
www.aitp-edsig.org

6. INTEGRATING THE DESIGN QUALITY
LEARNING UNIT IN A RELATIONAL

MODELING SYLLABUS

The design quality discussion provides a quality
vocabulary for one-on-one consultations

between teacher and student as each develops
their relational models. In this one-on-one
context each student’s specific design decisions
may be discussed and evaluated in relationship
to the design quality properties, an opportunity
for individualized, reinforced learning and/or
suggested improvements.

The deeper subtleties of design quality present a
challenge for some students particularly in a

compressed format. The “light doesn’t go on”
right away for all students. However, the
integration of the ontology and design quality
property based vocabulary establishes a
touchstone that returning students report helps
them “to name” the “quality elements” they

rediscover in succeeding coursework and
professional practice.

In your own curricular situation the distribution
of learning unit elements may span more than
one course (some addressed in database

programming, requirements engineering, or
database design, etc.), be rearranged to suit
your modeling tools, or be adjusted to your
course sequencing with context-appropriate
examples. Regardless, the learning unit
components are flexible and robust enough to
suit various specific program needs.

7. ACKNOWLEDGEMENTS

Thanks to helpful referees. Special thanks are
due my colleagues David Yates and Bill Schiano
at Bentley University for their insightful

discussions and comments on these ideas. And

thanks to the students who have labored
through the development of this learning unit.

8. REFERENCES

AACSB (2010). Eligibility Procedures and
Accreditation Standard for Business
Accreditation. Retrieved July 16, 2010 from
http://www.aacsb.edu/accreditation/AAAC
SB-STANDARDS-2010.pdf

Alexander C, (2002). The Nature of Order An
Essay on the Art of Building and the Nature

of the Universe: Book I - The Phenomenon
of Life, Berkeley, California: The Center for
Environmental Structure, p. 119

Baldwin, C. Y., and Clark, K. B. (2000). Design
Rules, Volume 1: The Power of Modularity.
The MIT Press, Cambridge, MA.

Beck K., Beedle M., van Bennekum A., Cockburn
A., Cunningham W., Fowler M., Grenning J.,
Highsmith J., Hunt A., Jeffries R., Kern J.,
Marick B., Martin R.C., Mellor S., Schwaber

K., Sutherland J., & Thomas D. (2010).
Manifesto for Agile Software Development.

Retrieved July 12, 2010 from
agilemanifesto.org

Birrell, N. D., and Ould, M. A. (1988). A Practical
Handbook for Software Development.
Cambridge University Press, Cambridge, UK.

Brooks F. P. (1987), "No Silver Bullet: Essence
and Accidents of Software Engineering,"
Computer, Vol. 20, No. 4, pp 10-19.

Brooks, F. P. (1995). The Mythical Man-Month:

Essays on Software Engineering (2ed).
Addison-Wesley, Boston, MA.

Brooks, F. P. (2010). The Design of Design:
Essays from as Computer Scientist. Addison-
Wesley, Pearson Education, Inc., Boston,
MA.

Cassel L., Clements A., Davies G., Guzdial M.,
McCauley R., McGettrick A., Sloan B.,

Snyder L, Tymann P., & Weide B.W., (2008).
Computer Science Curriculum 2008 An
Interim Revision of CS2001. Association of
Computing Machinery (ACM), & IEEE
Computing Society (IEEE-CS)

Coplien J and Schmidt D (Eds) (1995). Pattern
Languages of Program Design, Addison-
Wesley, Reading, MA, USA

Crosby,P. B., (1979) Quality is Free, McGraw-
Hill, New York, NY, USA.

Dijkstra, E. (1968). “GOTO Statement
Considered Harmful.” Communications of the
ACM, 11(3), 147-148

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 10
www.aitp-edsig.org

Diaz-Herrara, J.L., & Hilburn, Thomas B. (eds.)
(2004). Software Engineering 2004:

Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering,
IEEE Computing Society (IEEE-CS),
Association of Computing Machinery (ACM)

Deming, W. E. (1993), The New Economics for
Industry, Government, Education (2ed),
Cambridge Press: MIT, Cambridge, MA, USA

Denning, P. J. (2004). “The Great Principles of
Computing,” Ubiquity, 4(48), 4–10

EQUIS (2010). EQUIS Standards and Criteria.
Retrieved July 16, 2010 from
http://www.efmd.org/attachments/tmpl_1
_art_041027xvpa_att_080404qois.pdf

Gamma, E., Helm, R., Johnson, R., and
Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA.

Hoyle, D. (2009). ISO 9000 Quality Systems

Handbook. Butterworth-Heinemann
(Elsevier); 6 ed. Burlington, MA, USA

ISO 9000 (2005), http://www.iso.org/iso/qmp

Juran, J. M., (1999). Quality Control Handbook
(6ed), McGraw-Hill, New York, NY, USA

Kaisler, S. H. (2005). Software Paradigms.
Wiley-Interscience, Hoboken, NJ.

Khoshafian, S. N., and Copeland, G. P. (1986).
“Object identity,” Proceedings of ACM

Conference on Object Oriented Programming
Systems Languages and Applications,
Portland, OR, November 1986, 406-416.

Lunt, B.M., Ekstrom, J.J., Gorka, S., Hislop, G.,
Kamali, R., Lawson, E., LeBlanc, R., Miller,
J., & Reichgelt, H. (eds.) (2008).
Information Technology 2008: Curriculum
Guidelines for Undergraduate Degree
Programs in Information Technology,

Association of Computing Machinery (ACM),
IEEE Computing Society (IEEE-CS)

Meyer, B. (1988). Object-oriented Software
Construction. Prentice Hall, New York, NY.

