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Abstract  
 
This study examines the application of digital ecosystems concepts to a biological ecosystem 

simulation problem.  The problem involves the use of a digital ecosystem agent to optimize the 
accuracy of a second digital ecosystem agent, the biological ecosystem simulation.  The study also 
incorporates social ecosystems, with a technological solution design subsystem communicating with a 
science subsystem and simulation software developer subsystem to determine key characteristics of 
the biological ecosystem simulation.  The findings show similarities between the issues involved in 

digital ecosystem collaboration and those occurring when digital ecosystems interact with biological 
ecosystems.  The results also suggest that even precise semantic descriptions and comprehensive 

ontologies may be insufficient to describe agents in enough detail for use within digital ecosystems, 
and a number of solutions to this problem are proposed.    
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1.  INTRODUCTION AND MOTIVATION 
 
This study builds upon existing digital 
ecosystems research (Debuse & Miah, 2011) to 

examine the application of digital ecosystems 
principles (Boley & Chang, 2007) to define a 
simulation optimization problem.  The problem 
focuses upon improving the quality of a 
mathematical model of a biological system.  This 
study further examines the progress made 
towards this goal along with challenges faced, 

within the context of digital ecosystems.   
 
Digital ecosystems principles offer a number of 
potential benefits to this study.  Animals, 

software and humans can all be analyzed in a 
similar manner, namely as agents, and 

interactions between overlapping ecosystems 
can be examined (Boley & Chang, 2007).  Digital 
ecosystems principles may be applied to the 
analysis of all agents, such as the precision of 
semantic descriptions together with mapping 
and translation between rules and ontologies 
that are not fully compatible (Boley & Chang, 

2007). 
 
Existing research shows support for 
enhancement of optimization processes and 
techniques across human oriented technological 
solution designs.  For example, digital 
ecosystems has been used for support and 

foundation of optimization of electricity market 
bidding, including technologies such as swarm 
intelligence (Zhang, Gao, & Lu, 2011).  The 
PolyWorld system applies digital ecosystems 
concepts much more broadly, with the goal of 
incorporating all key elements of living systems 

such as metabolisms, physiologies and genetics 
into a single artificial system (Yaeger, 1994).  
Disciplines such as neurophysiology, behavioral 
ecology and evolutionary biology can use 
PolyWorld as a research tool (Yaeger, 1994); for 
example, PolyWorld has been used to examine 
evolutionary selection of brain network 

topologies (Yaeger, Sporns, Williams, Shuai, & 
Dougherty, 2010).  Motivated by such research, 
and examining an application within the human 

systems domain using the digital ecosystems 
paradigm, the study begins with a brief 
description of the original problem scenario, 
before introducing its current state; the digital 

ecosystems, social ecosystems and biological 
ecosystems perspectives (Boley & Chang, 2007) 
are all discussed.   
 
Next, the results, including progress made and 
challenges faced, are presented, before the 

discussion is given and conclusions are drawn 
regarding the implications for future digital 
ecosystems research and practice. 

 

2.  PROBLEM SCENARIO 
 
The original problem scenario upon which this 
study builds was presented in (Debuse & Miah, 
2011), within which the digital ecosystem 
contains two agents (Boley & Chang, 2007).  
The first agent is for the management of forest 

pests, and is a mathematical model of forest 
insect pest species (Nahrung, Schutze, Clarke, 
Duffy, Dunlop, & Lawson, 2008); this agent 
effectively models part of a biological 

ecosystem.  Although the agent has been found 
to be robust in terms of how accurately it 

models the biological ecosystem (Nahrung et al., 
2008), it may potentially be improved by 
optimizing its parameter values so that it fits the 
data more closely (Debuse & Miah, 2011).  The 
second agent is an optimization algorithm, such 
as a genetic algorithm, which modifies the 
parameter values of the first agent to improve 

the quality of its fit to the data (Debuse & Miah, 
2011).  The second agent cannot use a more 
simplistic approach such as brute force search, 
due to the enormous number of combinations of 
parameter values that exist. 
 
The proposed digital ecosystem formed part of a 

social ecosystem comprising a number of 
subsystems and agents (Boley & Chang, 2007).  
The science subsystem contained scientists 
acting as agents to develop and test the 
optimization mode.  For example, the simulation 
parameters to be optimized must be selected, 

along with constraints to ensure that they are 
biologically realistic (Debuse & Miah, 2011).  The 
technological solution design (TSD) subsystem 
comprised IT researchers acting as agents to 
apply digital ecosystems principles and develop 
the optimization approaches (Debuse & Miah, 
2011).  This subsystem was thus responsible for 

tasks such as determining the most appropriate 
optimization algorithms and problem 
representation for the simulation optimization 

problem (Debuse & Miah, 2011). 
 
Within the digital ecosystem of the current 
problem scenario, the first agent, which 

performs the simulation task, has been created 
within the DYMEX (Maywald, Bottomley, & 
Sutherst, 2007) modeling environment.  DYMEX 
allows process based biological simulation 
models to be developed without users requiring 
programming expertise (Maywald et al., 2007), 



2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435 
San Antonio, Texas, USA  v30 n2536 

_________________________________________________ 

_________________________________________________ 
©2013 EDSIG (Education Special Interest Group of the AITP) Page 3 
www.aitp-edsig.org 

and thus allows representations of real biological 
ecosystems to be created as digital ecosystems.  
The next step is to create the second agent 
within this ecosystem to optimize the 

parameters of this first agent.  From a social 
ecosystem perspective, this requires 
collaboration between the science and TSD 
subsystems.  Further, the goal is to ensure that 
the simulation agent models the real biological 
ecosystem as accurately as possible.  This 
mirrors the collaboration between digital 

ecosystems described in (Boley & Chang, 2007); 
a digital ecosystem is collaborating with a 
biological system.  Similar challenges are 
present.  In digital ecosystem collaborations, 

mapping and translation may be required 
between digital ontologies and rules that are not 

fully compatible (Boley & Chang, 2007); 
similarly, the optimization agent in this study is 
responsible for improving the quality of mapping 
and translation from the biological ecosystem to 
its digital counterpart. 

 
3.  RESEARCH METHOD AND RESULTS 

 
Social Ecosystems 
Social ecosystems reinforce collaborative 
relationships between software and social agents 
to enhance operational efficiency.  The social 
ecosystems needed to be expanded to include 
developers of the simulation software as a third 

subsystem, to determine how the simulation and 
optimization agents within the digital ecosystem 
could communicate and collaborate.  Figure 1 
shows the social ecosystems in this study. 
  

 
 

Figure 1.  Social ecosystems within this 
study 

 
The DYMEX simulation environment was 

reported by the developer subsystem to provide 
support for a brute force optimization based 
agent.  The exchange of messages between 
DYMEX and external agents (Boley & Chang, 
2007) would allow an external second agent to 

perform the parameter optimization, but this 
appeared to be unsupported. 
 
The solution adopted was thus for the 

researchers within the TSD subsystem to 
recreate the DYMEX model within an 
environment which allowed interaction with the 
EVA2 (Evolutionary Algorithms framework 
version 2) framework proposed to support the 
optimization agent (Debuse & Miah, 2011).  
EVA2 uses Java to support optimization 

algorithms such as genetic algorithms (Kronfeld, 
Planatscher, & Zell, 2010), and so the simulation 
was recreated as Java software. 
 

Despite the relative simplicity of the simulation, 
the recreation of the simulation required 

collaboration between the TSD, simulation 
software developers and science subsystems.  
This initially involved message exchange 
between the TSD and science subsystems to 
determine operation of the simulation.  A key 
challenge was the ontological complexity of the 
simulation software, along with the extent to 

which this appeared to be made fully explicit 
within the system.  Ontology provides a formal 
structure in which an explicit specification of the 
system can be presented.  Previous studies 
identify the importance of ontology development 
in knowledge engineering, especially for 
knowledge integration (Chen, 2010; Soo, Lin, 

Yang, Lin, & Cheng, 2006).  In knowledge based 
system design, a recent study by Chen (2010) 
identified knowledge management issues inside 
an enterprise.  To address this, Chen (2010) 
developed an ontology based approach to 
knowledge reasoning.  This approach mainly 

utilizes a web ontology language (called WOL) to 
represent empirical knowledge in a structured 
manner to enable sharing and reuse.  In our 
system design, we used the ontology to 
determine how the Java version of the 
simulation should be constructed.  The ontology 
provided both guidance for appropriate class 

structures within Java and details of how the 
simulation software functioned, so that this 
could be accurately recreated within Java. 