Pham, H. (2000). Software Reliability. Springer,
Berlin, Germany.

Pollack, S. (Ed.). (1982). Studies in Computer
Science. Mathematical Association of
America, Washington, DC.

Raymond, E. S. (1996). The New Hacker's
Dictionary, 3rd ed. The MIT Press,
Cambridge, MA.

Sales and Supply of Goods Act 1994, Ch 35,

Legislation of Her Majesty’s Government,
The National Archives, UK,

http://www.legislation.gov.uk/ukpga/1994
/35/introduction

Scott, M. L. (2006). Programming Language
Pragmatics, 2nd ed. Morgan Kaufmann,
Maryland Heights, MO.

Shackelford, R., Cross, J.H., Davies, G.,
Impagliazzo, J., Kamali, R., LeBlanc, R.,
Lunt, B., McGettrick, A., Sloan, R., & Topi,
H., (2005). Computing Curricula 2005: The

Overview Report, Association for Computing
Machiner (ACM), The Association of
Information Systems (AIS), The Computer
Society (IEEE-CS)

Shneiderman, B. (1992). Designing the User
Interface: Strategies for Effective Human-
Computer Interaction, 2nd ed. Addison-
Wesley, Reading, MA.

Soldan, D., Hughes, J.L.A., Impagliazzo, J.,
McGettrick, A., Nelson, V.P., Srimani, K., &
Theys, M.D. (eds.) (2004). Computer

Engineering 2004: Curriculum Guidelines for
Undergraduate Degree programs in
Computer Engineering, IEEE Computer
Society (IEEE-CS), Association for
Computing Machinery (ACM)

Topi, H., Valacich, J.S., Wright, R.T., Kaiser,
K.M., Nunamaker, J.F. Jr., Sipior, J.C., & de
Vreede, G.J. (eds.) (2010). IS2010:
Curriculum Guidelines for Undergraduate

Degree Programs in Information Systems,
Association for Computing Machinery (ACM),
Association for Information Systems (AIS)

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 11
www.aitp-edsig.org

Van Vliet, H. (2008). Software Engineering:
Principles and Practice, 3rd ed. Wiley,
Hoboken, NJ.

Waguespack, L. J. (2008). “Hammers, Nails,
Windows, Doors and Teaching Great

Design,” Information Systems Education
Journal, 6 (45). http://isedj.org/6/45/.
ISSN: 1545-679X

Waguespack (2010a). The Relational Model
Distilled to Support Data Modeling in IS
2002. Information Systems Education
Journal, 8 (3). http://isedj.org/8/3/. ISSN:

1545-679X. (A preliminary version appears
in The Proceedings of ISECON 2009: §3133.
ISSN: 1542-7382.)

Waguespack, L. J., Schiano, W. T., Yates, D. J.

(2010b). “Translating Architectural Design
Quality from the Physical Domain to
Information Systems,” Design Principles and
Practices: An International Journal, 4, 179-
194

Waguespack, L. J. (2010c). Thriving Systems
Theory and Metaphor-Driven Modeling,
Springer, London, U.K.

Waguespack, L. (2011a). “Design, The “Straw”
Missing From the “Bricks” of IS Curricula,”

Information Systems Education Journal, 9(2)
pp 101-108. http://isedj.org/2011-9/ ISSN:
1545-679X

Waguespack, L. (2011b). “A Design Quality
Learning Unit in OO Modeling Bridging the
Engineer and the Artist,” Proceedings of the
Information Systems Educators Conference,
Wilmington, N.C., USA, v28, n1625, 14p.

Zuse, H. (1997). A Framework of Software
Measurement. Walter de Gruyter, Berlin,
Germany.

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 12
www.aitp-edsig.org

Appendix A – Choice Properties (Waguespack 2010c)

Choice

Property
Modeling
Action

Practical Action Definition

1
Stepwise

Refinement
elaborate develop or present (a theory, policy or system) in detail

2 Cohesion factor express as a product of factors

3 Encapsulation encapsulate
enclose the essential features of something succinctly by a

protective coating or membrane

4 Extensibility extend
render something capable of expansion in scope, effect or

meaning

5 Modularization modularize
employing or involving a module or modules as the basis of

design or construction

6 Correctness align put (things) into correct or appropriate relative positions

7 Transparency expose reveal the presence of (a quality or feeling)

8
Composition of

Function
assemble

fit together the separate component parts of (a machine or
other object)

9 Identity identify establish or indicate who or what (someone or something) is

10 Scale focus
(of a person or their eyes) adapt to the prevailing level of light

[abstraction] and become able to see clearly

11 User Friendliness accommodate fit in with the wishes or needs of

12 Patterns pattern give a regular or intelligible form to

13 Programmability generalize make or become more widely or generally applicable

14 Reliability normalize
make something more normal, which typically means

conforming to some regularity or rule

15 Elegance coordinate
bring the different elements of (a complex activity or

organization) into a relationship that is efficient or harmonious

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 13
www.aitp-edsig.org

Appendix B - Relational Green Card (Waguespack 2010a)

2012 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
New Orleans Louisiana, USA v29 n1908

©2012 EDSIG (Education Special Interest Group of the AITP) Page 14
www.aitp-edsig.org