 
As development of the Java version of the 
simulation proceeded, further message 
exchange was required to determine the 

potential cause of discrepancies between the 
Java and DYMEX versions of the simulation, with 
the developer subsystem being involved due to 
their greater knowledge of the DYMEX system. 
 
Digital Ecosystems 

 

Developer Science 

TSD 

Simulation 
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Simulation agent 
Development of the Java version of the DYMEX 
implementation of the simulation agent 
presented a number of challenges.   

 
Firstly, despite the model containing only seven 
stages, from egg through to overwintering adult, 
its overall complexity made it challenging to 
model; Table 1 contains the pseudocode.  For 
every simulated day of forest pest insect 
development, each simulation life stage was run.  

Each stage contained five key functions: 
chronological age; development, determining 
how individuals age physiologically; mortality, 
determining how individuals die; stage transfer, 

controlling how individuals move from one 
stage, such as from egg to larva; and progeny 

generation, calculating how new eggs are 
produced.  Many of the functions contained 
multiple parameters; further, some stages 
contained additional complexity, such as having 
dual stage transfer or including reproduction.  
The length and temperature of each day were 
also used within the simulation. 

 
The simulation also used the concept of cohorts, 
representing a group of individuals that are 
created at the same time and share 
characteristics such as their physiological age.  
Multiple cohorts were implemented; each stage 
of the simulation could thus potentially contain a 

number of different cohorts. 
 
The original DYMEX simulation possessed digital 
ecosystem entity characteristics such as precise 
semantic description and a comprehensive 
ontology (Boley & Chang, 2007).  An ontology 

can act as a vocabulary of a digital ecosystem, 
grouping properties and categories hierarchically 
(Boley & Chang, 2007).  Thus, the ontology of 
the DYMEX simulation included categories such 
as life stages and functions; these were 
recreated within the Java version.  The power 
and flexibility of the Java language should avoid 

the potential for problems relating to the lack of 
full compatibility between the ontologies and 
rules of the two systems (Boley & Chang, 2007); 

Java should be able to emulate any DYMEX 
computation.  However, differences between the 
two simulations still emerged. 
     

Tracing the source of the differences proved 
challenging, since the precision to which DYMEX 
calculated many of the results was higher than 
that to which they were reported; determining 
the exact nature of its operation was impossible 
in some areas.  Experimenting with multiple 

scenarios within the Java system allowed the 
sources of some discrepancies to be identified; 
for others, the range of potential scenarios to 
investigate was too large to be explored 

exhaustively, and required input from the 
developer social subsystem.   
 

for each day  

 for each life stage  

  for each cohort 

    compute chronological age 

    compute physiological age 

    apply continuous mortality 

   for each stage transfer function   

   nt := 0 

    for each cohort 

     nt := nt +  

     computed number of cohort  

     to transfer to next stage 

     remove transferred individuals  

     from cohort 

    compute and apply reduction  

    in nt caused by exit mortality 

    cn1 := new cohort  

    containing nt individuals 

    add cn1 to the next life stage 

   np := 0 

   for each cohort 

    compute progeny generation rate gr 

    np := np + progeny computed using  

    cohort size, gr and fecundity   

   compute updated fecundity 

   cn2 := new cohort  

   containing np individuals 

   add cn2 to the egg life stage 
  

Table 1.  Java simulation model 
pseudocode. 

 

Differences in precision were also responsible for 
differences between the simulations.  When 
DYMEX tested whether a cohort was empty it 
rounded its size before applying the test.  Such 
a detail appeared not to be described within the 
documentation for the system, and would be 

unlikely to be of interest to a scientist building or 
testing models due to its subtle effect; however, 
this caused divergence between the simulations 

after a number of simulated days, which was 
reduced when the Java version was modified to 
use the same rule. 
 

The simulation was run for over 200 simulated 
days in total, which introduced further scope for 
divergence between the two simulations, since 
even very small initial discrepancies could 
escalate over time into much larger gaps.  
Further research was required before the two 
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systems produced the same results over every 
simulated day.   
 
Optimization agent 

Simulation model development follows five 
stages: systems analysis, where key elements, 
interactions and behaviors are determined; 
system synthesis, where a complete model of 
the interactions and elements of the system is 
produced along with supporting data; 
verification, where the algorithmic correctness of 

the model is determined; validation, where 
model responses are compared with those of the 
real system that is being modeled; and model 
analysis or inference, where the response of the 

model to a range of inputs is analyzed (Mihram, 
1972).  Tests that provide information on the 

relative strengths and weaknesses of the final 
model solution are an important component of 
model analysis.  The sensitivity of the model 
output to uncertainty in each of the parameters 
(eg.  survival of life stages, egg batch size) 
provides the scientist with greater information 
on which parameters are the key drivers of the 

model output and the extent to which parameter 
changes may alter the conclusions that can be 
drawn from the model (Eschenbach & Gimpel, 
1990).   
 
The optimization agent is responsible for 
modifying the simulation agent so that it 

matches the real biological ecosystem that it 
models as closely as possible; such analysis of 
matching thus incorporates the validation stage 
of simulation model development (Mihram, 
1972).  A key prerequisite of the optimization 
agent is determination of the evaluation 

function.  This gives a goodness-of-fit measure, 
by determining the difference between the 
simulated values and the real world data that 
the simulation must model. 
 
Goodness of fit is measured by a variety of 
criteria, which must be of a form suitable for the 

optimization agent, namely a numerical score 
which must be minimized or maximized.  Thus, 
the degree of fit is specifically defined and is not 

subject to variation according to the individual 
assessor, which can occur when simulated and 
observed data are compared graphically.  
Goodness of fit criteria will vary according to the 

data and the aims of the modeler.  Examples 
include testing fit between observed and 
simulated values by partitioning the mean 
squared error based on regression analysis (e.g.  
used by (Rice & Cochran, 1984)) or measuring 
the extent to which simulated values fall within 

the 95% confidence intervals of the mean 
observed value (e.g.  (Andrade-Piedra, Forbes, 
Shtienberg, Grünwald, Chacón, Taipe, Hijmans, 
& Fry, 2005)).  The criteria can be applied to 

different aspects of the model, such as the 
number of generations, the timing of them and 
their size (Nahrung et al., 2008).  Additional 
characteristics may also be investigated, such as 
model robustness in predicting the number of 
broods and across climate zones; further, the 
quality of fit across each stage in the life cycle is 

noted, with some being superior to others 
(Nahrung et al., 2008).  Expressing this 
mathematically is challenging, since each of 
these aspects must be assigned a formula 

together with a weighting, to allow the relative 
importance of each aspect to be controlled and 

ensure the measure is not unduly dominated by 
some components.  For example, a very simple 
measure might sum the absolute difference in 
population size between the simulation and real 
biological data at each day, and add to this the 
difference between peak timing.  The total 
number of days for the simulation in this study 

is over 200, an order of magnitude larger than 
the number of population peaks reported in 
(Nahrung et al., 2008); weighting is thus 
required to prevent the population size measure 
dwarfing the peak timing, and the resulting 
solution prioritizing population size over peak 
timing.   

 
It may also be important to measure the quality 
separately for each life stage, and combine 
these to produce the overall quality; otherwise, 
solutions may be produced which appear to fit 
well for the entire population but perform poorly 

for some life stages.  However, a drawback of 
this approach is that it requires determination of 
preference before the optimization process is 
performed (Branke, Deb, Miettinen, & Slowinski, 
2008); for example, the scientists need to 
determine whether each life stage should be 
weighted equally in the quality measure, or 

alternatively greater weighting be given to some 
stages.  A superior approach may be to use 
multi-objective optimization, where each 

component of the quality function, such as 
quality at each stage, is measured separately 
(Branke et al., 2008).  Rather than a single 
optimal solution being produced, such an 

approach results in a set of ‘Pareto optimal’ 
solutions, representing good solutions from 
which users may select the best (Branke et al., 
2008).  A solution is Pareto optimal if there 
exists no other solution which is superior in at 
least one quality measure and not inferior in any 



2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435 
San Antonio, Texas, USA  v30 n2536 

_________________________________________________ 

_________________________________________________ 
©2013 EDSIG (Education Special Interest Group of the AITP) Page 6 
www.aitp-edsig.org 

other; it is weakly Pareto optimal if there exists 
no other solution which is superior across all 
quality measures (Branke et al., 2008).  The 
approach does not require the science 

subsystem members to determine their 
preferences for different components of the 
solution quality measure in advance; further, 
generating a collection of solutions from which 
members of the science subsystem can select, 
rather than generating a single best solution, 
may potentially result in better understanding of 

the problem (Branke et al., 2008).  However, for 
the biological population modeling problem 
examined within this study the whole population 
is of interest.  All life stages are important in 

determining the size of the next stage, and thus 
separate weightings for life stages are not 

required, rendering the multi objective 
optimization approach potentially superfluous.   
 
A further challenge is determining how generally 
the model can be applied.  In this study, as in 
most cases, there are little available data to test 
against; thus, any conclusions regarding model 

validity can only be applied to conditions within 
the bounds of the tested data.  Where more 
datasets are available and can be tested, the 
model may be applied across a wider range of 
conditions.   
 
Constraints must be used, either in terms of 

limiting the options available to the optimization 
agent or introducing penalties within the quality 
measure, to ensure the simulations make sense 
scientifically.  For example, representing 
mortality as a negative growth rate would not 
make sense scientifically and yet may potentially 

yield accurate simulations (Debuse & Miah, 
2011).  Growth rate could thus be constrained to 
be positive, or a penalty introduced into the 
quality function to ensure such rates always 
yield solutions with poor quality measures. 
 
The numbers used to represent the simulation 

parameters present another set of constraints.  
The Eva2 optimization framework, which we plan 
to use to perform the optimization within this 

study, supports the implementation of problems 
with real number parameters (Kronfeld et al., 
2010).  However, even if each of these has their 
range constrained to be one of only 100 different 

integer values and only eight simulation 
parameters are optimized, the total number of 
possible solutions will be 1008  (Debuse & Miah, 
2011).  Thus, the range of values to which each 
simulation parameter may be set, along with the 
precision with which they are represented, must 

be carefully set in consultation with the scientist 
subsystem, so that the number of potential 
solutions does not become unnecessarily large.  
Discretization algorithms have shown promise in 

reducing this number of solutions, although they 
must be used with caution to avoid problems 
such as increasing the problem size (Debuse & 
Rayward-Smith, 1999).  Further, the simulation 
model contains a total of 55 parameters, and so 
even if discretization yielded only two values for 
each parameter there would be 255 possible 

parameter values if all values were optimized.  
Thus, if each simulation run took only 0.1 
seconds then a brute force search would be 
infeasible, requiring over 100 million years to 

complete. 
 

Unlike the simulation agent, which possessed 
digital ecosystem entity characteristics such as 
precise semantic description and a 
comprehensive ontology (Boley & Chang, 2007), 
the solution quality measure and representation 
scheme have no such precision or ontological 
knowledge base.  From a social ecosystems 

perspective this requires considerable interaction 
between the technological solution development 
research and scientist subsystems, to determine 
the most appropriate measure to use.  This has 
similarities with an ontology based decision 
system (Miah, Kerr, Gammack, & Cowan, 2008), 
which included an interaction of a technological 

solution with scientist subsystems, in which an 
interplaying role between end users and the 
scientific subsystems was defined.  In the 
model, the scientific subsystems in terms of a 
defined problem ontology were responsible for 
analytics rules creation for optimized practices 

and assistance with improving decision support 
within the rural industry context.    

 
4.  DISCUSSIONS AND CONCLUSION 

 
Through investigating biological, digital and 
social ecosystem interactions, this study has 

identified a number of practical implications and 
potential weaknesses in digital ecosystem agent 
ontologies and semantic descriptions.  It is 

somewhat surprising that, even with precise 
semantic description and a comprehensive 
ontology, it is possible for a digital ecosystems 
agent such as a DYMEX simulation to prove 

challenging to emulate.  This study suggests 
that these two characteristics alone may prove 
insufficient for an agent to be described in 
enough detail to be used within a digital 
ecosystem; a number of further characteristics 
may be necessary.   
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Firstly, a “white box” in addition to “black box” 
semantic description must be provided; precise 
details of how each module within the agent 
processes data must be provided, rather than 

simply describing the process as a whole.   
 
Secondly, detailed “white box” descriptions for 
each module within an agent may result in an 
overall description which is too complex for 
human comprehension.  This is particularly 
evident in this study, where modules process 

multiple cohorts over series of simulated days.  
Thus, some form of “debugging” may be 
required, whereby the agent can be executed 
and queried step by step and in detail, in much 

the same way as debuggers allow software to be 
executed line by line, variable values queried 

and so on. 
 
Finally, even a comprehensive ontology is of 
little use without a mathematical ontology, 
describing details such as: precision level of 
calculations; differences between precision used 
within calculations and precision of reported 

data; and whether rounding or truncation are 
used, and at which points in calculations they 
are applied.  As this study has illustrated, small 
errors can rapidly become significant, and thus 
must be eliminated as much as possible.  
Further, in complex models the mathematics 
may change from one area to the next; for 

example, as our results have shown, rounding 
may occur only in one part of an agent.  This is 
supported by existing research which argues 
that languages for web ontology specification do 
not have sufficient expressive power to 
represent mathematical expressions explicitly 

(Annamalai & Sterling, 2003); indeed, 
mathematical ontologies have been developed 
which may provide some support in this area 
(Annamalai & Sterling, 2003; Davenport & 
Kohlhase, 2009; Gruber & Olsen, 1994). 
 
The challenges involved in creating the second 

(optimization) agent do however show support 
for the importance of precise semantic 
descriptions and comprehensive ontologies 

(Boley & Chang, 2007), even without the 
additional characteristics described above.  The 
presence of such properties would have 
significantly simplified this step of the study. 

 
Collaboration between digital and biological 
ecosystems involves similar challenges to 
collaboration between fully digital systems.  
Digital collaborations can require alignment, 
mapping and translation between system rules 

and ontologies where these are not fully 
compatible (Boley & Chang, 2007).  The first 
(simulation) agent within this study was 
designed to represent the rules and ontologies of 

a real biological ecosystem as closely as 
possible.  The second (optimization) agent had 
the goal of ensuring that this alignment, 
mapping and translation occurred correctly, by 
modifying the simulation parameters to improve 
how it modeled the biological system.  However, 
determining how to measure the closeness of 

this alignment, mapping and translation is a 
significant challenge; no single approach exists, 
with each having benefits and drawbacks, yet 
the approach used will significantly impact how 

closely the simulation matches reality.  Further, 
the scheme used to represent the first agent 

within the optimization process of the second, 
itself a digital collaboration, has the potential to 
significantly affect the collaboration between the 
digital simulation agent and its biological 
counterpart.  Future research will therefore 
explore these issues as part of achieving the key 
goal of ensuring that the digital ecosystems 

maps to its biological counterpart as accurately 
as possible. 
 
The key contributions of this study thus include: 
investigation of practical implications of the 
application of digital ecosystems principles to 
complex interactions between biological, digital 

and social ecosystems; identification of potential 
weaknesses in semantic descriptions and 
ontologies of digital ecosystem agents; and the 
proposal of extensions to digital ecosystems to 
address the identified issues.  The next step will 
be to extend the study to examine the further 

application of digital ecosystems principles, as 
the optimization agent is developed and 
comprehensively tested using real world field 
data.   
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